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Abstract

Distributed systems (e.g. a LAN of computers) can be
used for concurrent processing for some applications. How-
ever, a serious difficulty in concurrent programming of a
distributed system is how to deal with scheduling and load
balancing of such a system which may consist of heteroge-
neous computers. Distributed scheduling schemes suitable
for parallel loops with independent iterations on heteroge-
neous computer clusters have been proposed and analyzed
in the past. Here, we implement the previous schemes in
the CORBA (Orbix). We also present an extension of these
schemes implemented in a hierarchical master-slave archi-
tecture. We present experimental results and comparisons.

1 Introduction

Loops are one of the largest sources of parallelism in sci-
entific programs. If the iterations of a loop have no interde-
pendencies, each iteration can be considered as a task and
can be scheduled independently. Distributed systems are
characterized by heterogeneity and large number of proces-
sors.

Self-scheduling schemes that take into account the char-
acteristics of the different components of the system were
devised, for example: 1) Tree Scheduling, 2) Weighted Fac-
toring and 3) Distributed Trapezoid Self-Scheduling. See
([3],[6],[7]) and references there in.
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Notations:

The following are common notations used throughout
the whole paper:

� PE is a processor in the parallel or distributed system;

� I is the total number of iterations of a parallel loop;

� p is the number of PEs in the parallel or distributed
system;

� P1, P2, ..., Pp represent the p PEs in the system;

� A few consecutive iterations are called a chunk. Ci

is the chunk-size at the i-th scheduling step (where:
i = 1; 2::);

� N is the number of scheduling steps;

� tj , j = 1; ::; p, is the execution time of Pj to finish all
its tasks assigned to it by the scheduling scheme;

� Tp = maxj=1;::;p (tj); is the parallel execution time of
the loop on p PEs;

CORBA is widely used in large-scale distributed simu-
lations(see [1], [5], [9], [13]). Thus it is useful to study
scheduling distributed computations using CORBA. Here,
we implement the previous schemes in the CORBA (Orbix)
and make comparisons. We also present an extension of
these schemes implemented in a hierarchical master-slave
architecture.

In section 2, we review simple loop self-scheduling
schemes. In section 3, we review Distributed self-
scheduling schemes. In section 4, we describe the hierar-
chical distributed schemes. In Section 5, an implementa-
tion is presented. In Section 6, distributed simulations are
presented. In Section 7, Conclusions are drawn.
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2 Simple Loop Scheduling Schemes

Self-scheduling is an automatic loop scheduling method
in which idle PEs request new loop iterations to be assigned
to them. We will study these methods from the perspective
of distributed systems. For this, we use the Master-Slave
architecture model( Figure 1). Idle slave PEs communicate
a request to the master for new loop iterations. The num-
ber of iterations a PE should be assigned is an important
issue. Due to PEs heterogeneity and communication over-
head, assigning the wrong PE a large number of iterations
at the wrong time, may cause load imbalancing. Also, as-
signing a small number of iterations may cause too much
communication and scheduling overhead.

Slave 1

Master

Slave 2 Slave 3

Busy Busy BusyIdle

Request task

Assign task

  ...
Slave p

Figure 1. Self-Scheduling schemes: the
Master-Slave model

In a generic self-scheduling scheme, at the i-th schedul-
ing step, the master computes the chunk-size Ci and the
remaining number of tasks Ri:

R0 = I; Ci = f(Ri�1; p); Ri = Ri�1 � Ci (1)

where f(; ) is a function possibly of more inputs than just
Ri�1 and p. Then the master assigns to a slave PE Ci tasks.
Imbalance depends on the (execution time gap ) between tj ,
for j = 1; ::; p. This gap may be large if the first chunk is
too large or (more often) if the last chunk (called the critical
chunk) is too small.

The different ways to compute Ci has given rise to dif-
ferent scheduling schemes. The most notable examples are
the following.

Trapezoid Self-Scheduling (TSS)([11]) Ci = Ci�1 �

D, with (chunk) decrement : D =
j
(F�L)
(N�1)

k
, where: the

first and last chunk-sizes (F,L) are user/compiler-input or

F =
j
I
2p

k
; L = 1. The number of scheduling steps as-

signed: N =
l

2�I
(F+L)

m
. Note that CN = F � (N � 1)D

and CN � 1 due to integer divisions.
Factoring Self-Scheduling (FSS) Ci = dRi�1=(�p)e,

where the parameter � is computed (by a probability dis-
tribution) or is suboptimally chosen � = 2. The chunk-
size is kept the same in each stage (in which all PEs are

assigned one task) before moving to the next stage. Thus
Ri = Ri�1 � pCi after each stage.

Fixed Increase Self-Scheduling (FISS) Ci = Ci�1 +

B, where initially C0 =
j

I
X�p

k
(with X a compiler/user

chosen parameter) and the (chunk increase or ’bump’) B =l
2I(1��=X)
p�(��1)

m
(where � the number of stages must be a com-

piler/user chosen parameter; X = � + 2 was suggested ).

Trapezoid Factoring Self-Scheduling (TFSS)([3]) is
a scheme which uses stages (as in FSS). In each stage the
chunks for the PEs are computed by averaging the chunks
of TSS.

Example 1: We show the chunk sizes selected by the
self-scheduling schemes discussed above. Table 1 shows
the different chunk sizes for a problem with I = 1000 and
p = 4.

Table 1. Sample chunk sizes for I = 1000 and
p = 4

Scheme Chunk size
TSS 125 117 109 101 93 85 77 69 61 53 45 37

29 21 13 5
FSS 125 125 125 125 62 62 62 62 32 32 32 32

16 16 16 16 8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1
FISS 50 50 50 50 83 83 83 83 117 117 117 117
TFSS 113 113 113 113 81 81 81 81 49 49 49 49

17 17 17 17

3 Loop Scheduling Schemes for Distributed
Systems

Load balancing in distributed systems is a very impor-
tant factor in achieving near optimal execution time. To of-
fer load balancing, loop scheduling schemes must take into
account the processing speeds of the computers forming the
system. The PE speeds are not precise, since memory, cache
structure and even the program type will affect the perfor-
mance of PEs. However, one must run simulations to obtain
estimates of the throughputs and one must show that these
schemes are quite effective in practice.

In past work [3] we presented and studied distributed
versions for the schemes of the previous section. We next
review the distributed TSS (DTSS) scheme. The distributed
version of the other schemes are similar and can be found
in [3].
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Terminology:

� Vi = Speed(Pi)=min1�i�pfSpeed(Pi)g, is the virtual
power of Pi, where Speed(Pi) is the CPU-Speed of Pi
(computed by the master).

� V =
Pp

i=1 Vi is the total virtual computing power of
the cluster.

� Qi is the number of processes in the run-queue of Pi,
reflecting the total load of Pi.

� Ai =
j
Vi

Qi

k
is the available computing power (ACP) of

Pi (needed when the loop is executed in non-dedicated
mode. In dedicated mode Qi=1 and Ai=Vi).

� A =
Pp

i=1Ai is the total available computing power
of the cluster.

The assumption is made that a process running on a com-
puter will take an equal share of its computing resources.
Even if this is not entirely true, other factors being neglected
(memory, process priority, program type), this simple model
appears to be useful and efficient in practice. Note that
at the time Ai is computed, the parallel loop process is
already running on the computer. For example, if a pro-
cessor Pi with Vi = 2 has an extra process running, then
Ai = 2=2 = 1 which means that Pi behaves just like the
slowest processor in the system. In order to simplify the al-
gorithm for the hierarchical case we clarify ”Receive” and
”Send” (in the Master-Slave tree).
Remark 1: ”Receive” (i) for Master means that it receives
(information) from the descendant nodes, (ii) for Slave
means that it receives (information) from the parent node
Similarly, we understand ”Send”. Also, note that each mes-
sage from the slave contains a ”request” and the current Ai.

The DTSS algorithm is described as follows:
Master:

1. (a) Receive all Speed(Pi); (b) Compute all Vi; (c)
Send all Vi ;

2. Repeat : (a) Receive Ai, sort Ai in decreasing or-
der and store them in a temporary ACP Status Ar-
ray(ACPSA). For each Ai place a request in a queue
in the sorted order. Calculate A. (b) If more than 1/2
of Ai changed since the last time update ACPSA and
set I= remaining iterations. Use p = A to obtain (new)
F;L;N;D as in TSS.

3. (a) While there are unassigned iterations, if a request
arrives (in 2(a)), put it in the queue.
(b) Pick a request from the queue, assign the next
chunk Ci = Ai � (F � D � (Si�1 + (Ai � 1)=2)),
where: Si�1 = A1 + ::+Ai�1 (see [3]).

Slave :

1. (a) Send Speed(Pi); (b) Receive Vi .

2. Obtain the number of processes in the run-queue Qi

and recalculate Ai.
If (Ai = 0) goto step 2.

3. Send a request (containing its Ai).

4. Wait for a reply; if more tasks arrive
f compute the new tasks; go to step 3; g
else terminate.

4 Hierarchical distributed schemes

When comparing a centralized scheme using the Master-
Slave model (Figure 1), to a physically distributed scheme,
several issues must be studied: the scalability, the commu-
nication and synchronization overhead, and the fault toler-
ance.

All the centralized policies, where a single node (the
master) is in charge with the load distribution, will present
degradation in performance when the problem size in-
creases. This means that for a large problem (and a large
number of processors) the master becomes a bottleneck.
The access to the synchronized resources (variables) will
take a long time, during which many processors will idle
waiting for service, instead of doing useful work. This is an
important problem for a cluster of heterogeneous comput-
ers, where long communication latencies can be encoun-
tered.

It is known that distributed (or non-centralized) policies
usually do not perform as well as the centralized policies,
for small problem sizes and small number of processors.
This is because the algorithm and the implementation of
distributed schemes usually add a non-trivial overhead.

4.1 Tree Scheduling (TS)

TS ([4],[7]) is a distributed load balancing scheme that
statically arranges the processors in a logical communica-
tion topology based on the computing powers of the pro-
cessors involved.

When a processor becomes idle, it asks for work from a
single, pre-defined partner (its neighbor on the left). Half
of the work of this processor will then migrate to the idling
processor. Figure 2 shows the communication topology cre-
ated by T for a cluster of 4 processors. Note that P0 is
needed for the initial task allocation and the final I/O. For
example, P0 can be the same as the fastest Pi.

An idle processor will always receive work from the
neighbor located on its left side, and a busy processor will
always send work to the processor on its right. For example,
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Figure 2. The Tree topology for load balancing

in Figure 2, when P2 is idle, it will request half of the load
of P1. Similarly, when P3 is idle, it will request half of load
of P2 and so on. The main success of TS is the distributed
communication, which leads to good scalability.

Note that in the distributed system there is still the need
for a central processor which initially distributes the work
and at the end it collects the results, unless the problem is
of such a nature that the final results are not needed for I/O.
Thus, the Master-Slave model still has to be used initially
and at the end.

The main disadvantage of this scheme is its sensitivity
to the variation in computing power. The communication
topology is statically created, and might not be valid after
the algorithm starts executing. If, for example, a work-
station which was known to be very powerful becomes
severely overloaded by other applications, its role of taking
over the excess work of the slower processors is impaired.
This means that the excess work has to travel more until
reaching an idle processors or that more work will be done
by slow processors, producing a large finish time for the
problem.

4.2 A Hierarchical DTSS

We see that the logical hierarchical architecture is a good
foundation for scalable systems. In the following, we pro-
pose a new hierarchical method for addressing the bottle-
neck problems in the centralized schemes.

Architecture
We use the master-slave centralized model (which is

known to be very effective for small problem sizes), but in-
stead of making one master process responsible for all the

workload distribution, new master processes are introduced.
Thus, the hierarchical structure contains a lower level, con-
sisting of slave processes, and several superior levels, of
master processes. On top, the hierarchy has an overall
super-master. The level of slaves will use for load bal-
ancing the best centralized self-scheduling method for the
problem that is to be solved. We used for our experiments
the Distributed Trapezoid Self-Scheduling. We named the
new scheme Hierarchical DTSS (HDTSS).

Slave Slave Slave
...

Master

Slave Slave Slave
...

Master

Super-master

DTSS

Figure 3. Hierarchical DTSS (two levels of
masters)

Figure 3 shows this design, for two levels of master pro-
cesses. The slaves are using DTSS when communicat-
ing with their master.We note that the super �master $
master communication applies the master-slave algorithm
with master replaced by super-master and slaves replaced
by masters.The dotted lines surround processes that can be
assigned to the same physical machine, for improved per-
formance.

We can describe the algorithm for the HDTSS by mak-
ing reference to the (Master-Slave) DTSS Algorithm and
the Remark 1. Let us use the abbreviated notations: HSlave
for Slave node and HMaster for a Master node in the hier-
archical Master-Slave architecture tree. The HDTSS algo-
rithm can be concisely described as follows:
SuperMaster: Perform the DTSS-Master steps.
HMaster: Perform the DTSS-Master 1(a),(c) and DTSS-
Slave 1 (a),(b).
HSlave: Perform the DTSS-Slave steps.

Remark 2: The HM gathers all the messages from its
ancestors/descendants and then it send them to the descen-
dants/ancestors (merged) in one message.

5 Implementation

The computation of one column of the Mandelbrot ma-
trix is considered the smallest schedulable unit. For the
centralized schemes, the master accepts requests from the
slaves and services them in the order of their arrival. It
replies to each request with a pair of numbers representing
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the interval of iterations the slave should work on.
The slaves will attach (piggy-back) to each request, ex-

cept for the first one, the result of the computation due to
the previous request. This improves the communication ef-
ficiency. An alternative we tested was to perform the collec-
tion of data at the end of the computation (the slaves stored
locally the results of their requests). This technique pro-
duced longer finishing times because when all the slaves
finished, they seem to contend for master access in order
to send their results. During this process, they will have
to idle instead of doing useful work. By piggy-backing the
data produced by the previous request to the actual request
we achieve some degree of overlapping of computation and
communication. There will be still some contention for the
master access, but mostly the slaves will work on their re-
quests while few slaves communicate data to the master.

The implementation for the Tree Scheduling (TreeS)
([7]) is different. The slaves do not contend for a central
processor when making requests because they have pre-
defined partners. But the data still has to be collected on
a single central processor. When we used the approach de-
scribed above, of sending all the results at the end of the
computation, we observed a lot of idling time for the slaves,
thus degrading the performance. We implemented a better
alternative: the slaves send their results to the central coor-
dinator from time to time, at predefined time intervals. The
contention for the master cannot be totally eliminated, but
this appears to be a good solution.

6 Distributed Simulations

We use the Mandelbrot computation for a window size
of 4000 � 2000,..,12000 � 6000 on a system consisting
of p (= 1,2,4,8,16,32) slaves and one master. We used
CORBA(orbix 2000)([12]). The workstations were Sun Ul-
tra 10 with memory sizes 64Mb,128Mb and 384Mb and
CPU speeds 300MHz,333MHz and 440MHz. We put an
artificial load in the background (matrix by matrix product)
on p=2 of the slaves. Thus p/2 of the slaves have Vi=1 and
the other Pi/2 slaves have Vi = 2. We ran the simulations
when no other user jobs existed on the workstations.

We test the simple schemes (i.e. those described in
Section 2) on a heterogeneous cluster. All slaves (PEs)
are treated (by the schemes) as having the same comput-
ing power. For the TreeS the master assigns an even
number of tasks to all slaves in the initial allocation stage.
The distributed schemes take into account Vi or Ai of
the slave. For hierarchical schemes, we only implemented
HDTSS, because DTSS was faster than the other master-
slave schemes.

We present two cases, dedicated and nondedicated. In
the first case, processors are dedicated to running our pro-
gram (i.e.Qi=1). In the second, we started a resource ex-

Table 2. Simple Schemes (CORBA), p = 8;
PEi: Tcom+wait/Tcomp (sec)

PE TSS FSS FISS TFSS TreeS

1 5.8/3.1 5.6/2.8 3.4/2.7 3.5/2.5 1.2/4.5
2 0.9/8.4 5.6/3.0 4.3/2.9 3.9/2.8 0.9/5.6
3 1.0/8.1 5.6/3.2 4.5/2.7 4.0/2.8 1.2/4.5
4 1.3/8.2 5.5/3.3 4.7/2.8 5.3/2.6 0.3/6.1
5 5.3/4.3 1.4/10.3 1.8/12.7 1.4/11.8 1.1/5.1
6 6.3/3.2 1.8/9.9 2.2/13.4 2.1/11.9 0.5/6.2
7 6.1/3.5 1.6/10.3 2.5/13.4 2.7/12.1 1.1/5.6
8 0.7/9.2 1.3/11.1 3.1/12.9 1.7/13.6 0.7/6.5
Tp 10.3 12.5 16.0 15.3 11.8

Table 3. Distributed Schemes (CORBA), p = 8;
PEi: Tcom+wait/Tcomp (sec)

PE DTSS DFSS DFISS DTFSS TreeS

1 7.4/3.2 8.7/3.6 5.2/4.0 8.9/3.4 1.1/4.4
2 5.5/4.9 9.1/3.4 5.7/3.3 5.7/6.5 0.4/5.6
3 4.6/5.4 9.1/3.4 6.0/3.2 5.6/6.8 1.0/4.9
4 3.8/6.4 9.1/3.2 8.1/4.3 9.4/3.7 0.8/5.3
5 3.8/6.4 4.8/6.5 7.8/4.4 5.7/6.5 1.1/4.9
6 5.2/5.6 4.8/6.7 8.4/4.4 9.2/4.0 1.2/4.9
7 6.7/4.1 4.7/6.7 7.7/3.0 3.9/8.5 0.4/6.1
8 6.2/4.8 3.9/7.6 8.1/4.5 9.4/3.9 1.2/4.7
Tp 9.3 11.1 13.1 12.6 10.3

pensive process on the fast slaves. For this we take Qi = 2.
For p � 8 we ran only in-dedicated mode and for p > 8 we
ran also non-dedicated mode.

The times (Communication,Waiting/Computation) of
the slave (PEi) are tabulated for p slaves. Tp is the
total time measured on the Master PE. All times are
measured in seconds (sec).We performed the follow-
ing tests: (1) Comparison between different schemes
(TSS,FSS,FISS,TFSS,TreeS) both simple/distributed in
CORBA. Results are in Tables 2-3 and Figures 4-7. We
conclude that the best centralized scheme(according to our
tests) is DTSS and compared it to TreeS (not centralized)
in hierarchical implementation. (2) Comparison of DTSS,
Hierarchical-DTSS and TreeS in CORBA (Figures 6-7).
We conclude that for large sizes, the HDTSS is better than
DTSS. Also, HDTSS is better than the TreeS.

The TreeS is slower than DTSS in our runs because in
all runs the results are transmitted to a ”Master” computer
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(which distributes the initial data and collects the final re-
sults). Also, the TreeS performance is expected to be higher
than presented if two additional computers (i.e. p+ 2 com-
puters are used in HDTSS as Masters) are also used in the
TreeS. Otherwise the TreeS gives similar performance re-
sults as the DTSS in the dedicated runs. In the nondedicated
runs since the Tree can not adapt to the load changes it is
expected to be slower than the DTSS. The speedup plots in
Figures 4-5 are superlinear because the run time on a single
slave was made on a slow slave, whereas the parallel time
was taken from a run with p=4 fast and p=4 slow slaves.

Figure 6. Tcomp, Dedicated, p = 24

Figure 7. Tcomp, Non-Dedicated, p = 24

7 Conclusions

We studied and implemented (in CORBA Orbix) loop
scheduling schemes for heterogeneous distributed systems.
Our results show that that the Hierarchical-DTSS gave the
best performance results.
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