CS Graduate Research Seminar (Presentations by Joy Rahman and Sharif Mohammad Shahnewaz Ferdous)

Date: March 29, 2017

Organizers: Jianhua Ruan, Wei Wang, Weining Zhang with support from the CS Graduate Student Association and faculty.
Time: 1:00-2:00 pm
Place: NPB 3.108, CS Conference Room

 

Seminar 1 presented by Joy Rahman (CloudSys Lab with Dr. Palden Lama)

Topic: MPLEX: In-situ Big Data Processing with Compute-Storage Multiplexing


Abstract: Big Data processing in the cloud is increasingly popular due to the economic benefits of elastic resource pro- visioning. However, data-intensive cloud services suffer from the overheads of data movement between compute and storage clusters, due to the decoupled architecture of compute and storage clusters in existing cloud infrastructure. Furthermore, cloud storage clusters are often underutilized since they need to be continuously up and running regardless of changing workload conditions, for high availability, and fault tolerance. In this work, we explore a unique opportunity for In-situ Big Data processing on storage cluster by dynamically offloading data-intensive jobs from compute cluster to leverage the idle CPU cycles of storage cluster, and improve job throughput. However, it is challenging to achieve this goal since introducing additional workload on the storage cluster can significantly impact interactive web requests that fetch cloud storage data, while typically imposing strict SLA requirements in terms of the 90th percentile response time. In this work, we propose a novel compute-storage multiplexing technique that aims to improve the big data processing throughput, and the storage cluster utilization without violating the SLA of interactive requests. We designed and implemented a system that per- forms real-time monitoring of big data and storage interactive workloads, and applies a distributed rate limiting technique to efficiently multiplex compute and storage cluster for big data processing. Experimental results using big data and cloud- storage benchmarks shows that our approach improves job throughput by 1.7 times and storage cloud CPU utilization by 75% while maintaining the SLA for interactive requests.

 

Seminar 2 presented by Sharif Mohammad Shahnewaz Ferdous (SAVE Lab with Dr. John Quarles)

Topic: Improving Accessibility of Virtual and Augmented Reality for People with Balance Impairments


Abstract: Most people experience some imbalance in a fully immersive Virtual Environment (VE) (i.e., wearing a Head Mounted Display (HMD) that blocks the users view of the real world). However, this imbalance is significantly worse in People with Balance Impairments (PwBIs) and minimal research has been done to improve this. In addition to imbalance problem, lack of proper visual cues can lead to different accessibility problems for PwBIs (e.g., small reach from the fear of imbalance, postural instability, etc.) We plan to explore the effects of different visual cues on peoples� balance, reach, etc. Based on our primary study, we propose to incorporate additional visual cues in VEs that proved to significantly improve balance of PwBIs while they are standing and playing in a VE. Our current study proved that additional visual cues have similar effects in augmented reality. We are also developing studies to research reach and presence of virtual instructor in VR as our future work.

Return