IEEE TRANSACTIONS ON COMPUTERS, VOL. , NO. , AUGUST 2013 1

Coordinated Power and Performance
Guarantee with Fuzzy MIMO Control in
Virtualized Server Clusters
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Abstract—It is important but challenging to assure the performance of multi-tier Internet applications with the power consumption
cap of virtualized server clusters mainly due to system complexity of shared infrastructure and dynamic and bursty nature of
workloads. This paper presents PERFUME, a system that simultaneously guarantees power and performance targets with flexible
tradeoffs and service differentiation among co-hosted applications while assuring control accuracy and system stability. Based
on the proposed fuzzy MIMO control technique, it effectively controls both the throughput and percentile-based response time
of multi-tier applications due to its novel self-adaptive fuzzy modeling that integrates the strengths of fuzzy logic, MIMO control
and artificial neural network. Furthermore, we address an important challenge of pro-actively avoiding violations of power and
performance targets in anticipation of future workload changes. We implement PERFUME in a testbed of virtualized blade servers
hosting multi-tier RUBIS applications. Performance evaluation based on synthetic and real-world Web workloads demonstrates
its control accuracy, flexibility in selecting tradeoffs between conflicting targets, service differentiation capability and robustness
against highly dynamic and bursty workloads. It outperforms a representative utility based approach in providing guarantee of
the system throughput, percentile-based response time and power budget.

Index Terms—Power Budget, Performance Guarantee, Multi-tier Internet Services, Fuzzy MIMO control, Proactive Control, Self
Adaptation, Server Virtualization.
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1 INTRODUCTION applications. Thus, power management may threaten the
performance isolation of hosted applications. It is important
to consider a coordinated approach in controlling power and
performance in virtualized datacenters.

Recent studies such as [33] found highly dynamic work-
loads of Internet services that fluctuate over multiple time
scales, which can have a significant impact on the process-
ing demands imposed on datacenter servers. Furthermore,
burstiness of Internet workloads has deleterious impact
on client-perceived performance [29]. It is challenging to
design autonomic resource provisioning techniques that are
robust to dynamic variation and burstiness in workloads.

Many research studies focused on treating either power
or performance as the primary control target in a datacenter
while satisfying the other objective in a best-effort manner.
Power oriented approaches [25], [32], [37] disregard the
SLAs of hosted applications while performance oriented
approaches do not have explicit control on power con-
sumption [3]. Recently, vPnP [8] was proposed for explicit
coordination of power and performance in virtualized dat-
acenters using utility function optimization. The approach
can achieve tradeoffs between power and performance in
a flexible way. However, it lacks the guarantee on stability
and performance of the server system especially in the face
of highly dynamic and bursty workloads.

Multiple-input-multiple-output (MIMO) control tech-
nique has been applied for performance management of

Modern datacenters apply virtualization technology to host
multiple Internet applications that share underlying high
density server resources for server consolidation and system
manageability. The widely used high density blade servers
impose stringent power and cooling requirements. Further-
more, datacenters may adopt over-subscription practice for
power savings [27], by allowing the sum of the possible
peak power consumption of all the servers combined to be
greater than the provisioned capacity. Hence, it is essential
to precisely control power consumption to ensure that actual
total power use stays below capacity.

A common technique for enforcing power budget is
to dynamically transition the hardware components from
high power states to low-power states [7]. However, it
has significant influence on the performance of hosted
applications as it may result in violation of service level
agreements (SLAs) in terms of response time and through-
put required by customers. Furthermore, such an approach
is not easily applicable to virtualized environments where
physical processors are shared by multiple virtual machines
(VMs). Changing the power state of a processor will affect
the performance of multiple VMs belonging to different
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multi-tier applications and power control of high density
servers in an enclosure [37]. However, those MIMO control
solutions do not provide explicit coordination between
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Fig. 1: PERFUME system overview.

power and performance. They are designed based on offline
system identification for specific workloads [19], [37].
Thus, they are not adaptive to situations with abrupt work-
load changes though they can achieve control accuracy and
system stability within a range theoretically.

An important goal in datacenters is to meet the SLAs
with customers. Many studies focused on the average
end-to-end response time within a multi-tier system [2],
[8], [16], [31], [34]. However, the average response time
guarantee is not sufficient for many applications, in par-
ticular for interactive ones as it is unable to represent the
shape of a delay curve. Instead, providers of such services
prefer percentile-based performance guarantee [26], [34],
[39]. But it is challenging to control the percentile-based
performance, even without a power consumption cap, due
to its strong non-linear relation with resource allocation and
workload dynamics [20].

In this paper, we propose and develop PERFUME, a
system that simultaneously provides explicit guarantee on
the power consumption of underlying server clusters and
the performance of multi-tier applications hosted on them.
As shown in Figure 1, various applications are hosted on a
virtualized server cluster according to an interference-aware
application placement policy. Such a placement policy
decides which applications should be co-located so that
the performance interference between applications can be
minimized [28]. PERFUME provides the flexibility to the
system administrator in setting the power and performance
targets, and specifying the trade-offs between the cost of
power consumption and the business value of providing
performance assurance to various applications.

PERFUME’s core is a fuzzy MIMO (FUMI) controller
that minimizes the deviation of power and performance
from their respective targets while assuring control accuracy
and system stability. FUMI control is capable of dealing
with the complexity of multi-tier applications in a shared
virtualized infrastructure and the inherent non-linearities
that exist in a real Web system. It is due to its integration of
fuzzy modeling logic, MIMO control and artificial neural
network. The control action is taken by adjusting the CPU
usage limits among individual tiers of multiple applications
in a coordinated manner. Furthermore, it provides service
differentiation by prioritizing CPU allocations among dif-
ferent applications while avoiding power budget violations.

PERFUME provides performance guarantee for through-
put and percentile-based response time in the face of highly

dynamic and bursty workloads. Its novel FUMI control
accurately captures the strong nonlinearity of percentile-
based performance metric such as the 95;,-percentile re-
sponse time by applying fuzzy models. It predicts the power
consumption of the server clusters for various CPU usage
limits in hosted applications. PERFUME is self-adaptive
to highly dynamic workloads due to its online learning
capability. It adjusts the fuzzy model parameters at run time
using a weighted recursive least-squares (wRLS) method.

Furthermore, PERFUME addresses an important chal-
lenge of pro-actively avoiding violations of power and per-
formance targets in anticipation of future workload changes.
In spite of FUMI control’s ability to adapt itself in the face
of workload variations, target violations may occur to some
extent. Such violations are even more significant in case
of continuously changing workloads as seen in real-world
Web traces. It is due to the purely reactive approach of
updating the power and performance models in response to
the measured modeling errors. Since it takes a few control
intervals to accurately update the system model, the control
actions may lag behind continuous variations in the work-
load. We enhance the proposed FUMI control by integrating
a workload prediction component. The integration involves
workload-aware MIMO fuzzy modeling of the virtualized
server system and the design of proactive FUMI control
based on this model. Our proactive FUMI control is able
to make effective control decisions in anticipation of future
workload changes. We apply a standard Kalman filtering
technique to predict workload variations.

PERFUME is suitable for joint power and performance
control at the server cabinet level. We further enhance
its scalability by decomposing the global control problem
into local sub-problems for each application hosted in the
cluster. Then, we construct decentralized FUMI controllers
for managing individual applications.

We implement PERFUME on a testbed of virtualized
server clusters hosting RUBiS benchmark applications. The
testbed consists of a cluster of HP ProLiant BL460C G6
blade servers using VMware VMs. We apply highly dy-
namic and bursty synthetic workloads as well as workloads
based on real Web traces from the 1998 Soccer World Cup
site [1]. Experimental results demonstrate that PERFUME’s
FUMI model significantly outperforms a recently applied
modeling technique for Web systems, ARMA (Auto Re-
gressive Moving Average) [8], [31] in terms of prediction
accuracy for application performance and power usage.

Compared to vPnP [8], PERFUME delivers significantly
improved performance, in terms of power, throughput and
response time assurance with respect to the given targets
in the face of highly dynamic and bursty workloads. This
is due to its modeling accuracy, self-adaptiveness and
control theoretical foundation. Note that vPnP was origi-
nally applied to a single tier, which was identified as the
bottleneck of a Web application. However, in practice, the
bottleneck tier can switch between multiple tiers depending
on workload patterns. For fair comparison, we extend the
vPnP implementation to a multi-tier application consisting
of a front-end Web tier that is responsible for HTTP request
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processing, a middle application tier that implements core
application functionality, and a backend database tier.

Experimental results demonstrate that PERFUME de-
livers consistent performance for various control options
that tradeoff between power and performance guarantee.
PERFUME provides service differentiation according to the
priorities of individual applications during power overload
conditions. We also examine the impact of tuning important
FUMI control parameters on the stability and responsive-
ness of the controller. We demonstrate the improvement in
power and performance assurance due to the integration
of workload prediction in PERFUME’s architecture for
proactive control. Finally, we evaluate the effectiveness of
the decentralized FUMI controllers in providing application
performance assurance and power control.

In the following, Section 2 discusses related work. The
PERFUME system architecture is presented in Section 3.
Section 4 describes the modeling of power and performance
control. Section 5 discusses the design of FUMI control.
Section 6 provides the testbed implementation details. Sec-
tion 7 presents the experimental results and analysis. We
conclude the paper with future work in Section 8.

2 RELATED WORK

Power management in computing systems is an important
and challenging research area. There were many studies
in power management using the Dynamic Voltage Scaling
(DVS) in embedded mobile devices and Web servers [5],
[7]. Today, popular Internet applications have a multi-tier
architecture forming server pipelines. Applying indepen-
dent DVS algorithms in a pipeline will lead to inefficient
usage of power for assuring an end-to-end delay guarantee
due to the inter-tier dependency [13]. Wang er al. [37]
proposed a MIMO controller to regulate the power con-
sumption by conducting processor frequency scaling for
each server while optimizing multi-tier application per-
formance. Such controllers are designed based on offline
system identification for specific workloads. They are not
adaptive to situations with abrupt workload changes.

Modern datacenters apply virtualization technology to
consolidate workloads on fewer powerful servers for im-
proving server utilization.Traditional power management
techniques are not easily applicable to virtualized environ-
ments where physical processors are shared by multiple
VMs. For instance, changing the power state of a proces-
sor by DVS will inadvertently affect the performance of
multiple VMs belonging to different applications.

Recent studies have dealt with the limitation of DVS
technique in virtualized environments by applying ‘soft’
techniques which exploit a hypervisor’s ability to limit
hardware usage by guest VMs [8], [30]. Other studies
have tackled the challenges of enforcing power budgets on
virtualized environments by coordinating multiple power
control knobs. Lim et al. [27] proposed a combination
of hardware-based (e.g. DVS) and software-based (e.g.
VM CPU time allocation) power control techniques to
coordinate the power distribution among a large number

of VMs within given peak power capacity. Verma et
al. [36] combined automatic VM resizing and live migration
techniques to ensure that datacenters can deal both with
temporary power outages and with surges in workload.

It is a trend that power and performance management of
virtualized multi-tier servers are jointly tackled. However,
it is challenging due to the inherently conflicting objectives.

Power-oriented approaches aim to ensure that a server
system does not violate a given power budget while
maximizing the performance of hosted applications [6],
[25], [32], [37], [38] or increasing the number of services
that can be deployed [9]. pMapper [35] tackles power-
cost tradeoffs under a fixed performance constraint. vMan-
age [18] performs VM placement to save power without
degrading performance. Co-Con [38] is a two-level control
architecture for power control in virtualized server clusters.
It gives a higher priority to power budget tracking and
performance is a secondary goal.

Performance-oriented approaches aim to guarantee a
performance target while minimizing the power consump-
tion [15], [19], [24], [26]. They do not control the power
consumption explicitly to meet the power budget.

Coordinated power and performance management with
explicit trade-offs is recently studied in virtualized
servers [8], [12], [16]. Mistral [16] optimizes power con-
sumption, performance benefit, and the transient costs
incurred by adaptations in virtualized server clusters.
vPnP [8] coordinates power and performance in virtualized
servers using utility function optimization. It provides the
flexibility to choose the tradeoff between power and per-
formance, but lacks the guarantee on system stability and
performance, especially under highly dynamic workloads.

There are important studies in dynamic resource pro-
visioning for delay guarantee in multi-tier Internet ser-
vices [11], [20], [22], [26], [31], [34], [39]. For instance,
Urgaonkar et al. [34] proposed a dynamic server provi-
sioning approach based on queueing models, which re-
quires extensive application profiling for each workload.
An approach proposed in [39] can model the probability
distributions of response time based on CPU allocations
on VMs. However, the performance model is not adaptive
to dynamic workloads. Furthermore, there was no power
control and power-performance tradeoff capability.

Recent works have analyzed the performance interfer-
ence between co-located applications in virtualized en-
vironments [10], [17]. There are performance isolation
techniques based on interference-aware application place-
ment [28] as well as dynamic resource management [23] in
virtualized servers. In this paper, we consider that the first
approach is in place to decide the application placement
that mitigates or avoids performance interference.

The tradeoff flexibility and system stability requirements
in the face of highly dynamic and bursty workloads demand
novel techniques for autonomic performance and power
control. In this paper, we propose a Fuzzy MIMO control
to coordinate power and performance of virtualized server
clusters, and provide service differentiation and proactive
power control under dynamic workload and power budget.
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Fig. 2: The system architecture of PERFUME.

3 PERFUME SYSTEM ARCHITECTURE

Figure 2 illustrates the system architecture of PERFUME.
The system under control is a virtualized server cluster
hosting multi-tier applications. Each tier of an application
is deployed at a VM created from a resource pool. The
power monitor periodically measures the average power
consumption of the server cluster. The performance monitor
periodically measures the performance of each multi-tier
application. FUMI control determines the CPU usage limits
on the Web, application and database tiers of multiple
applications to regulate per-application performance and the
total power consumption of the server cluster. The resource
allocator limits the CPU usage of each VM by using the
virtualization management module. Applying CPU usage
limits on VMs constrains the utilization of underlying
processors, and thereby regulates power consumption. It is
feasible due the idle power management of modern proces-
sors, which incorporate sleep states to achieve substantive
power savings when a processor is idle [27].

4 MODELING OF COORDINATED POWER
AND PERFORMANCE CONTROL

We apply fuzzy modeling to predict the performance of
multi-tier applications for various CPU usage limits im-
posed on the VMs. Both throughput and the percentile-
based response time are used as performance metrics. Fuzzy
modeling also estimates the complex relationship between
the power consumption of the resource pool and the CPU
usage limits imposed on various tiers of the applications. A
key strength of fuzzy model is its ability to represent highly
complex nonlinear systems by a combination of inter-linked
subsystems with simple functional dependencies. A simple
linear model is not sufficient in this case due to the complex
inter-tier dependencies and the underlying complexity of
virtualized server infrastructure.

4.1 The Fuzzy Model

We consider a number of multi-tier applications hosted in
a virtual resource pool as a MIMO system. The inputs to
the system are CPU usage limits set at various tiers of the

applications. The outputs of the system are the measured
performance of each application and the average power
consumption of the shared resource pool. We obtain two
separate models for power and performance of the system,
respectively. The system is approximated by a collection of
MIMO fuzzy models as follows:

y(k +1) = R({(k), u(k)). 0]

Let y(k) be the output variable and u(k) =
[u1(k), .., um (k)]T be the vector of current inputs at sam-
pling interval k. The regression vector £(k) includes current
and lagged outputs:

E(k) = [y(k), ., y(k —ny))]" 2

where n, specifies the number of lagged values of the
output variable. R is a fuzzy model consisting of a set of
fuzzy rules. Each fuzzy rule is described as follows:
o Rz If &1(k) is Q1 and .. &,(k) is Q; , and uq (k) is
Q; o1 and .. Wy (k) is Q; g4 then

yi(k+1) = GE(k) + nau(k) + ¢i. 3

Here, ; is a set of fuzzy values, which describe the
elements of regression vector £(k) and the current input
vector u(k) for the fuzzy rule, R;. The numeric values of
&(k) and u(k) are mapped to fuzzy values by using the
corresponding fuzzy membership functions. For example,
the fuzzy membership function of €);; determines the
degree to which it can accurately describe &; (k). o denotes
the number of elements in the regression vector £(k).
y;(k + 1) is the estimated model output according to
the fuzzy rule R;. (; and 7; are vectors containing the
consequent parameters and ¢; is the offset vector.

Note that the fuzzy membership functions may overlap
with each other. As a result, multiple fuzzy rules can
be triggered by a given set of input values. Each fuzzy
rule describes a region of the complex non-linear system
model using a simple functional relation given by the
rule’s consequent part. The contribution of each rule to the
model output is determined by its firing strength, 3;. It is
the product of the membership degrees of the antecedent
variables in that rule. The final model output is calculated
as the weighted average of the linear consequents in the K
individual rules as follows.

K Bi(Gig (k) + niu(k) + ¢i
Zi=1 ﬂl

We conduct a case study to demonstrate the accuracy of
our MIMO fuzzy models in predicting the performance of
a RUBIS application and the power consumption of the un-
derlying virtualized server cluster. The data for modeling is
collected by randomly allocating various CPU usage limits
on the Web, application and database tiers of the RUBiS
application, which faces a workload 1000 concurrent users.
We construct an initial fuzzy model by applying subtractive
clustering technique [4] on data collected from the system.
Each obtained cluster represents a certain operating region
of the system, where input-output data values are highly
concentrated. Clustering partitions the input-output space
to determine the number of fuzzy rules and the shape of
membership functions.
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In this case study, we obtain four clusters in a five
dimensional space. The first four dimensions correspond
to the three input variables, [u(k),uq(k),us(k)], and
one regression vector element & (k). The fifth dimension
corresponds to the output variable, y(k), which is expressed
as a linear function of the input variables. Each cluster
center describes a fuzzy rule in which the fuzzy values €2,
corresponding to u(k) and £(k) are represented by gaussian
membership functions. The first four dimensions of the
cluster center determine the mean of the gaussian functions.
The function variance is determined by a tunable parameter
in the subtractive clustering technique. For example, the
four cluster centers in our performance model are [0.46,
0.61, 0.53, 0.6], [0.97, 0.4, 0.63, 0.81], [0.91, 0.87, 0.49,
0.94], and [0.55, 0.65, 0.93, 0.96]. These are normalized
values with respect to the maximum CPU usage limits
imposed at the three tiers of the RUBIS application and
the average throughput in the previous sampling interval.
We apply an adaptive network based fuzzy inference sys-
tem [14] to further tune the fuzzy model parameters.

The consequent parameters of the fuzzy rules in our
performance model corresponding to browsing and bidding
workload mixes are shown in Table 1. Here, 1, 72, and
ns represent the impact of CPU allocation at the Web,
application, and database tiers respectively on the predicted
application performance according to the four fuzzy rules.
These values are significantly different for the two workload
mixes since they exhibit different inter-tier dependencies.
The number of fuzzy rules is the same in both cases, since
the range of input-output space does not vary a lot for the
two workload mixes with the same workload intensity.

Figures 3(a), 3(b) and 3(c) show the accuracy of our
fuzzy models in predicting the application throughput,
the 95,,-percentile response time and the average power
consumption for various CPU allocations in the face of a
browsing workload mix. The accuracy is measured by the

TABLE 1: Consequent parameters of fuzzy rules in the perfor-
mance model for browsing and bidding workload mixes.

Rule  workload m 72 73 C1 o)
| browse 0.183 0.144 0.106 0.021  0.108
bid 0.108 0.243 0.162 0.02 0.107
2 browse 0.291 0.229 0.168 0.025 0.08
bid 0.173 0.39 0.26 0.021 0.06
3 browse 0.317 0.25 0.183 0.03 0.09
bid 0.182 0.409 0273 0.027 0.1
4 browse 0.27 0.213 0.156 0.024 0.107
bid 0.156 0.352 0.234  0.026 0.11

normalized root mean square error (NRMSE), a standard
metric for deviation. The case study show that the checking
and the predicted data are very close, with the NRMSE
12.5%, 17.6% and 15.2% in the three scenarios respectively.
We use different data sets for training and validating the
system models. We observe similar prediction accuracy of
fuzzy models in case of the bidding workload mix.

4.2 On-line Adaptation of the Fuzzy Model

Internet workloads to a datacenter vary dynamically in
arrival rates as well as characteristics [33]. This results in
significantly varying resource demands at multiple tiers of
Internet applications. A static system model can not provide
sufficient prediction accuracy of power and performance for
all possible variations in the workload. Hence, the system
models need to adapt on-line in the face of dynamic work-
loads. We apply a wRLS method to adapt the consequent
parameters of the fuzzy model obtained. The technique
continuously samples new measurements from the runtime
system. It updates the model parameters in response to the
errors made by the existing fuzzy models in predicting
the performance and power consumption. The recursive
nature of the wRLS method makes the time taken for this
computation negligible for a control interval that is more
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than 10 seconds. It applies exponentially decaying weights
on the sampled data so that higher weights are assigned to

more recent observations.
We express the fuzzy model output in Eq. (4) as follow:

y(k+1) = X0(k) + e(k) (5)

where e(k) is the error value between actual output
of the system (i.e., measured performance or power)
and predicted output of the model. 6 = [0]6]..07]
is a vector composed of the model parameters. X =
[w1 X (k), wa X (k), .., w, X (k)] where w; is the normalized
degree of fulfillment or firing strength of i*" rule and
X (k) = [¢7(Kk),u(k)] is a vector containing current and
previous outputs and inputs of the system. The parameter
vector 6(k) is estimated so that the following cost function
is minimized. That is,

k
Cost = Z’yk_jeQ(j). (6)
J=1

Here v is a positive number less than one. It determines
in what manner the current prediction error and old errors
affect the update of parameter estimation. The parameters
of fuzzy model are updated according to the wRLS method
as follows:

0(k) = 0(k — 1) + Q(k)X(k — Dy(k) — X(k —1)6(k —1)]. ()

Qk— DX (k—1DXT(k—1)Q(k—1)
v+ XT(k—1)Q(k—1)X(k—1)

Q) = Lok —1) - L ®
vy

Here Q(k) is the updating matrix. The initial value of 6(0)
is equal to the value obtained in the off-line identification.
And, the initial value of Q(0) is equal to (X7 X)L

To evaluate the self-adaptiveness of our fuzzy model,
we measure its power and performance prediction accuracy
when a RUBIS workload is changed from browsing mix of
1000 concurrent users to bidding mix of 500 concurrent
users and vice versa. Our results are compared with a
popular and recently used technique for modeling Internet
systems, ARMA [8], [31]. As shown in Figures 4(a) and
4(b), our fuzzy model outperforms ARMA model in pre-
dicting performance of a multi-tier application. On average,
the improvement in performance prediction accuracy for the
throughput and 95;,-percentile end-to-end response time
are 35% and 43%, respectively. The improvement in power
prediction accuracy is shown in Figure 4(c). Compared to
ARMA, our fuzzy models are more accurate in capturing
the non-linear relationship between resource allocation and
performance or power in a virtualized server system.

4.3 Integration of workload-aware fuzzy modeling
for proactive FUMI Control

Although effective, the online adaptation of fuzzy model
takes a few control intervals to capture the changing system
behavior. As a result, the control performance may be
degraded if the workload is continuously changing. We
address this challenge by the integration of workload-aware
fuzzy modeling to achieve proactive control in anticipation
of future workload changes. The novelty of proactive FUMI
control lies in its ability to consider the impact of future
workload changes as well as current control actions while
solving the MIMO control problem.

We incorporate the time varying workload intensity as a
measured disturbance in the system model. The system is
now approximated by a collection of MIMO fuzzy models
as follows:

y(k +1) = R(§(k), A(k), u(k)). ©

where the workload intensity at the sampling interval k is
denoted by A(k). Each fuzzy rule in the model is described
as follows:
o Rz If &1(k) is Q1 and .. §,(k) is Q; , and (k) is
Qi o1 and uy (k) is Q; pyo and .. Uy, (k) is 0 prmi1
then

yi(k 4+ 1) = GE(k) + 0: M (k) + niu(k) + ¢ (10)

Here, a set of fuzzy values denoted by §2; describes (k)
in addition to other model parameters. The model output is
calculated as:

s

It can also be expressed in the form of

y(k+1) = ¢"E(k) + 0" A(k) + 1" u(k) + 6"

an

(12)

The aggregated parameters (*, 6%, n* and ¢* are the
weighted sum of vectors (;, 6;, n; and ¢; respectively.
They are applied to obtain a state-space system model and
transform the complex control problem into a computa-
tionally efficient quadratic programming problem, which is
described in Section 5.2.

We construct a workload-aware fuzzy MIMO model
by applying subtractive clustering technique and adaptive
network based fuzzy inference system on the data col-
lected from the virtualized server system hosting multi-tier
applications. For data collection, we measure the power
consumption and performance achieved by the system for
various combinations of CPU allocations and workload
intensities. The power and performance models, which are
learnt from the training data, have the ability to gener-
alize the expected system behavior for previously unseen
workloads and CPU allocations. Our workload-aware fuzzy
model consists of six fuzzy rules.

At run time, we apply the wRLS method to update the
model parameters if the system behaves differently than
expected by the fuzzy model. Such a situation could arise
due to change in the workload characteristics.

5 FUMI CoNTROL DESIGN

We apply the model predictive control principle and fuzzy
modeling to design the FUMI control. FUMI control is well
suited for power and performance control in virtualized
server clusters due to its capability to solve constrained
MIMO control problems of complex non-linear systems. It
determines control actions by optimizing a cost function,
which expresses the control objectives and constraints over
a time interval. We formulate the power and performance
assurance of virtualized multi-tier applications as a predic-
tive control problem. Then, we present detailed steps to
transform the control formulation to a standard quadratic
programming problem.
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5.1 FUMI Control Problem Formulation

FUMI control aims to minimize the deviation of power
consumption and performance of multi-tier applications
from their respective targets. It decides the control actions
at every control period £ by minimizing the cost function:

HP HP

V) = D lIrt—yk+dlE+ > [Ir2—ya(k+i)ll5
i=1 i=1
He.—1

+ > [[Auk+ )[R (13)
j=0

Here, y (k) is the power consumption of the resource pool.
y2(k) is a vector containing the percentile-based end-to-end
response time or the throughput of each application. The
controller predicts both power and performance over H,
control periods, called the prediction horizon. It computes
a sequence of control actions Au(k), Au(k+1),.., Au(k+
H_.—1) over H. control periods, called the control horizon,
to keep the predicted power and performance close to their
pre-defined targets r1 and 72 respectively. The control
action is the change in CPU usage limits imposed on
various tiers of the multi-tier applications. P and () are the
tracking error weights that determine the trade-off between
power and performance. The tracking error weights also
facilitate service differentiation between different applica-
tions sharing the resource pool. The third term represents
the control penalty, weighted by R. It penalizes big changes
in control action and contributes towards system stability.

A system administrator can select the power and per-
formance targets and their respective weighting parameters
by using an independent optimization framework, or by
following best practices, based on the business value of
providing various levels of performance and the cost of
power consumption. A higher preference weight can be set
for power consumption control, when the power budget
needs to be enforced. However, temporary violations of
power budgets are allowable, as long as they are bounded.
Thermal failover happens only when the power budget is
violated long enough to create enough heat that increases
the temperature beyond normal operational ranges. Hence,
we do not treat power budget as a hard constraint in our

problem formulation.

The control problem is subject to the constraint that
the sum of CPU usage limits assigned to all multi-tier
applications must be bounded by the total CPU capacity
of the resource pool. The constraint is formulated as:

M

S (B (k) + t () < Une

m=1

(14)

where M is the number of applications hosted and U4,

is the total CPU capacity of the resource pool. The use of
resource pool enables resource management at the server
cluster level, independently of the actual hosts that con-
tribute to the resources. Hence, we do not consider the CPU
capacity constraint of individual physical server.

5.2 Transformation to Quadratic Programming

We transform the non-convex, time-consuming optimiza-
tion involved in the MIMO control problem into a standard

quadratic programming problem, which can be solved ef-
ficiently at run time. We express the objective of FUMI
control, defined by Eq. (13), as a quadratic program:

Minimize %Au(k)THAu(k) + ¢ Au(k) (15)

subject to constraint QAu(k) < w.

The matrices €2 and w are chosen to formulate the
constraints on CPU resource usage as described in Eq. (14).
Here, Au(k) is a matrix containing the CPU usage limits
on each VM over the entire control horizon H,.

For this transformation, first we linearize the fuzzy model
at the current operating point and represent it as a state-
space linear time variant model in the following form:

ziin(k+1) = A(k)ziin(k) + Bu(k)u(k) + Ba(k)A (k).

Yin(k) = C(k)z1in (k). (16)

The vector for the state-space description is defined as
2 (k + 1) = [€7 (k),1)".

The matrices A(k),By(k),Bx(k) and C(k) are constructed
by freezing the parameters of the fuzzy model at a certain
operating point y(k) and u(k). Comparing Eq. (12) and
Eq. (16), the state matrices are computed as follows:

an

- p * .o
1,1 Si,2 C1,0 ?1
1 0 . 0 0
0 1 0 0
* * * *
a—| S21 S22 €20 2
0 . : :
h * X *
p.1 $p,2 N $p.o *p
0 0 10 0 0 i
0 0 0 0 1
" " .
n,1 1,2 LA 07
0 . 0 0
* * *
3,1 M22 12, m 05
By = 0 .. 0 By = 0
* *' .*
Mp,1 "p,2 p,m p
0 - 0 0
. 0
10 0
Cc=
o .. .. .. . 1 o0

where (7 is the j th element of aggregate parameter vectors

¢* for application 7. n;; is the 4t element of aggregate

parameter vectors 1™ for application ¢. §; is the aggregate

parameter 6* for application 4. ) o
To ensure offset-free reference tracking, the optimization
problem is defined with respect to the increment in the
control signal, Au(k), rather than the control signal u(k).
The state-space description is extended correspondingly as

follows:

ziin(k+1) | _ | A(k)

k) | o

u

0] [

+ [ Bu(k) } Au(k)+ [ B (k) ] Ak)
Yim=[C(k) 0] [f(zk_(kl))]

T
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X(k+1)
Y(k)

AX (k) + BoAu(k) + Bar(k).
CX (k). (18)

We obtain the state-space description, shown in Eq. (18),
corresponding to both power and performance models.
Henceforth, we use the notations Ay, By, Bix, C1, X1 (k),
Y1 (k) and As, Bay, Bax, Ca, Xa(k), Ya(k) for the state
matrices that describe the performance model and the power
model respectively.

Assuming that at time instant k, the state vector, the
future control sequence and the future workload are known,
the future process outputs can be predicted through succes-

sive substitution. The complete outﬁ)ut sequence over the
prediction horizon H), is given by the following:

Yi(k+1) Au(k)
Y;(k +2) Au(k + 1)
. =Rz A; X;(k)+ Riu .
Yi(k + Hyp) Au(k + H, — 1)
A(k)
Ak + 1)
+Rix .
A(k + Hp)
where _
Ci
Riz = -
c APt
[ _ :i 71 _ 0 0 |
CiAiBiu C;iBju 0
Ry = . .
L GiA " By CiA[P By, Ci AP By,
[ CiBix 0 0 T
C;A;Bix C;iBix 0
Rixn= : : :
L AP Bix  CiA]P 7By CiA "By |

Combining the output sequence over the prediction hori-
zon with the FUMI control objective, we get a quadratic
programming problem defined in Eq. (15) where,

H = 2(R{,PR1u + R},QRau + R).

¢ =2[RT, PT(Riz A1 X1(k) — 71+ Ria\)

_ (19)
+ RI QT (Ray A2 Xo(k) — 72 4+ RoxMN)]™.

where
A(k)
Ak + 1)
A= .

Ak + Hp)

The integration of workload intensity A in the FUMI control
problem enables proactive control in the face of dynamic
workload variations. The future values of workload inten-
sity A(k) over the prediction horizon H,, are predicted by

applying Kalman filtering technique.

Note that we use the workload-aware fuzzy model for
deriving a proactive FUMI control solution, assuming that
workload predictions are sufficiently accurate. When the
workload variations are abrupt and unpredictable, FUMI
control uses the fuzzy model described in Section 4.1. In
this case, we obtain the following:

H = 2(R], PR1y + RL,QRaw + R).

¢ =2[RT, PT(R1, A1 X1(k)—r1)+RL, QT (R2s A2 X2(k)—72)]T. (20)
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Fig. 5: Interface between FUMI control and learning components.

The matrices Ry,, %1, are associated with the performance
models of hosted applications and matrices Ry, [, are
associated with the power model of the resource pool.

Riz= -
CiAlP!
,c’i:a _0_ 0
C/LA/L'BL CLBL 0
Riu= : : :
C. A" 'B, C,AI*’B, G, AP~ Hep,

5.3 FUMI Control Interface

Figure 5 shows the interface between the FUMI online
learning and MIMO control components. The continuous
chain of interactions between various components of the
FUMI control system is described by the Algorithm 1.

Algorithm 1 The Control Algorithm.

1: Start with MIMO fuzzy models that are constructed

from offline data collected from the system.

2: loop

3:  Linearize the fuzzy models at the current operating
state and obtain the state-space matrices: A;, Biy,
Bl)\, C’l, 1212, Bgu, BQ)\, and 02.

4:  Predict the workload intensity of the hosted appli-
cations over the prediction horizon, H,, if workload
prediction capability is available.

5:  Solve the quadratic programming problem described
in Section 5.2. Obtain a sequence of CPU resource
adjustments, u(k), over the control horizon, H..

6:  Apply the first control action from the computed
sequence of actions, in terms of CPU resource ad-
justments on the hosted applications.

7 Adapt the fuzzy models using the wRLS method, in
response to any modeling errors observed.

8: end loop

5.4 FUMI Control Scalability Enhancement

We now present a methodology for decentralizing FUMI
control, with the aim to further enhance its scalability.
Given a total power budget of r1 and a total CPU capacity
of Upq, for a virtualized server cluster, we assign the
power budget and resource constraint for each application
according to its priority as follows:

rl-Q(a)
Unmas - Q(a)

@n
(22)

rle =

Umaz,a -
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Here, r1, and U, are the power budget and the
maximum amount of CPU resources that can be allocated to
application a, respectively. Q(a) is the priority of applica-
tion a as determined by the datacenter administrator based
on the business value of providing performance assurance to
application a. The performance target of each application
is determined by its SLA. Thus, we can decompose the
global control problem given by Eq. (13) into local sub-
problems for individual applications. Each local control
problem is solved by a decentralized FUMI controller. We
follow the same FUMI design principles to construct such
decentralized controllers. The control solutions are obtained
by solving the quadratic programming problem given by
Eq. (15). The CPU allocations set by these individual
controllers are feasible as long as the total amount of CPU
allocated across all the applications do not exceed the server
cluster capacity. It is mainly due to the use of VMware
resource pool, which enables resource management and
load balancing at the server cluster level. The decentralized
control approach is scalable to the number of applications
hosted in the cluster since it reduces the problem size
drastically by allowing each controller to manage one
application only.

6 PERFUME IMPLEMENTATION
6.1 The Testbed

We have implemented PERFUME on a testbed consisting
of two HP ProLiant BL460C G6 blade server modules and
a HP EVA storage area network with 10 Gbps Ethernet
and 8 Gbps Fibre/iSCSI dual channels. Each blade server
is equipped with Intel Xeon E5530 2.4 GHz quad-core
processor and 32 GB PC3 memory. We use VMware ESX
4.1 for server virtualization, and create a resource pool from
the virtualized server cluster to host multi-tier applications.
An important feature of VMware resource pool is that the
VMs do not have a static mapping with the physical servers.
VMware’s Distributed Resource Scheduling mechanism
dynamically changes the mapping for load balancing. Each
tier of an application is hosted inside a VM with 2 VCPUs,
4GB RAM and 15GB disk space. The guest operating
system used is Ubuntu Linux 10.04.

As many related studies [8], [31], [34], [39], our work
uses a multi-tier application benchmark RUBiS in the
testbed. RUBiS implements the core functionality of an
auction site. It has nine tables in the database and defines
26 interactions that can be accessed from the clients’
Web browsers. The application contains a Java-based client
that generates a session-oriented workload. RUBIS sessions
have an average duration of 15 minutes and the average
think time is five seconds. It defines two workload mixes:
a browsing mix made up of only read-only interactions and
a bidding mix that includes 15% read-write interactions.

6.2 PERFUME Components

1) Power Monitor: The average power consumption can
be measured at the resource pool level or at the

VM level by using a feature of VMware ESX 4.1.
VMware gathers such data through its Intelligent
Power Management Interface sensors. The power
monitor program uses vSphere API to collect the
power measurement data.

2) Performance Monitor: It uses a sensor program pro-
vided by RUBIiS client for performance monitoring.
We modify the sensor to measure the client-perceived
percentile-based response time and throughput over
a period of time. The number of requests finished
during a control interval is the throughput.

3) FUMI Controller: It determines the control actions
at every interval of 30 seconds. This control interval
is chosen by considering the trade-off between noise
in the sensor measurements and faster response of
the controller. It invokes a quadratic programming
solver, quadprog, in MATLAB to execute the control
algorithm described in Section 5.

4) Resource Allocator: It uses vSphere API to im-
pose CPU usage limits on the VMs. The vSphere
module provides an interface to execute a method
Recon figV M_Task for this purpose.

In our testbed, the overhead of applying the wRLS
technique on the fuzzy models and executing the control
algorithm is less than half second. It is negligible compared
to the control interval of 30 seconds.

7 PERFORMANCE EVALUATION
7.1 Power and Performance Assurance
7.1.1 Flexible Tradeoffs

A key feature of PERFUME is its ability to assure joint
power and performance guarantee with flexible tradeoffs
while assuring control accuracy and system stability. The
tradeoffs between inherently conflicting power and perfor-
mance objectives can be specified by a datacenter adminis-
trator. The system stability is measured in terms of relative
deviation of power and performance from their respective
targets, as defined in vPnP [8]. The relative deviation
is |y(k) — r|/r, where y(k) is the measured application
performance or the power consumption of the resource
pool at time interval £ and r is the corresponding target
value. We experiment with power-preferred, performance-
preferred and balanced control options under a highly
dynamic workload [20]. Figure 6(a) shows the dynamic
changes in the number of concurrent users. The workload
prediction component is not used in this case, due to the
difficulty in achieving sufficient prediction accuracy for
randomly varying step change workload.

PERFUME achieves the specified tradeoffs by tuning the
tracking error weights, P and @, in the MIMO control
objective defined by Eq. (13). Figure 6(b) compares the
control accuracy of vPnP with PERFUME in assuring the
throughput target for various tradeoffs between power and
performance. Our results demonstrate that, compared to
vPnP, PERFUME delivers average improvement of 30%
in performance assurance in terms of relative deviation for
various control options. We obtained similar results with the
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Fig. 6: Comparison of PERFUME and vPnP for control accuracy under a dynamic workload.
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Fig. 9: Per-tier CPU allocation for the browsing workload mix.

average improvement of 25% for relative deviation in power
consumption with respect to its power budget, as shown in
Figure 6(c). The control accuracy of the power-preferred
option is the highest for power assurance but the lowest for
throughput assurance. Whereas, the control accuracy of the
performance-preferred option is the highest for throughput
assurance and the lowest for power assurance. The balanced
control option shows good control accuracy for both power
and performance assurance.

7.1.2 System Stability

We now take a closer look at the system stability of
PERFUME under the highly dynamic workload. We exper-
iment with the power-performance balanced control option.
Figures 7(a) and 7(b) illustrate that PERFUME offers
more accurate assurance of power and performance targets
compared to vPnP [8]. We show the results for only one

6000
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3000
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95th-percentile response time (ms)

sampling interval (every 30 secs)

Fig. 10: The 955 -percentile response time.

of the hosted RUBIS applications. Similar results were
obtained for the other. PERFUME is able to adapt itself
and control both power consumption and throughput so that
they eventually converge to the steady state. On the other
hand, results show there are more significant oscillations in
power and performance assurance due to the lack of control
accuracy and system stability guarantee in vPnP. There is
an improvement of 25% and 32% in relative deviation of
power consumption and throughput respectively.

Figure 7(c) compares the total CPU usage limits allo-
cated by vPnP and PERFUME at various sampling inter-
vals. The total CPU usage limits is the sum of the CPU
usage limits at the Web, application and database tiers. On
average, PERFUME uses similar amount of CPU resources
as vPnP. However, there is significantly less fluctuations
in resource allocation. The CPU allocations are adjusted
to track the power and performance targets. For instance,
when an increase in the workload intensity causes the power
consumption to exceed the power budget, CPU allocation
is reduced to bring down the power consumption.

We investigate PERFUME’s ability to capture multi-
tier resource dependency for making control decisions
by applying different workload mixes in this experiment.
Figures 8 and 9 show the distribution of CPU allocation
among the three tiers of the RUBIS application when
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bidding and browsing workload mixes are used respectively.
We observe that the proportion of CPU allocations at the
three tiers vary with different workload mixes. The relative
deviation of power and performance from their respective
targets are similar in both cases. It is due to the fact that
PERFUME is able to satisfy the various resource demands
at the three tiers of RUBIS application depending on the
type of workload mix used.

7.1.3 Percentile-Based Response Time Guarantee

We now demonstrate the capability of PERFUME in accu-
rately achieving the 95;,-percentile response time guaran-
tee in the face of highly dynamic workload. Note that PER-
FUME is able to provide any percentile based response time
guarantee. Compared with the mean-based performance
metric, a percentile-based response time introduces much
stronger nonlinearity in the system. Figure 10 shows that
compared to vPnP [8], PERFUME delivers significantly
improved control accuracy and performance assurance for
highly non-linear percentile-based response times. For this
experiment, we set the 95, -percentile response time target
of a RUBIS application as two seconds. We observe that
compared with vPnP, there is the improvement of 40% in
terms of relative deviation by PERFUME. This is mainly
due to two reasons. First, PERFUME’s FUMI model has
better accuracy, even in case of highly non-linear percentile-
based performance. Second, it provides more accurate con-
trol and system stability due to the FUMI control design.

7.1.4 Sytem Robustness under A Bursty Workload

We evaluate the robustness of PERFUME under a bursty
workload. We use an approach proposed in [29] to inject
burstiness into the arrival process of RUBIS clients ac-
cording to the index of dispersion. The dispersion index
modulates the think times of users between submission
of consecutive requests. We set the index of dispersion

to 4000 and the maximum number of concurrent users to
1000. Figure 11 (a) shows the bursty workload in which the
number of active users in a RUBiS application fluctuates
over a period of 200 seconds.

Figures 11(b) and 11(c) illustrate that, compared to vPnP,
PERUME is able to provide better assurance of average
power consumption and throughput targets in the face of
the bursty workload. We choose a sampling interval of 20
seconds for both approaches. A smaller sampling interval
provides better responsiveness to workload fluctuations, but
increases the sensitivity towards random noise. The varia-
tions in the average power consumption and throughput are
mainly due to burstiness in the workload and the control
actions (CPU allocations) taken at each sampling interval.
The robustness of PERFUME under bursty workloads is
attributed to the fact that its control actions are based
on a more accurate model of the system and a sound
control theoretic foundation. Moreover, PERFUME is more
adaptive to variations in workload due to its fast online
learning algorithm. We observe that compared with vPnP,
there is the improvement of 32% and 44% in terms of
relative deviation of power and throughput by PERFUME.

7.2 Impact of Proactive FUMI Control on Power
and Performance Assurance

We demonstrate the benefit of integrating workload pre-
diction with FUMI control. We modify the RUBIS client
to generate workload based on the Web traces from the
1998 Soccer World Cup site [1]. These traces contain the
number of arrivals per minute to this website over an 8-day
period. As a case study, we choose the workload trace of
a moderately busy day and compress the original 24-hour
long trace to 1 hour, similar to the related work in [34].
Figure 12 shows the actual workload and the predictions
made by Kalman filtering technique. Our proactive FUMI
controller acquires workload predictions over a horizon of
four steps and computes the CPU resource adjustments
required to meet the power and performance goals. The
power budget and the performance target are set to be 15
Watts and 2500 requests per sampling interval respectively.

Figures 13(a) and 13(b) compare the average power con-
sumption and system throughput achieved by PERFUME
with and without the integration of workload prediction. In
case of a purely reactive FUMI control, we observe signifi-
cant violations of the power and performance targets during
the time intervals 10-13 min, 21-29 min and 34-41 min. It
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Fig. 14: Service differentiation between two RUBIS applications for varying power budgets.

is due to the continuous increase in the workload intensity
during those intervals as shown in Figure 12. Without the
integration of workload prediction, FUMI control incor-
rectly estimates the future states of the system assuming
that the workload intensity will not change. Furthermore, it
requires a few control intervals to update the system model
in response to the workload variations. As a result, the
control actions in terms of CPU resource adjustments lag
behind the continuously increasing workload.

On the other hand, the integration of workload prediction
allows FUMI control to make proactive control decisions
in anticipation of future changes in the workload intensity.
Hence, it is able to avoid significant violations of power
and performance in the face of dynamic workload varia-
tions. For instance, Figure 13(a) shows that the average
power consumption starts decreasing at time 18 min due to
proactive control action in anticipation of future workload
change starting at time 21 min. As a result of this trend, the
controller is able to keep the power consumption close to
its target during the time interval 21-29 min in spite of the
continuous increase in the workload. Figure 13(c) shows
the improvement achieved by proactive FUMI control in
terms of the relative deviation of power and performance.

7.3 Service Differentiation Provisioning

We evaluate the service differentiation capability of PER-
FUME in the face of a dynamic power budget as shown in
Figure 14(a). In practice, the power budget might change
due to thermal condition or temporary reductions in cooling
or power delivery capacity.

In this experiment, two RUBiS applications, appl and
app2, are hosted on a shared resource pool. For service
differentiation, the performance tracking error weight @
for app 1 is set to be larger than that of app 2. Hence,
PERFUME gives a higher priority to app 1. As a case
study, a power-preferred control policy is applied. Each
application faces a workload of 1000 users. The throughput
target is set to be 4000 requests per sampling interval.

Figures 14(b) and 14(c) show the average power con-
sumption of the resource pool and the achieved throughput
of the RUBIS applications. For the first 39 intervals, both
applications are able to meet their performance goals while
keeping the average power consumption below the specified
power budget of 25 Watts. At interval 40, the power
budget is changed to 15 Watts. This constrains the system
in such a way that both applications can not maintain
their current performance level without violating the power
budget. PERFUME responds to this situation automatically
and correctly re-distributes CPU resources so that the
higher priority application, appl, still achieves an average
throughput that is close to the target. On the other hand, the
performance of lower priority application is degraded. As
a result of this service differentiation, PERFUME is able
to avoid power budget violations.

7.4 Effect of Control Parameter Tuning

TABLE 2: Impact of control penalty weight R on rise time (¢,)
and percent overshoot (PO).

R=0.02 R=0.04 R=0.06
tr 90 sec 120 sec 300 sec
PO 13.7% 2.8% 1.1%

We now present the effect of tuning FUMI control
parameters on the control performance. Figure 15 shows the
performance of one RUBIS application under a workload
of 1000 concurrent users, for different values of control
penalty weight R. For R = 0.02, the controller adjusts the
CPU resources more quickly and aggressively to meet the
performance target. However, it results in large oscillations
in performance. On the other hand, for R = 0.06 the
controller avoids significant oscillations in performance.
However, it becomes more sluggish and takes ten control
intervals to meet the performance target. We quantify these
observations by measuring two important properties of our
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Fig. 15: Performance results of PERFUME with different values
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Fig. 16: FUMI control performance as a function of H,,.

control system. First, we measure rise time (¢,), which
is the time required for the throughput to reach its target
value. Second, we measure percent overshoot (PQO), which
represents the maximum amount by which the throughput
overshoots its target. It is desirable to minimize ¢, for
control responsiveness, and minimize PO for control accu-
racy and stability. Hypothetically, an ideal control system
will have a rise time equivalent to one control interval,
and zero percent overshoot. However in practice, these two
properties often conflict with each other. Table 2 shows that
the control penalty weight R = 0.04 balances this tradeoff.

Next, we study the impact of tuning the prediction
horizon H,, on the control performance. In this experiment,
the RUBIS application faces a dynamic workload shown in
Figure 12. The control performance is measured in terms of
the relative deviation of average throughput with respect to
the target of 2500 requests per control interval. Figure 16
shows that the control performance initially improves with
the increase in H). Intuitively, as the controller looks
further ahead, it anticipates future workload demands and
takes control actions accordingly at the current time step
itself. However, control performance degrades when H), is
larger than four. It is due to the fact that the prediction
accuracy decreases with the increase in H),. Therefore, H,
must be chosen carefully, considering the trade-off between
look-ahead performance and estimation errors.

7.5 Evaluation of Decentralized FUMI Control

We evaluate the effectiveness of the decentralized FUMI
control in assuring application performance and controlling
the power consumption of the virtualized server cluster. In
this experiment, four RUBiS applications are hosted on
a resource pool of three virtualized blade servers. Each
application is controlled by a decentralized FUMI con-
troller. Each application faces a workload of 700 concurrent
users. The throughput targets are set to 5400, 4800, 4200,
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Fig. 17: Performance assurance by decentralized FUMI control.
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Fig. 18: Power control by decentralized FUMI control.

and 3600 requests per sampling interval for appl, app2,
app3, and app4 respectively. The priority, Q(a), for each
application is set to be 0.25. According to the problem
decomposition strategy, each application is assigned an
equal fraction of the total power budget, which is 47 Watts.
Figure 17 shows that each decentralized FUMI controller
is able to meet the application performance target within
six sampling intervals. As shown in Figure 18, the power
consumption of each application increases in a controlled
manner due to the CPU allocations made by each controller.
As a result, the total power consumption of the virtualized
server cluster stays close to the peak power budget.

8 CONCLUSION

Datacenters face significant multi-facet challenges in power
and performance management for meeting SLAs, resource
utilization efficiency and power savings. PERFUME pro-
vides a coordinated and self-adaptive power and perfor-
mance control in a virtualized server cluster. As demon-
strated by experimental results based on a testbed imple-
mentation, its main contributions are the precise and proac-
tive control of power consumption of virtualized servers
for power budgeting, average throughput and percentile-
based response time guarantee of multi-tier applications,
tradeoff flexibility between power and performance targets
and service differentiation among co-located applications
while assuring control accuracy and system stability in the
face of highly dynamic and bursty workloads.

The main technical novelty of PERFUME system is due
to the proposed fuzzy MIMO (FUMI) control technique,
which integrate the strengths of fuzzy logic, MIMO control
and artificial neural network. It is self-adaptive to dynamic
workloads due to online learning of fuzzy model parameters
using a computationally efficient wRLS method. This is
complemented by the integration of future workload pre-
diction for proactive control.
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Our future work will integrate power-aware consolidation
techniques with PERFUME and explore autonomous per-
formance and power control for building energy-efficient
datacenters.
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