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ABSTRACT
With the continued scaling of CMOS technologies and reduced de-
sign margins, the reliability concerns induced by transient faults
have become prominent. Moreover, the popular energy manage-
ment techniquedynamic voltage and frequency scaling (DVFS)has
been shown to have direct and negative effects on reliability. In
this work, for a set of real-time tasks, we focus on the slack alloca-
tion problem to minimize their energy consumption while preserv-
ing the overall system reliability. Building on our previous find-
ings for a single real-time application where a recovery task was
used to preserve reliability, we identify the problem of reliability-
aware energy management for multiple tasks as NP-hard and pro-
pose two polynomial-time heuristic schemes. We also investigate
the effects of on-chip/off-chip workload decomposition on energy
management, by considering a generalized power model. Simula-
tion results show that ordinary energy management schemes could
lead to drastically decreased system reliability, while the proposed
reliability-aware heuristic schemes are able to preserve the system
reliability and obtain significant energy savings at the same time.

1. INTRODUCTION
The phenomenal improvements in the performance of computing

systems caused a drastic increase in power densities. For battery-
operated embedded systems, energy has been promoted to be a
first-class system resource [24] and energy-aware system design
has recently become an important research area. The most common
strategy to achieve energy savings is to run the system components
at low-performance (thus, low-power) operation points, whenever
possible. For instance, as a widely popular technique,dynamic
voltage and frequency scaling (DVFS)scales down the CPU fre-
quency and supply voltage simultaneously to save energy [23].

While most of the early Real-Time DVFS research focused on
thedynamicandon-chip/CPUenergy consumption, there is a grow-
ing awareness about the need for more comprehensivesystem-wide
energy management frameworks [12, 16, 28]. Along the same
lines, when one considers theoff-chip components such as main
memory and I/O devices, the assumption that the task execution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD ’06 November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

time increaseslinearly with the decrease in frequency remainsno
longer valid. Recently, several attempts have been made to cap-
ture both on-chip and off-chip workload characteristics of tasks in
energy management [1, 5, 6].

Reliability and fault tolerance have always been major concerns
in computer system design. Due to the effects of hardware defects,
electromagnetic interference or cosmic ray radiations, faults may
occur at run-time, especially in systems deployed in dynamic envi-
ronments. With continued scaling of CMOS technologies and ad-
justment of design margins for higher performance, it is expected
that, in addition to the systems that are traditionally operated in
electronics hostile environments (such as those in outer space), prac-
tically all digital systems will be much more vulnerable to the tran-
sient faults [11, 22]. Moreover, blindly applying DVFS for energy
savings may cause significant degradation in system’s reliability
as it has been shown that DVFS has a direct and negative effect
on transient fault rates [8, 28]. Therefore, for real-time embed-
ded systems where reliability is as important as energy efficiency,
reliability-cognizant energy managementbecomes a necessity.

Closely related work: For the primary/backup recovery model,
Unsal et al. proposed to postpone the execution of backup tasks
to minimize the overlap of primary and backup execution and thus
the energy consumption [21]. The optimal number of checkpoints,
evenly or unevenly distributed, to minimize energy consumption
while tolerating one transient fault was explored by Melhemet al.
in [17]. Elnozahyet al. proposed anOptimistic TMRscheme that
reduces the energy consumption for traditional TMR systems by al-
lowing one processing unit to slow down provided that it can catch
up and finish the computation before the application deadline if the
results from other two units are not in agreement [10]. The optimal
frequency settings for OTMR were further explored in [29]. As-
suming a Poisson fault model, Zhanget al. proposed an adaptive
checkpointing scheme that dynamically adjusts checkpoint inter-
vals for energy savings while tolerating a fixed number of faults for
a single task [25]. The work is further extended to a set of periodic
tasks [26].

Most of the previous research either focused on tolerating fixed
number of faults [10, 17] or assumed constant fault rate [25, 26]
when applying DVFS for energy savings. In our previous work,
the effects of DVFS on transient fault rates have been studied and
an exponential fault rate model was proposed in [28]. Using this
fault rate model, Ejlaliet al. studied the reliability - energy savings
trade-offs in [9]. As an initial study, based on the single task model,
we have proposed areliability-aware energy managementscheme,
where an additionalrecovery taskis scheduled for the task to recu-
perate the reliability loss due to DVFS [27]. Though important on



its own, a fundamental limitation of [27] is that, the decisions are
made by considering only one task at a time.

In this paper, we focus on the system design problem of deter-
mining the processing speeds (and supply voltages) for a set of real-
time tasks, which may have different on-chip/off-chip workloads,
to save energy while preserving the system reliability. As we show
later in this paper, significant gains can be obtained in terms of both
energyandreliability, if we considerall the tasks at the same time
when allocating slack for energy and reliability management.

The remainder of this paper is organized as follows. The system
models and assumptions are presented in Section 2. In Section 3,
we first formulate the problem to be solved; then we study the
effects of workload decomposition on system-wide energy man-
agement. After reviewing the concept of reliability-aware energy
management and identifying the intractability of the problem con-
sidered, we propose two heuristic schemes. Simulation results are
presented in Section 4. Section 5 concludes the paper.

2. SYSTEM MODELS AND ASSUMPTIONS

2.1 Application Model
We consider a real-time application that consists of a set ofn

independent tasks:T1, . . . , Tn. All tasks in the application should
complete their executions by the deadlineD. Note that, if the appli-
cation is periodic,D can also represent theperiod. The worst-case
execution time (WCET) of taskTi under the maximum CPU fre-
quency (fmax) is denoted byci. We consider a system with DVFS
capability where the clock frequency values are normalized with
respect tofmax. In other words, we takefmax = 1.0.

2.2 Power Model
We adopt the system-level power model proposed in [28, 29],

where the power consumptionP in a system is given by:

P = Ps + ~(Pind + Pd) = Ps + ~(Pind + Ceffm) (1)

HerePs is thestatic power, Pind is thefrequency-independent ac-
tive powerandPd is the frequency-dependent active power. The
static power, which may be removed only by powering off the
whole system, includes (but not limited to) the power to main-
tain basic circuits, keep the clock running and the memory in sleep
modes [12].Pind is a constant and corresponds to the power that
is independent of processing frequencies (and supply voltages) but
can be efficiently removed by putting systems into sleep states [7,
12]. Pd includes processor’s dynamic power as well as any power
that depends on processing frequencies (and supply voltages) [3].
~ represents system states and indicates whether active powers

are currently consumed in the system. Specifically, when the sys-
tem isactive(defined as having computation in progress)~ = 1;
otherwise, the system is in sleep modes or turned off and~ = 0.
The effective switching capacitanceCef and the dynamic power
exponentm (which is, in general, no smaller than 2) are system
dependent constants andf is the processing frequency.

Despite its simplicity, the above model captures the essential
components of power consumption in embedded systems for system-
level energy management. Intuitively, lower frequencies result in
less frequency-dependent active energy consumption. But with re-
duced frequency, tasks run longer and thus consume more static and
frequency-independent active energy. Considering the prohibitive
overhead of turning on/off a device [2], for the time interval con-
sidered (e.g., within the deadline), we assume that the system is
always on (but some components may be put into sleep states for
energy savings) andPs is always consumed.

2.3 Fault Model
During the execution of an application, a fault may occur due to

various reasons, such as hardware defects, software errors and the
effects of cosmic ray radiations. Sincetransientfaults occur much
more frequently thanpermanentfaults [4, 15], especially with the
continued scaling of CMOS technologies and adjustment of design
margins [11, 22], in this paper, we focus on transient faults, and
explorebackward recoverytechniques to tolerate them. It is as-
sumed that transient faults are detected usingsanityor consistency
checks [18] at the end of task’s execution and the time overhead of
fault detection is incorporated into task’s WCET. The recovery is
assumed to take place through the re-execution of the task [18].

Based on the observation thatsoft error rate (SER)increases with
lower supply voltages due to the reducedcritical charge (which
is the smallest charge needed to cause a soft error) [14, 19, 30],
we studied the negative effects of DVFS on transient fault rates
in [28]. With the assumption that the radiation-induced transient
faults follow a Poisson distribution [25, 26], for systems running
at frequencyf (and corresponding supply voltageV ), the average
transient fault rateλ is modeled as [28]:

λ(f) = λ0 · g(f) (2)

whereλ0 is the average fault rate corresponding tofmax (and cor-
responding supply voltageVmax). That is,g(fmax) = 1. With
scaled processing frequencies (and supply voltages), the fault rate
generally increases andg(f) > 1 for f < fmax.

Moreover, considering the relationship between soft error rates,
critical charge, supply voltage and the number of particles in the
cosmic rays [14, 19, 30], we proposed an exponential fault rate

model: g(f) = λ010
d(1−f)
1−fmin where the exponentd (> 0) is a

constant, indicating the sensitivity of fault rates to DVFS. That is,
reducing the supply voltage and frequency for energy savings re-
sults inexponentiallyincreased fault rates. The maximum average
fault rate is assumed to beλmax = λ010d, which corresponds to
the lowest frequencyfmin (and the supply voltageVmin).

3. SAVING ENERGY WHILE PRESERVING
RELIABILITY

3.1 Problem Formulation
While DVFS is a powerful technique to save energy, the consid-

eration of transient faults, and in general, reliability concerns, intro-
duces new dimensions to the problem. Let us denote thereliability
of taskTi by R0

i , which is the probability of correctly completing
Ti with its WCET atfmax. From the Poisson fault arrival pattern
and the average fault rateλ0, we haveR0

i = e−λ0ci . As the system
reliability R0 depends on the correct execution ofall the tasks, we
obtainR0 =

Qn
i=1 R0

i . Without loss of generality, it is assumed
thatR0 is satisfactory. However, when DVFS is used to save en-
ergy, the reliability of the tasks executed at the reduced frequency
will be adversely affected, due to the both extended execution time
and increased fault rates at lower frequencies/supply voltages.

Suppose that the amount of available slack isS = D−Pn
i=1 ci.

In this work, we focus on the problem ofallocating the slackS to
individual tasks for maximizing energy savings without sacri-
ficing system reliability, while taking the effects of voltage scal-
ing on fault rates into consideration. In order to preserveR0, for
simplicity, we adopt conservative approaches that maintain the re-
liability of each and everytask. That is, the schemes will guarantee
that the probability of taskTi being correctly executed will be no
less thanR0

i (i = 1, · · · , n), even after energy management.



Suppose that the amount of slack allocated to taskTi is si. In
addition to being used to scale down the execution ofTi to save
energy, the slack can also provide temporal redundancy to enhance
Ti’s reliability. Therefore, the problem can be formally stated as:

minimize
nX

i=1

Ei (3)

subject to
nX

i=1

si ≤ S (4)

si ≥ 0, i = 0, . . . n (5)

Ri ≥ R0
i , i = 0, . . . n (6)

whereEi andRi are the energy consumption and the reliability
achieved, respectively, after allocatingsi to taskTi, for both en-
ergy and reliability management. Here, the inequality (4) ensures
that the total allocated slack does not exceedS, the inequality (5)
states that slack allocation cannot be negative, and the inequality
(6) guarantees the reliability of each task is at least equal to its
original value (i.e. without energy management).

3.2 Task-Specific Energy-Efficient Frequency
Note that one “hidden” aspect of our problem involves determin-

ing the CPU frequency for the tasks that are selected for energy and
reliability management. Before discussing the details of our solu-
tions, we would like to address the issues withtask specific energy-
efficient frequencies, for the generic power and workload models.

Most of the previous research has assumed that the execution
time scales linearly with the processing frequency. However, re-
cent research has found that such assumptions may not be accurate,
especially in embedded systems with limited cache sizes [20]. Con-
sidering that the off-chip access latencies, specifically the frequen-
cies of memory and I/O buses, are mostly independent of the CPU
clock frequency, a more accurate execution model based on theon-
chip andoff-chip workload decomposition, has been proposed [1,
5, 6]. In this model, the worst-case execution timeci of a real-time
taskTi atfmax can be expressed as

ci = xi + yi (7)

wherexi is the frequency-dependentcomponent (due to on-chip
execution) andyi is thefrequency-independentcomponent (due to
off-chip accesses). With the assumption offmax = 1, the scaled
execution time,ti(f), of taskTi at frequencyf will be:

ti(f) =
xi

f
+ yi (8)

Moreover, as tasks may perform different off-chip accesses (e.g.
for different I/O devices) during the execution,Pind may vary from
task to task. Suppose that the frequency-independent power for
task Ti is Pind,i. Similarly, the effective switching capacitance
Cef,i may also be different for each taskTi. Consequently, the
total energy consumption of taskTi at frequencyf will depend on
task characteristics and it can be modeled as:

Ei = Ps ·Di + (Pind,i + Cef,if
m) · ti(f) (9)

whereDi is the time period allocated to taskTi.
From Equations (7), (8) and (9), the energy consumption for ex-

ecuting taskTi will be minimized when the processing frequency
f satisfies the following equation:

m · Cef,i · yi · fm+1 + (m− 1)Cef,i · xi · fm − Pind,ixi = 0 (10)

Therefore, by solving Equation (10), we can get atask-specific
energy-efficient frequencyfor each task. Note that form = 2 or

m = 3, Equation (10) will yieldcubicor quartic equations, which
can be solved analytically. For other cases, observe that the left-
hand side of Equation (10) represents a convex function, which is
strictly increasing in the interval[0, fmax = 1]. Consequently,
a binary search technique can be used to converge rapidly to the
task-specific energy-efficient frequency. For the special case where
no off-chip workload is considered (i.e.,yi = 0), the task-specific
energy-efficient frequencyfee,i for taskTi can be obtained as a
close formula:

fee,i = m

s
Pind,i

(m− 1)Cef,i
(11)

From the above equation, we can see that, asPind,i increases (i.e.,
as the frequency-independent power becomes more dominant) and
Cef,i decreases (i.e., the frequency-dependent power becomes less
important), the task-specific energy efficient frequency becomes
higher, which implies that less slack could be used for scaling down
the taskTi and less energy may be saved.

Intuitively, as the off-chip workload does not scale with reduced
processing speeds, the total energy consumption of a task due to the
off-chip workload will decrease monotonically when the process-
ing speed decreases. Therefore, tasks with high off-chip workloads
favor lower processing speeds and, in general, have a lower task-
specific energy-efficient frequency.

3.3 Using Recovery Tasks with DVFS to
Preserve/Improve Reliability

As a motivational example, consider Figure 1, where3 units of
slackS is allocated to the taskTk, which has the WCET asck = 2.
Without considering reliability (and assuming thatyk = 0), the or-
dinary power management scheme would use all the slack to scale
down the processing speed of taskTk to 0.4 for energy savings as
shown in Figure 1b. However, by doing so, the probability of hav-
ing at leastone transient fault during the execution ofTk increases
drastically1 due to both extended execution time and exponentially
increased fault rates at lower frequencies and supply voltages [28].

Instead of using all the slack for DVFS and energy management,
one can reserve a portion of the slack to schedule onerecovery
taskbk (in the form of re-execution) for taskTk, to recuperate the
reliability loss due to energy management (see Figure 1c) [27]. The
remaining slack can still be used to scale down the processing of
taskTk to save energy.

Note that the recovery taskbk will only be executed if a fault
is detected at the end ofTk ’s execution. Withbk, the overallre-
liability Rk of taskTk will be the summation of the probability
of primary taskTk being executed correctly andthe probability of
having transient fault(s) duringTk ’s execution while the recovery
taskbk being executed correctly. Notice that, if the execution of
the primary taskTk is faulty, the recovery taskbk will be executed
atfmax and the probability of having no faults during its execution
is e−λ0ck = R0

k. Therefore, considering the recovery taskbk, the
probability,Rk, of finishing taskTk correctly in time will be [27]:

Rk = e−λ(fk)si +
�
1− e−λ(fk)si

�
R0

k > R0
k (12)

wherefk is the reduced clock frequency forTk, λ(fk) is the cor-
responding fault rate andsi is the slack allocated toTk (part of
which is reserved for recovery). That is,whenever the available
slack is larger than the task’s WCET, by scheduling a recovery
task, one can preserve the reliability of a real-time task while

1In fact, such a slow-down may result in a reliability degradation
of at least two orders of magnitude [27].
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Figure 2: Different slack allocations for multiple tasks.

still saving energy regardless of the exponentd in the fault rate
model and the reduced processing frequencyfk [27]. Although
checkpoints could be used to more efficiently use the slack time
[17, 25, 26], it has been shown that checkpoints with one recov-
ery sectioncannotguarantee to preserve task’s reliability [27]. For
simplicity, in this paper, we will focus on the re-execution of full
tasks during recovery.

3.4 The Case of Multiple Tasks
The problem gains new dimensions when we consider a real-

time application consisting of multiple tasks. In particular, we
need to allocate available slack to multiple tasks,possibly in dif-
ferent amounts, to maximize the energy savings. Moreover, from
the above discussion, whenever a task is scaled down for saving
energy, a recovery task needs to be scheduled to preserve its relia-
bility. This, in turn, will reduce the available slack for DVFS. All
these considerations give rise to an interesting trade-off dimension.

In general, the problem of reliability-aware energy management
for multiple tasks can be divided into two sub-problems:selecting
a subset of tasks to be managed (the remaining tasks are left
intact and will run at the maximum frequency) anddetermining
the processing speed for each task within the selected subset.

In what follows, we first illustrate how different task selection
decisions can yield different amounts of energy savings. Then, we
identify the problem of finding the optimal slack allocation to mul-
tiple tasks for maximizing energy savings while preserving the sys-
tem reliability as NP-hard. Consider the example given in Figure 2.
We have four tasks, each having WCET of1 time unit, that need
to be completed by timeD = 7. Therefore, there are3 units of
slack available in the system. For illustration purposes, here we
assume that the execution time increases linearly with decreasing
frequency (i.e., the off-chip workload is not considered), and that
the power consumption is given by a cubic function.

Since the available slack is not sufficient to accommodate a sep-
arate recovery for each task, only a subset of tasks can be managed.
If we decide to manage three tasks, we will need a total of 3 units
of slack for recovery tasks. Consequently, no slack will be left for
energy management and no energy savings can be obtained. On
the other hand, if only one task (e.g., taskT1) is chosen, as shown
in Figure 2b, we can schedule the recovery taskb1 for taskT1 and
then use the remaining2 units of slack to scale down the processing
speed ofT1 to 1

3
for energy savings. Simple algebra shows that, the

energy savings would be8
9
E, whereE is the energy consumed by

taskT1 without any power management. As explained earlier, the
original reliability of T1 would be preserved with the help of the

recovery taskb1.
However, as shown in Figure 2c, if two tasksT1 and T2 are

selected, after scheduling the recovery tasksb1 andb2, there is1
unit of slack remaining for energy management. The execution of
T1 andT2 can be uniformly stretched out and the energy savings
would be 11

9
E, a significant improvement over the previous case.

Also, the overall system reliability is preserved; in fact,betterreli-
ability figures are achieved forboth tasksT1 andT2, as indicated
by Equation (12).

3.5 Intractability of the Problem
A natural question to ask is whether there exists a fast (i.e. poly-

nomial time) solution to the general reliability-aware energy man-
agement problem for multiple tasks. Unfortunately, the answer is
negative, as we argue below.

Consider a special case of the general problem where tasks do
not have off-chip workload (i.e.,yi = 0) and bothPind andCef are
the same for all tasks. In this case, due to thesameconvex relation
between power and processing speed, the solution for the minimum
energy consumption could be obtained by uniformly scaling down
the execution ofselectedtasks using the slack that remains after
reserving CPU time for recovery operations. Hence, the problem
becomes essentially one of selecting the tasks to be managed.

Suppose that the total amount of computation isL =
Pn

i=1 ci

and the amount of available slack isS = D − L. If the total
WCET of theselected tasksis X, we haveX ≤ L and X ≤
S. After reservingX amount of slack for recovery (in the form
of re-execution), the remaining slack (S − X) could be used to
scale down the processing frequency for the selected tasks. In that
case, the amount of totalfault-freeenergy consumption (without
considering the execution of recoveries) will be:

Etotal = S

�
Pind + cef ·

�
X

S

�m�
+

(L−X)(Pind + cef · fm
max) (13)

where the first part is the energy consumption for the selected tasks
and the second part is the energy consumption of unselected tasks.

Simple algebra shows that, whenX = S ·(Pind+Cef

m·Cef
)

1
m−1 , Etotal

will be minimized. For example, ifPind = 0, Cef = 1 andm = 3,
we will haveX =

√
3

3
S; that is, the optimal amount of computation

to be managed equals
√

3
3

of the amount of available slack.
If X ≥ L, all tasks could be managed. Otherwise, to mini-

mize the energy consumption while preserving the reliability, the
subset of tasks should be selected in such a way that the summa-



tion of their WCET requirements isexactlyequal toX. In other
words, such a choice would definitely be the optimal solution. No-
tice that, having a fast (polynomial time) solution to this problem
would imply having a fast solution for SUBSET-SUM problem.
The SUBSET-SUM problem involves finding whether there exists
a subset of integersn1, n2, . . . , nk in such a way that the sum of
the numbers in the subset is exactly a given numberK. Further,
the SUBSET-SUM problem is known to be NP-hard [13]. Since
this is only a special case, we reach the conclusion that the general
reliability-aware energy management problem for multiple tasks
should also be NP-Hard.

Considering the problem is computationally intractable, in the
following subsections, we propose and evaluate two fast heuristics.

3.6 Reliability-Aware Greedy Heuristic
By extending the reliability-aware energy management scheme

for single tasks [27], we can obtain a fast heuristic, that we call
reliability-aware greedy heuristicfor multiple tasks. In this scheme,
tasks are selected for management one at a time. After a task is cho-
sen, the task will be allocated as much slack as possible (including
the slack for recovery) in an attempt to reduce its speed to its energy
efficient frequency. If more slack remains after this assignment, ad-
ditional tasks will be selected.

Obviously, the order of tasks being selected will affect the num-
ber of tasks to be managed as well as the total amount of energy
savings. Notice that, because of the recovery needed for preserv-
ing reliability, the minimum amount of allocated slack for any se-
lected task should be at least as large as its worst case execution
time. Therefore, a certain amount of slack may be wasted at the
end, since that slack may not be sufficient for managing the small-
est un-selected task. Hence, to avoid wasting significant amount of
slack, in this work, we focus on the longest-task-first (LTF) heuris-
tic to determine the order of tasks to be selected for management.
We underline that our experiments with other task-ordering rules
(including, shortest-task-first) yielded less impressive results.

3.7 SUEF Heuristic
Note that the greedy scheme discussed in the preceding section

attempts to reduce the processing speed for the selected tasks ag-
gressively without considering overall energy efficiency. To evalu-
ate the efficiency of slack usage for each task, we define theslack
usage efficiency factor (SUEF)for taskTk running at speedf as:

SUEFk(f) =
E0

k − Ek(f)

sk(f)
(14)

whereE0
k andEk(f) is the energy consumption of taskTk atfmax

andf , respectively; andsk(f) is the total amount of slack needed
(including the slack reserved for recovery) for taskTk to run atf .
That is, it is the ratio of the amount of energy saved to the total
amount of slack needed when taskTk runs at a certain speed. The
higher the value of SUEF is, the more energy could be saved per
unit of slack usage.

Notice that, at the maximum frequencyfmax, no slack is needed
and no energy is saved, and theSUEF (fmax) for tasks is defined
as0. Intuitively, asf decreases, more energy could be saved and
SUEF (f) will increase. However, as the speed approaches the
task’s energy efficient frequency, less energy is saved for the same
amount of slack used. Due to the effects of slack reserved for recov-
ery, it is expected thatSUEF (f) will increase and then decrease
after a certain threshold. Therefore, for each taskTk, there should
exist an optimal speed,fopt

k (> fee,k), at whichSUEFk(f) is

maximized. Note that,

sk(f) = (
xk

f
− xk) + (xk + yk) =

xk

f
+ yk (15)

Ek(f) = sk(f)(Pind,k + Cef,kfm) (16)

From Equations (14, 15 and 16) and differentiatingSUEFk(f)
with respect tof , we can get thatSUEFk(f) is maximized when
f satisfies:

mCef,kfm−1(xk + f · yk)2 = xk(xk + yk)(Pind,k + Cef,k) (17)

Whenm = 2 or m = 3, this gives rise tocubicor quartic equa-
tions, respectively, and the optimal speed to maximizeSUEFk(f)
can be solved analytically. For the case ofyk = 0 (i.e., no off-
chip workload), the optimal speed can be also easily solved as

fopt
k = (

Pind,k+Cef,k

m·Cef,k
)

1
m−1 .

Algorithm 1 SUEF-based Heuristic for Slack Allocation

1: for all tasks, findSUEF max
k , fopt

k andsk(fopt
k );

2: Sremain = S;
3: Put tasks intoQueuein the order of decreasingSUEF max

k ;
4: while (Queueis not empty andSremain is larger than the

smallest task in theQueue) do
5: get the header taskTk from Queue;
6: if (sk(fopt

k ) <= Sremain) then
7: allocatesk(fopt

k ) for taskTk;
8: Sremain− = sk(fopt

k );
9: else

10: store taskTk to the setΦ of ’unselected’ tasks for energy
management;

11: end if
12: end while

Therefore, for a given task set, it would be most energy efficient
to execute tasks that can achieve higher values ofSUEF . Based
on this observation, we propose the SUEF-based heuristic (see Al-
gorithm 1), which selects tasks according to their slack usage effi-
ciency factors. In the algorithm,Sremain stands for the amount of
remaining slack.Queueis used to sort the tasks in the decreasing
order of their maximum slack usage efficiency factorSUEF max

k

(line 3). The slack is allocated to these tasks in that order, enabling
them to run at their optimal speedfopt

k (lines6, 7 and8). Φ con-
tains the intact tasks to which no slack is allocated (line10). Ob-
serve that the complexity of the algorithm is onlyO(n log n) where
n is the number of tasks (and where the dominant term comes from
sorting tasks according to their SUEF values).

4. SIMULATIONS AND DISCUSSIONS
To evaluate the effectiveness of our schemes on reliability and

energy consumption, we implemented a discrete-event simulator.
In the simulator, we implemented and compared the performance
of the following schemes:

• No power management (NPM)does not explore DVFS but
puts the system to power saving sleep states when it is idle.
NPM is used as the baseline algorithm in our comparisons;

• Ordinary Static Power Management (SPM)uses the slack
for energy savings without considering system reliability;

• Reliability-aware greedy (GREEDY) schemeselects tasks
for management with the LTF heuristic;

• SUEF-based heuristic (SUEF)selects tasks for manage-
ment by considering tasks’ SUEF values.
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Figure 3: The impact of slack and DVFS-induced fault rates on reliability and energy consumption (β = 0.05 and Cef = 1.0).

We simulated a DVFS-enabled environment where the CPU clock
frequency can assume any of the five normalized frequency values
in the set{0.2, 0.4, 0.6, 0.8, 1.0}. To capture the relationship be-
tween different power consumption components, we use a parame-
terβ which is defined as the ratio of the frequency-independent ac-
tive power to the maximum frequency-dependent active power. In
other words,β = Pind

Pd,max
. The frequency-dependent active power

is a cubic function of the frequency (i.e.,m = 3).
We generated synthetic task tests where a task’s worst case exe-

cution time is randomly chosen between 1 and 10 through a uni-
form distribution. Because of the space limitations, we present
only the results for task sets each having 20 tasks – the results for
different number of tasks yield very similar patterns. Finally, we
note that each data point that we present corresponds to the average
value of100 task sets.

4.1 Impacts on System Reliability
First, we investigate how these schemes affect the system relia-

bility. Again, the reliability of the real-time application is defined
as the probability of completingall the tasks (and their recovery
blocks, in case of primary tasks catch transient faults) successfully
before the application deadline. For convenience, we present the
probability of failure, which is defined as1 − reliability. Note
that these reliability figures can be obtained analytically by using
the fault rate model and execution time information. Figure 3a and
Figure 3b present the results when the exponentd in the fault rate
model equals2 and5, respectively. The results are normalized with
respect to those of the baseline scheme NPM.

In the figures,L (=
Pn

i=0 ci) represents the summation of all
tasks’ WCET and the X-axis denotes the amount of slack available,
when normalized with respect toL. Here, we assume that tasks
have the same power characteristics (i.e.,βi = 0.05 andCef,i = 1)
and the off-chip workload is negligible (i.e.,yi = 0). The effects
of these factors are examined in the following subsection.

We observe that SPM leads to drastically decreased system reli-
ability figures even when the fault rate only increases moderately
with scaled frequencies and supply voltages (e.g. whend = 2).
This is to be expected, since SPM uses all the available slack ag-
gressively for energy management, without taking into account the
effects on the reliability. However, both GREEDY and SUEF are
reliability aware schemes by reserving slack for recovery before
reducing the frequency, which preserve (in fact, improve) system
reliability even when the fault rate increases sharply (e.g. when
d = 5). This is consistent with the theoretical results presented in
Section 3.3. Observe that, as the amount of slack increases, more
tasks can be managed and slightly higher reliability numbers are
obtained (i.e., lower probability of failure).

Figure 3c shows the normalized energy consumption for all the
schemes under the same settings for the case ofb = 2. We can see
that, due to the recovery needed for preserving system reliability,
less slack is available for power management and both GREEDY
and SUEF schemes consume more energy (around25%) than SPM.
When there is only a small amount of slack available, SUEF yield
only slightly better energy performance than GREEDY since the
number of tasks that can be managed is limited. However, as more
slack becomes available, more tasks can be managed and the energy
consumption difference between SUEF and GREEDY becomes more
significant (up to8%). This is because, the GREEDY scheme tries
to execute all the managed tasks at their minimum energy efficient
frequencies, which is not the most effective approach considering
the slack needed for recoveries. In contrast, SUEF considers the
slack needed for recoveries and executes tasks at their optimal fre-
quencies that maximize their slack usage efficiency and that are
generally higher than tasks’ energy efficient frequencies.

4.2 Impact of Task Characteristics
Next, we evaluate the effects of tasks’ power characteristics and

off-chip workload on energy savings. The amount of slack is as-
sumed to be1.5L. The minimum frequency-independent power is
set toβmin = 0.05. The value ofβi for each task is randomly gen-
erated betweenβmin andβmax, which is the varying parameter.
When we investigate the effects ofCef andy, βi is set toβmin.
Similar approaches are adopted to get the switching capacitance
Cef,i and the off-chip workloadyi values.

Figure 4a shows the effects of varying frequency-independent
active power on energy savings for the proposed schemes. Asβmax

increases, on average, the energy efficient frequencies for tasks be-
come higher and the off-chip components tend to consume more
power, as discussed in Section 3.2. Therefore, all the schemes will
consume more energy. Observe that, the difference between the
three schemes becomes less pronounced asβmax increases. How-
ever, SUEF provides better energy savings compared to GREEDY,
throughout the spectrum.

Figure 4b shows that, when the effective switching capacitance
increases, more energy can be saved. Again, this is due to the
fact that, the energy efficient frequencies for tasks become slightly
lower with increasingCef,max, allowing more chances to manage
additional tasks. The same reasoning applies to the case of varying
the off-chip workloadymax in Figure 4c. However, the variations
on the off-chip workload lead to bigger difference between the en-
ergy efficient frequency and the optimal frequency for maximizing
the tasks’ Slack Usage Efficiency Factors. As a result, the per-
formance difference between GREEDY and SUEF becomes more
significant, where SUEF can provide25% more energy savings.
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Figure 4: The effects of frequency-independent active powerPind, (by varying βmax), active switch capacitance (Cef,max) and
off-chip workload (ymax) on energy savings for the proposed schemes.

5. CONCLUSIONS
With the scaled technology feature size, transient faults inall

digital systems will become more common. The problem is exacer-
bated when frequencies/supply voltages are scaled for energy sav-
ings. Although both fault tolerance and energy management have
been studied extensively, there are only a few researches addressing
reliability and energy efficiency trade-offs, simultaneously.

Considering the effects of voltage scaling on transient faults and
a generalized power/workload model, we studied the slack alloca-
tion problem for multiple tasks to minimize their energy consump-
tion while preserving system reliability. Based on our previous
finding of using a recovery to preserve task’s reliability, we identi-
fied the problem as NP-Hard and proposed two greedy heuristics.
The performance for the proposed schemes are evaluated through
simulations with synthetic task sets. The results show that the ordi-
nary energy management schemes which ignore the effects of en-
ergy management on fault rates are too optimistic and could lead
to drastically decreased system reliability. Our heuristic algorithms
preserve the system reliability by reserving slack for potential re-
covery tasks, before applying DVFS for energy savings. Our results
indicate that the slack usage efficiency-based heuristic algorithm
(SUEF) yields the best results by considering the different power
and workload characteristics of tasks.
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duplex and tmr real-time systems.RTSS, 2002.
[11] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,

and K. Flautner. Razor: circuit-level correction of timing errors for
low-power operation.IEEE Micro, 24(6):10–20, 2004.

[12] X. Fan, C. Ellis, and A. Lebeck. The synergy between power-aware
memory systems and processor voltage. InPACS, 2003.

[13] M. R. Garey and D. S. Johnson.Computers and Intractability: A
Guide to the Theory of NP-Completeness. Mathematical Sciences
Series. Freeman, 1979.

[14] P. Hazucha and C. Svensson. Impact of cmos technology scaling on
the atmospheric neutron soft error rate.IEEE Trans. on Nuclear
Science, 47(6):2586–2594, 2000.

[15] R.K. Iyer, D. J. Rossetti, and M.C. Hsueh. Measurement and
modeling of computer reliability as affected by system activity.ACM
Trans. on Computer Systems, 4(3):214–237, Aug. 1986.

[16] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic
voltage scaling for real-time embedded systems.DAC, 2004.
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[29] D. Zhu, R. Melhem, D. Mosśe, and E.(Mootaz) Elnozahy. Analysis
of an energy efficient optimistic tmr scheme.ICPADS, 2004.

[30] J. F. Ziegler. Trends in electronic reliability: Effects of terrestrial
cosmic rays. http://www.srim.org/SER/SERTrends.htm, 2004.


