
A Truthful Mechanism for Fair Load Balancing in Distributed Systems �

Daniel Grosu and Anthony T. Chronopoulos
Department of Computer Science,

University of Texas at San Antonio,
6900 N. Loop 1604 West, San Antonio, TX 78249

�dgrosu, atc�@cs.utsa.edu

Abstract

In this paper we consider the problem of designing load
balancing protocols in distributed systems where the par-
ticipants (e.g. computers, users) are capable of manipu-
lating the load allocation algorithm in their own interest.
Using techniques from mechanism design theory we design
a mechanism for fair load balancing in heterogeneous dis-
tributed systems. We prove that our mechanism is truthful
and satisfies the voluntary participation condition. Based
on the proposed mechanism we derive a fair load balancing
protocol called FAIR-LBM. Finally, we study the effective-
ness of our protocol by simulations.

1. Introduction

The problem of scheduling and load balancing in dis-
tributed systems has been extensively investigated under
the assumption that the participants are obedient and fol-
low a given algorithm [11]. In current distributed systems
the computational resources are owned and operated by dif-
ferent agents or organizations. In such systems there is no
a-priori motivation for cooperation and the agents may ma-
nipulate the resource allocation algorithm in their own in-
terest leading to severe performance degradation and poor
efficiency. Solving such problems involving selfish agents
is the object of mechanism design theory [15]. This theory
helps design protocols in which the agents are always forced
to tell the truth and follow the rules. Such mechanisms are
called truthful or strategy-proof.

In a mechanism, each agent’s benefit or loss is quantified
by a function called valuation. This function is private in-
formation for each agent and depends on the outcome. The
mechanism requests the agents to report their valuations,

�This research was supported, in part, by a grant from the Center for
Infrastructure Assurance and Security at The University of Texas at San
Antonio.

then it chooses an outcome that maximizes a given objec-
tive function and makes payments to the agents. The valua-
tions and payments are expressed in some common unit of
currency. The payments are designed and used to motivate
the agents to report their true valuations. Reporting the true
valuations leads to an optimal value for the objective func-
tion. The goal of each agent is to maximize the sum of her
valuation and payment.

Our goal in this paper is to design a mechanism that gives
a fair and Pareto optimal solution to the static load balanc-
ing problem in distributed systems. We can formulate this
problem as follows: given a large number of jobs, find the
allocation of jobs to computers such that the expected re-
sponse time at each computer is minimized and all the jobs
receive a fair treatment independent of the allocated com-
puter. We use the fair load balancing algorithm proposed
in [8] as a basis for our mechanism. To design our mecha-
nism we use the framework derived by Archer and Tardos in
[1]. We assume that each computer in the distributed system
is characterized by its processing rate and only computer �

knows the true value of its processing rate. Jobs arrive at
the system with a given arrival rate. The fair load balanc-
ing algorithm finds the fraction of load that is allocated to
each computer such that the expected response time at each
computer is minimized and each job is treated fairly. Each
computer incurs a cost proportional to its utilization. The
mechanism works as follows. First it asks each computer to
report its processing rate. Then it computes the allocation
using the fair load balancing algorithm. After computing
the allocation the mechanism hands payments to comput-
ers. The computers receive the payments and evaluate their
profits.

The goal of each computer is to chose a processing rate
to report to the mechanism such that its profit is maximized.
The profit is the difference between the payment handed by
the mechanism and the true cost of processing the allocated
jobs. The payments handed by the mechanism must moti-
vate the computers to report their true value such that the
allocation is fair and Pareto optimal. Thus the goal of a

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:15:40 UTC from IEEE Xplore.  Restrictions apply. 



mechanism designer is to find a payment function that mo-
tivates the agents to report their true value.
Related work

Recently, applications of game theory to computer sci-
ence have attracted a lot of interest and have become a ma-
jor trend. This was motivated by the need to design efficient
protocols for self interested agents in current distributed
systems. Mechanism design which is a sub-area of game
theory was used in different settings such as market based
protocols for resource allocation [3], routing [4] and mech-
anisms for trading CPU time [13]. A recent survey on dis-
tributed algorithmic mechanism design is [6].

The first work that considered the problem of mecha-
nism design in a computational setting is the seminal paper
of Nisan and Ronen [14]. They provided mechanisms for
several concrete problems in computer science. They used
the the Vickrey-Clarke-Groves (VCG) mechanism [15] to
solve the shortest path problem in a graph where each edge
belongs to a different agent. For scheduling on unrelated
machines they designed an �-approximation truthful mech-
anism, where � is the number of agents. They also gave
a mechanism that solves exactly the problem of scheduling
jobs on unrelated machines in a model where the mecha-
nism has more information. Feigenbaum et al. [5] stud-
ied two mechanisms for cost-sharing in multicast transmis-
sions. Frugality of shortest paths mechanisms is investi-
gated in [2].

A general method to design truthful mechanisms for op-
timization problems where each agent’s secret data is rep-
resented by a single real valued parameter was proposed by
Archer and Tardos in [1]. Their method allows general ob-
jective functions and restricted form for valuations. They
gave truthful mechanisms for maximum flow, scheduling
related machines, optimizing an affine function and special
cases of uncapacitated facility location. Using this method,
in [8] we designed a truthful mechanism that gives the over-
all optimal solution for the static load balancing problem in
distributed systems.
Our contributions
We design a mechanism that gives a fair and Pareto optimal
solution for the static load balancing problem in distributed
systems. We prove that our mechanism is truthful and sat-
isfies the voluntary participation condition. We derive a fair
load balancing protocol (FAIR-LBM) that implements our
mechanism and we investigate its effectiveness by simula-
tions.
Organization
The paper is structured as follows. In Section 2 we present
the distributed system model and the load balancing prob-
lem. In Section 3 we define our mechanism design prob-
lem. In Section 4 we design a truthful mechanism for fair
load balancing in distributed systems. In Section 5 we in-
vestigate the effectiveness of our fair load balancing mech-

anism by simulation. In Section 6 we draw conclusions and
present future directions.

2. Distributed system model

Our distributed system model consists of � heteroge-
neous computers connected in an arbitrary fashion by a
communication network. Computers have the same pro-
cessing capabilities in the sense that a job may be processed
from start to finish at any computer in the system. We as-
sume that each computer is modeled as an M/M/1 queueing
system (i.e. Poisson arrivals and exponentially distributed
processing times) [7] and is characterized by its average
processing rate ��, � � �� � � � � �. Jobs are generated by
users and arrive at the system according to a time invariant
Poisson process with average rate �. We call � the total job
arrival rate in the system. The total job arrival rate must be
less than the aggregate processing rate of the system (i.e.
� �

��

��� ��). We assume that the decision to distribute
jobs to computers is static i.e. it does not depend on the cur-
rent state of the system. Thus we need to find the loads � �

(� � �� � � � � �) assigned to computers minimizing the job
expected response time at each computer. In addition we
want that all jobs receive a fair treatment independent of the
allocated computer. Thus we are interested in finding a fair
and Pareto optimal allocation. The expected response time
at computer � is given by:

������ �
�

�����

In the rest of the paper we denote by � � ���� ��� � � � � ���
the vector of loads assigned to computers.

Because we are interested in finding a feasible allocation
that is fair and Pareto optimal we need to define these con-
cepts. We first define the concept of feasible allocation for
our problem.

Definition 2.1 (Feasible allocation) A feasible allocation
� � ���� ��� � � � � ��� is a load allocation that satisfies the
following conditions:

(i) Positivity: �� � �, � � �� � � � � �;
(ii) Conservation:

��

��� �� � �;
(iii) Stability: �� � ��, � � �� � � � � �.

The interpretation of a Pareto optimal allocation is that
it is impossible to find another allocation which leads to
strictly lower expected job response times for all the com-
puters simultaneously. We next define formally the concept
of Pareto optimality in our context.

Definition 2.2 (Pareto optimal allocation) Let � be the
set of feasible allocations and ����� be the expected re-
sponse time of computer �. Then� � � is said to be a Pareto
optimal allocation if for each �

�

� �, ����
�

� � �����,
� � �� � � � � � imply ����

�

� � �����, � � �� � � � � �

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:15:40 UTC from IEEE Xplore.  Restrictions apply. 



It can be easily seen that all the feasible allocations are
Pareto optimal. Among these allocations we need to select
those providing fairness. The fairness is a loose criterion
and there are many notions of fairness. Here we consider
the fairness index as a measure of fairness [10].

Definition 2.3 (Fairness index) The fairness index de-
pends on the load allocation (�) and is given by:

���� �
�
��

��� ������
�

�
��

��� �
�

� ���
(1)

This index is a measure of the ‘equality’ of the expected
response times at different computers. So it is a measure of
load balance. If all the computers have the same expected
job response times then � � � and the system is 100% fair
to all jobs and is load balanced. If the differences on � �

increase, � decreases and the load balancing scheme favors
only some tasks.

In [8] it is shown that a fair (���� � �) and Pareto op-
timal allocation for our problem is obtained by maximizing
the following objective function:

���� �

��

���

����� � ��� (2)

where � � ���� ��� � � � � ��� is the vector of loads assigned
to computers. We use this optimization problem as a basis
for designing our load balancing mechanism.

3. The mechanism design problem

We now describe our mechanism design problem. We
assume that computers are agents and each of them has a
true value �� represented by the inverse of its processing
rate, �� � �

��
. This value is private information, only com-

puter 	 knows ��. The mechanism will ask each computer
	 to report its value 
� (the inverse of its processing rate).
The computers may not report the true value. After all
the computers report their values the mechanism computes
an output function (i.e. the loads assigned to computers),
��
� � ����
�� ���
�� � � � � ���
��, according to the agents’
bids such that the allocation is fair and Pareto optimal. The
mechanism also hands a payment ���
� to each computer.
All computers know the algorithm used to compute the out-
put function (allocation) and the payment scheme.

Definition 3.1 (Mechanism design problem) The prob-
lem of designing a fair load balancing mechanism is char-
acterized by:

(i) A finite set � of allowed outputs. The output is a vec-
tor ��
� � ����
�� ���
�� � � � � ���
��, ��
� � �, computed
according to the agents’ bids, 
 � �
�� 
�� � � � � 
��. Here, 
�
is the value (bid) reported by agent 	 to the mechanism.

(ii) Each agent 	, (	 � �� � � � � �), has a privately known
parameter �� called her true value. The cost incurred by
each agent depends on the output and on her true value and
is denoted as �������� ��
�� � �����
�. The cost of agent 	
is equivalent to computer 	 utilization.

(iii) Each agent goal is to maximize its profit. The profit
of agent 	 is ���	������ 
� � ���
�� �������� ��
��, where
�� is the payment handed by the mechanism to agent 	.

(iv) The goal of the mechanism is to select an out-
put � that optimizes the objective function ���� 
� ���

��� ����� � ���.

We can formulate our mechanism design problem as fol-
lows: design a truthful mechanism that gives a fair and
Pareto optimal allocation. Solving this problem involves
finding an allocation algorithm and a payment scheme that
maximizes the objective function ���� according to the
computer bids 
� and motivates all the computers to report
their true values ��. A mechanism can be formally charac-
terized as follows:

Definition 3.2 (Mechanism) A mechanism is character-
ized by two functions:

(i) The output function ��
� �
����
�� ���
�� � � � � ���
��. This function has as input
the vector of agents’ bids 
 � �
�� 
�� � � � � 
�� and returns
an output � � �.

(ii) The payment function � �
� �
����
�� ���
�� � � � � ���
�� that gives the payment handed
by the mechanism to each agent.

Notation: In the rest of the paper we denote by 

�� the

vector of bids not including the bid of agent 	. The vector 

is represented as �


��� 
��.

Definition 3.3 (Truthful mechanism) A mechanism is
called truthful if for every agent 	 of type � � and for every
bids 


�� of the other agents, the agent’s profit is maximized
when she declares her real type ��. (i.e. truth-telling is a
dominant strategy).

Definition 3.4 (Truthful payment scheme) We say that an
output function admits a truthful payment scheme if there
exists a payment function � such that the mechanism is
truthful.

A desirable property of a mechanism is that the profit of
a truthful agent is always non-negative. The agents hope for
a profit by participating in the mechanism.

Definition 3.5 (Voluntary participation mechanism) We
say that a mechanism satisfies the voluntary participation
condition if ���	������ �
��� ���� � � for every agent 	, true
values ��, and other agents’ bids 


�� (i.e. truthful agents
never incur a loss).

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:15:40 UTC from IEEE Xplore.  Restrictions apply. 



4. The load balancing mechanism

In our mechanism design problem the computer’s true
value is represented by a single real valued parameter. A
general method to design truthful mechanisms for such
problems was proposed by Archer and Tardos in [1]. We
use their method to design our load balancing mechanism.
According to this method, to obtain a truthful mechanism
we must find an output function satisfying two conditions:
(a) it maximizes���� and, (b) it is decreasing in the bids. In
addition, we want a mechanism satisfying voluntary partic-
ipation. To guarantee this property we must find a payment
function satisfying voluntary participation.

First we are interested in finding an output function ����
that maximizes the objective function ���� and produces
a feasible allocation. Then we will show that this output
function is decreasing in the bids.

The fair load allocation can be obtained solving the fol-
lowing nonlinear optimization problem:

���
�

���� (3)

subject to the constraints defined by the feasibility condi-
tions i)-iii) from Definition 2.1.

In an earlier paper [8] we obtained the solution of this
problem and we derived an algorithm for computing it.
For the clarity of presentation we describe the theorem that
gives the solution using the notations in this paper. We also
present a partial proof of this theorem because some of the
equations will be used to prove our results in Theorem 4.2
and Theorem 4.3 below. We now present the theorem.

Theorem 4.1 [8] Assuming that computers are ordered in
increasing order of their bids (�� � �� � � � � � ��) the
solution of the optimization problem (3) is given by:

�� �

�
�

��
�

�
�

���
������

� �� � � � � �

� �� � � � � �
(4)

where � is the minimum index that satisfies the inequality:
�

��
�

�
�

���
������

�

We maximize the convex function ���� over a convex
feasible region defined by the conditions i)-iii). In this case
the first order Kuhn-Tucker conditions are necessary and
sufficient for optimality [12]. Let 	 � �, 
� � �, �� �
� � � �� � � � � � denote the Lagrange multipliers [12]. We
consider the Lagrangian function:

���� ��� � � � � ��� 	� 
�� � � � � 
�� ��� � � � � ��� ���
��� 	���� � ���� 	�

��
���
� ���

�
��

��� 
���� � ����
��

��� �������
The Kuhn-Tucker conditions imply that � �, � � �� � � � � �

is the optimal solution to our problem if and only if there

exists 	 � �, 
� � �, �� � �, � � �� � � � � � such that:

�

���
� �

�

�	
� � (5)


�������� � �� 
� � �� ����� � �� � � �� � � � � �
(6)

������� � �� �� � �� ��� � �� � � �� � � � � �
(7)

The stability condition requires �� � ��, � � �� � � � � �. This
implies 
� � �, � � �� � � � � �. These conditions become:

	 � ������� �� �� � � � � � � � (8)

	 � ������� �� �� � � � � � � � (9)
��

���

�� � 
� �� � �� � � �� � � � � � (10)

Based on the above theorem an algorithm that solves the
optimization problem (3) can be derived. We now outline
the algorithm in [8] using the notations above.
COOP algorithm:

Input: Bids submitted by computers: ��, ��, � � � ��;
Total arrival rate: �

Output: Load allocation: ��, ��, � � � ��;
1. Sort the computers in increasing order of their bids

(�� � �� � � � � � ��);

2. ��

�
�

���
������

�
;

3. while ( � � ���� ) do
�� � �;
�� � � �;
�� �� �

����
���

����
�

;
4. for � � �� � � � � � do

�� � ���� � �;

The allocation ���� � ������� ������ � � � � ������ com-
puted by the COOP algorithm provides Pareto optimality
and fairness. This allocation is obtained according to the
bids reported by computers. If some of the computers de-
clare values different than their true values (� � � ����), this
optimum may not be the same as the ‘true optimum’ ob-
tained when all the computers declare their true values. In
the case some of the computers lie we expect worse perfor-
mance (i.e. higher expected response times and lower fair-
ness index).

We now present our load balancing mechanism.

Definition 4.1 (The fair load balancing mechanism) The
mechanism that solves the load balancing problem is de-
fined by the following two functions:

(i) The allocation function given by the COOP algorithm.

(ii) The payment function is given by:

������� ��� � ��������� ����

�
�

��

������� ���� (11)

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:15:40 UTC from IEEE Xplore.  Restrictions apply. 



The COOP algorithm gives an output function that max-
imizes ����. In order to obtain a truthful mechanism satis-
fying voluntary participation we need to state and prove two
theorems: (i) that the output function is decreasing in the
bids (thus guaranteeing truthfulness) and, (ii) that our mech-
anism admits a truthful payment scheme satisfying volun-
tary participation.

Theorem 4.2 The output function ���� �
������� ������ � � � � ������ computed by the COOP al-
gorithm is decreasing, that means each ������� ��� is a
decreasing function of �� for all � and �

��.

Proof: In Appendix.

Theorem 4.3 (Truthfulness and voluntary participa-
tion) The fair load balancing mechanism is truthful and sat-
isfies the voluntary participation condition.

Proof: In Appendix.
For our mechanism we use a payment function similar to

[1]. The first term, ��������� ���, of the payment function in
equation (11) compensates the cost incurred by computer �.
The second term,

�
�

��
������� ���� represents the expected

profit of computer �. If computer � bids its true value, � �,
then its profit 	� is:

	� � 
��������� ����� ���� �
�
�

��
������� ����

If computer � bids its true value then the expected profit is
greater than in the case it bids other values. We can explain
this as follows. If computer � bids higher (��

�
� ��) then the

expected profit 	� is:
	� � 
��������� ����� �

�
�
�� �

� ���
�
� ���������� �

�

�
� �

�
�

��
�

������� ����

Since
�
�

��
������� ���� � � and ��

�
� �� we can express

the profit when computer � bids the true value as follows:

	� �
� �

�

�

��
������� ���� �

�
�

��
�

������� ����

Since �� is decreasing in �� and ��
�
� ��, we have the fol-

lowing equation:

���
�
� ���������� �

�

�
� �

�
�
�

�

��
������� ����

From this relation it can be seen that 	� � 	�. The same
argument applies to the case when computer � bids lower.

Based on the above theorems we derived a protocol
called FAIR-LBM that implements our fair load balancing
mechanism. We now give a high level description of the
FAIR-LBM protocol.

FAIR-LBM Protocol (executed periodically):

Dispatcher (mechanism):

1. Send a request for bid message (ReqBid) to each
computer in the system.

2. When the bids from all the computers are received
then:

2.1. Compute the allocation using COOP algorithm.

2.2. Compute the payments �� for each computer us-
ing equation (11).

2.3. Send �� to each computer �.

Computer (agent) �:

1. If a ReqBid message is received then send bid �� to
the dispatcher.

2. Receive �� from dispatcher.

3. Compute �������.

Because the COOP algorithm assumes a central dis-
patcher, the mechanism will be implemented in a central-
ized way as part of the dispatcher code. We assume that the
dispatcher is run on one of the computers and is able to com-
municate with all the other computers in the distributed sys-
tem. The FAIR-LBM protocol is executed periodically or
when there is a change in the total job arrival rate. Between
two executions of this protocol the jobs will be allocated
to computers by the dispatcher according to the allocation
computed by COOP. Computers will receive the maximum
profit only when they report the true value.

5. Experimental results

In this section we investigate the effectiveness of our
load balancing mechanism by simulation. We simulate a
system consisting of 16 heterogeneous computers with four
different processing rates. The distributed system config-
uration is presented in Table 1. The first row of this ta-
ble contains the relative processing rates of each of the four
computer types. Here, the relative processing rate for com-
puter �� is defined as the ratio of the processing rate of � �

to the processing rate of the slowest computer in the sys-
tem. The second row contains the number of computers in
the system corresponding to each computer type. The last
row shows the processing rate of each computer type in the
system. We consider only computers that are at most ten
times faster than the slowest because this is the case in most
of the current heterogeneous distributed systems.

Relative processing rate 1 2 5 10
Number of computers 6 5 3 2
Processing rate (jobs/sec) 0.013 0.026 0.065 0.13

Table 1. System configuration.

Response time
First we study the influence of false bidding on the expected
response times at each computer. As we pointed out in the
previous section, if all the computers report their true val-
ues then the fair Pareto optimal allocation is obtained. This
means all the computers have the same minimum possible
expected response time. We expect large differences in the

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:15:40 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. Response time at each computer
(high system load)

response times if one or more computers lie. In our exper-
iments we consider that the fastest computer �� declares
false bids. The fastest computer, �� has �� � ���� � ����
as its true value.

In Figure 1 we present the expected response time at each
computer for high system utilization (� � 70%). and three
types of bidding for ��: true bidding, underbidding and
overbidding. System utilization (�) is defined as the ratio
of total arrival rate to aggregate processing rate of the sys-
tem: � � ��

�

���
��

.

In the first experiment all computers including �� bid
their true value and we obtain equal expected response
times of 80.44 sec for all the computers.

In the second experiment �� bids 7% lower than its true
value. In this case ��’s response time increases drastically
(256.41 sec). This is due to computer �� overloading. The
overloading occurs because �� bids lower, that means it re-
ports a higher value for its processing rate. The algorithm
will allocate more jobs to �� increasing its response time.
Computers �� to ��� obtain the same response time, lower
than in the first experiment (in which all the computers re-
ported their true values). The slowest computers are not
utilized, they receive no jobs. This variations in individ-
ual response times is reflected in the overall expected re-
sponse time of the system. The value of the overall expected
response time increases from 80.44 sec (true bidding) to
125.69 sec (underbidding).

In the third experiment �� bids 33% higher than its true
value. In this case ��’s response time decreases to 23.31 sec
but the response times of all the other computers increase to
96.15 sec. This is because �� is underloaded. The value
of the overall expected response time increases from 80.44
sec to 82.48 sec. It can be observed that small deviations
from the true value of only one computer may lead to large
variations in individual response times and in the overall

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90

F
ai

rn
es

s 
in

de
x 

I

System utilization (%)

TRUE
HIGH
LOW

Figure 2. Fairness index vs. system utiliza-
tion.

expected response time. If we consider that more than one
computer does not report its true value then we expect very
poor performance. This justifies the need for a mechanism
that will force the computers to declare their true values.
Fairness
In Figure 2 we present the variations in the fairness index.
It can be observed that in the case of underbidding the fair-
ness index decreases drastically at high system loads. This
is because ��’s response time is much higher than that of
the other computers. In the case of overbidding the fair-
ness index is maintained around 96% for the whole range
of the system utilization. If more than one computer does
not report its true value then we expect small variations in
the fairness index. This can also be seen from the definition
of this index.
Payment structure and frugality
The profit gained by each computer at high system loads (�
= 70%) is presented in Figure 3. It can be observed that the
profit at �� is maximum if it bids the true value, 2% lower if
it bids higher and 1% lower if it bids lower. Computer �� is
penalized by our mechanism because it does not report the
true value. When �� bids lower the other computer’s prof-
its are lower because their payments decrease. Computers
��� to ��� are not utilized when �� underbids, thus they
will not gain anything. These computers will be utilized in
the case when �� overbids and when it bids the true value,
getting a small profit. When �� overbids the profit for all
the computers except �� is higher than in the case when ��

bids the true value. This is because the payments increase
for these computers.

An important property of a mechanism is its frugality.
An informal definition of frugality is as follows. We say
that a mechanism is frugal if the mechanism’s payments
are small by some measure [2]. In other words this prop-
erty tells us how efficient a mechanism is. The mechanism
is interested in keeping its payments as small as possible.

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:15:40 UTC from IEEE Xplore.  Restrictions apply. 



Figure 3. Profit for each computer (high sys-
tem load)

Each payment consists of an execution cost plus a profit for
the computer which runs the jobs. Our mechanism must
preserve voluntary participation, so the lower bound on its
payments is the total cost incurred by the computers.

In Figure 4 and 5 we present the cost and profit as frac-
tions of the payment received by each computer at high sys-
tem load. In these figures we are interested to see how close
to the cost is the payment to each computer. It can be ob-
served that the cost incurred by �� when it bids higher is
about 24% of the payment. In the case when �� bids lower
its cost is about 31% of the payment. For the other comput-
ers the cost is between 25% and 99% when �� bids higher
and between 30% and 75% when�� bids lower. For the dis-
tributed system considered in these experiments (high sys-
tem load) the highest payment given to a computer is about
3 times its cost.

In Figure 6 we present the total cost and profit as frac-
tions of the total payment for different values of system uti-
lization when �� reports its true value. The total cost is
about 30% of the payment at 90% system utilization which
is the smallest percentage. The percentage of cost increases
to 72% at 10% system utilization. The total payment given
by our mechanism to the computers is less than 3 times the
total cost. When �� bids lower and higher the percentages
are similar and are not presented here. We expect that these
values are also valid considering other parameters of the dis-
tributed system.

6. Conclusion

In this paper we studied the problem of fair load bal-
ancing in heterogeneous distributed systems where compu-
tational resources are owned by self interested agents. We
derived a truthful mechanism that gives a fair and Pareto
optimal solution to this problem. We proved that our mech-
anism satisfies the voluntary participation condition. We

Figure 4. Payment structure for each com-
puter (�� bids higher)

Figure 5. Payment structure for each com-
puter (�� bids lower)

derived a fair load balancing protocol (FAIR-LBM) that im-
plements our mechanism. Finally, we investigated the ef-
fectiveness of the proposed mechanism by simulation. The
results show that our mechanism is frugal.

We view this work as a preliminary step in developing
load allocation mechanisms in more complex settings. In
our future work we plan to address this issue as well as the
implementation of our mechanism in a real distributed sys-
tem.

A. Appendix

In this section we present the proofs of the results used
in the paper.
Proof of Theorem 4.2
We consider ������� ��� as a single variable function of ��
by fixing the other bids �

��. Let ��� and �� be any two bids
such that ��� � ��. In terms of processing rates we have
�

���

� �

��

i.e. ��� � ��. Let ��� � � and �� � � be the

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:15:40 UTC from IEEE Xplore.  Restrictions apply. 



Figure 6. Total payment vs. system utiliza-
tion.

loads allocated by the COOP algorithm when computer �

bids ��� and ��, respectively. We must prove that ��� � �� i.e.
the allocation function computed by the COOP algorithm is
decreasing in ��.

Assume by contradiction that ��� � ��. This implies
����� � ��� � ������ � ��� � ������ � ����. This means
that �������� � ������. Since ��� � � is higher than �� and�

�

���
�� � � there must be a computer � such that ��� � ��,

�� � �. Since ��� � �� � � the Kuhn-Tucker conditions for
optimality (8), (9) imply that:

������ � � ��	 �������� � �� (12)

Since �� � ��� and �� � � the Kuhn-Tucker conditions for
optimality (8), (9) imply that:

������ � � ��	 �������� � �� (13)

Combining equations (12)-(13) we obtain:

������ � ������ ��	 �������� � �������� (14)

Because ��� � �� we have ����� � ���� � ����� � ���. This
implies �������� � ������. Using this we obtain the follow-
ing equation: ������ � ��������. This is a contradiction be-
cause ��� � �� and �������� � ������. �
Proof of Theorem 4.3
We use the result of Archer and Tardos [1] that states that if
the output function is decreasing in the bids then it admits
a truthful payment scheme. We proved in Theorem 4.1 that
the load function ���� is decreasing in the bids, so it admits
a truthful mechanism.

We next use another result from [1] stating that if the area
under the work curve is finite the mechanism admits volun-
tary participation. For feasible bids, the area under the work
curve is finite i.e.

�
�

�����
������	 
��
 � � where ����� is

the bid that corresponds to �� � �. Thus, our mechanism
admits voluntary participation and the payments are given
by equation (11). �

References

[1] A. Archer and E. Tardos, “Truthful Mechanism for One-
Parameter Agents”, Proc. of the 42nd IEEE Symp. on Foun-
dations of Computer Science, pp. 482-491, October 2001.

[2] A. Archer and E. Tardos, “Frugal Path Mechanisms”, Proc.
of the 13th Annual ACM-SIAM Symp. on Discrete Algo-
rithms, pp. 991-999, January 2002.

[3] R. Buyya, D. Abramson, and J. Giddy, “A Case for Economy
Grid Architecture for Service-Oriented Grid Computing”,
Proc. of the 10th IEEE Heterogeneous Computing Workshop,
pp. 776-790, April 2001.

[4] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker,
“A BGP-based Mechanism for Lowest-Cost Routing”, Proc.
of the 21st ACM Symposium on Principles of Distributed
Computing, pp. 173-182, July 2002.

[5] J. Feigenbaum, C. Papadimitriou, and S. Shenker, “Sharing
the Cost of Multicast Transmissions”, Proc. of the 32nd An-
nual ACM Symp. on Theory of Computing, pp. 218-227, May
2000.

[6] J. Feigenbaum and S. Shenker, “Distributed Algorithmic
Mechanism Design: Recent Results and Future Directions”,
Proc. of the 6th ACM Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, pp. 1-
13, September 2002.

[7] D. Gross and C. M. Harris, Fundamentals of Queueing The-
ory, Wiley-Interscience, New York, NY, 1998.

[8] D. Grosu, A. T. Chronopoulos, and M. Y. Leung, “Load Bal-
ancing in Distributed Systems: An Approach Using Coop-
erative Games”, Proc. of the 16th IEEE International Paral-
lel and Distributed Processing Symposium, pp. 52-61, April
2002.

[9] D. Grosu and A. T. Chronopoulos, “Algorithmic Mechanism
Design for Load Balancing in Distributed Systems”, Proc. of
the 4th IEEE International Conference on Cluster Comput-
ing, pp. 445-450, September 2002.

[10] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simu-
lation, and Modeling, Wiley-Interscience, New York, NY,
1991.

[11] H. Kameda, J. Li, C. Kim, and Y. Zhang, Optimal Load Bal-
ancing in Distributed Computer Systems, Springer Verlag,
London, 1997.

[12] D. G. Luenberger, Linear and Nonlinear Programming,
Addison-Wesley, Reading, Mass., 1984.

[13] N. Nisan, S. London, O. Regev, and N. Camiel, “Glob-
ally Distributed Computation over Internet - The POPCORN
Project”, Proc. of the 18th IEEE International Conference on
Distributed Computing Systems, pp. 592-601, May 1998.

[14] N. Nisan and A. Ronen, “Algorithmic Mechanism Design”,
Proc. of the 31rd Annual ACM Symp. on Theory of Comput-
ing, pp. 129-140, May 1999.

[15] M. Osborne and A. Rubinstein, A Course in Game Theory,
MIT Press, Cambridge, Mass., 1994.

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03) 
0-7695-1938-5/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:15:40 UTC from IEEE Xplore.  Restrictions apply. 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


