
ORTHOGONAL s-STEP METHODS FOR NONSYMMETRIC LINEAR

SYSTEMS OF EQUATIONS

Charles D. Swanson

Cray Research, Inc., 655F Lone Oak Drive, Eagan, MN 55121

Anthony T. Chronopoulos

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455

Abstract, Conjugate Gradient-like methods such as

Orthomin(k) have been developed to obtain a good

numerical approximation to the solution of Ax = f when

the matrix A is large, sparse, and nonsymmetric. In s-step

variations of these iterative methods, s consecutive steps of

the one-step methods are performed simultaneously. The
number of inner products required is reduced and the

resulting algorithms are more suitable for parallei

computations. However, lack of orthogonality between the

s direction vectors at each iteration leads to instability

unless s is small (s<5). In this project, the effect of

orthogonalizing the s direction vectors at each iteration was

studied. The A~A-Orthogonal s-Step Orthomin(k) and p-

Orthogonal s-Step Orthomin(k) algorithms were developed

and shown to be stable for large values ofs (uP to s=20).
The performance of these algorithms on a multiple

processor CRAY Y-MP8 computer was analyzed.

1. Introduction. If A is a nonsingular matrix of order

n, an approximation to the solution of the linear system

Ax = f can be obtained by the conjugate gradient (CG)

method if A is symmetric and positive definite. An

approximate solution xi which minimizes the error

functional

E(xi) = (x-xi)~A(x-xi)

is obtained at each iteration. The conjugate residual (CR)

method is similar to CG but minimizes the residual

E(x,) = Ilf - Axit[.
In [1], Chronopoulos surveys variations of the CR method

and develops s-step versions of the Generalized Conjugate
Residual (GCR) and Orthomin(k) methods for

nonsymmetric matrices with symmetric part M = (A +

AT)/2 positive definite or indefinite. In s-step methods, s

consecutive steps of the one-step methods are performed

simultaneously.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

tltla of the publication and its date appear, and notice is given

that copving is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ICS ‘92-71921D.C., USA
Q ‘1992 ACM 0-89791 -485 -6/92 /0007 /0456 . ..$1.50

The generalized CR method applied to nonsymmetric

IImatrices minimizes r,+,II; along the direction Pi in order

to determine the steplength in xi+ 1 = xi + api. pi is made

A~A-orthogonal to Pi. 1 but is not automatically ATA -

orthogonal to all of the previous p,’s as in the symmetric

case; orthogonalization must be explicitly implemented.

Positive definiteness assures that ai = (ri)APi)/(Apl)APi) is

positive so the solution is improved at every step.

Orthogonality and the norm reducing property of CR

guarantee convergence in at most n iterations in the

symmetric and positive definite case.

(i) Orthomin(k). For the GCR method, pi is ATA-

orthogonalized to all of the proceeding directions. In

Orthomin(k), orthogonalization is to only the preceding k

directions:

Algorithm 1.1. Orthomin(k)

1. xO, pO=rO=f– Ax 0

For i = O Until Convergence Do

2.
(~,Ap,)

a=

‘ (Api, Api)

3. x,+, = x,+ azp$

4. {+, = ~ – a,Ap,

~, = -(A~+, ,A/1,)
5. 1

(Ap,, Ap,)

6. Pi+, = (+, + ,,:+, b:P,

7. Compute Apl+,

EndFor.

456

(ii) s-step Orthomin(k). In the s-step Orthomin(k)

method, the s dw~tions {ri,...,A~r~r~ are formed and A~A-

orthogonalized to k of the preceding directions (pj~,... ,P,$),

j=i-k+l ,i The norm of the residual Ilri+lll is minimized

simultaneously in all s new directions in order to obtain
xi+l. Following the detailed discussion in Section 4 of [1],

let

~ = [(Ap~, Ap~)], where 1< j,l < s

gi = [a:, c.s, a;] (the steplengths in updating x,)

~, = [(~, Ap:),w,(~,Ap:)]’

~: = [(A’~+l,Ap;),..., (q+,, Ap;)]~]~

~~ = {b~-)]~=, forj=i– k+l,...,iandl = 1,-.., s

(the coefficients to A’A - orthogonalize to the

previous directions)

~ = [p:,... , p: 1 (the direction vectors)

R, = [~, Aq...,Aq]’q] (the residuals)

Then a description of the s-step Orthomin(k) method can be

given as follows:

Algorithm 1.2. s - step Orthomin(k)

1. x,, P = [r, = f–AXO, ArO,. O.,As-’rO]

For i = O Until Convergence Do

2. Compute g,, ~

3. Call Scalarl

4. xi+, = xi i- l’g,

5. q+, = <- A~gi

6. Cornpute~~, j=i–k+l,..., i

7. Call Scalar2

8. Compute R, = [~, AC,..., AIL]L]

9. t?+, = R,+, + ~ q[~:]:=,
,., -k+l

10. Compute &+, or,

11. AP+, = AR+, + i AP[~:]:=,
j=i-k+l

EndFor.

Scalarl: Decomposes ~ = [(Ap~, Ap~)], where 1< j,l S s.

It then solves ~g, = ~,, whereg, = [a: ,..., u~]’ and

Hi = [(L, Ap:),””O,(\,Ap:)]~.

Scalar2: Solves W,&~ = –g: forj = i – k + 1,.. *,z and

1=1,’”’ ,s where ~ = [(A’q+,,Apj),”os,(A’q+l,Apj)lT

and Q: = [b~’m))~=l forj = l-k+ l,””., iandf = 1,. ”s, s.

The solution of the Scalarl and Scalar2 linear systems may

cause a quick loss of orthogonality of the s-dimensional

direction subspaces Pi. Non-orthogonality of the s vectors

can lead to instability in the algorithm as s gets larger than

5 [1,3]. The purpose of this project is to determine if

orthogonalizing thes direction vectors within each subspace

Pi can lead to a stable algorithm for larger values of s

thereby reducing the number of iterations required. The

increased work in each iteration can be executed in parallel.

(iii) Numerical Experiments. The numerical

experiments carried out utilized two test problems. The

f~st problem was derived from a five point discretization of

the partial differential equation

-(bux)x - (cu.)X + duX + (h.). + euy+ (euy)y+jii = g

on the unit square, where

b(x,y) = e-w, c(x,y) = CXY, d(x,y) = b(x+y)

e(x,y) =(x+y) and f(x,y) = 1.1(1 +x+y)

subject to Dirichlet boundary conditions u=O. The right

hand side g was chosen so that the solution was known to

be exysin(mx)sin(mx). The parameters were chosen to

produce a nonsymmetric matrix. This problem will be

referred to as the “PDE problem.”

The second test problem is from Walker [4] and is used to

evaluate the numerical stability of the various algorithms.

457

The matrix A is

10
02
. .

A= ““
. .

o“
00

0

n–l
o

a

o

0
n

while the right hand side b = (1,...,1) ~. The problem was

solved for n = 100 with a = 2 x 106. This problem will be

referred to as the “ill-conditioned problem.” The matrix

condition number (in the infinity norm) is greater or equal

to a’2.

2. A~A-Orthogonal s-Step Orthomin(k). In this

method the direction vectors within each subspace P i are

A~A-orthogonalized using the Modified Gram-Schmidt

method. The Scalarl and Scalar2 linear systems in

Algorithm 1.2 need not be solved in the A~A-Orthogonal s-

Step Orthomin(k) method since the Wi matrix is the

identity matrix if Pi is perfectly A~A-orthogonalized. The

algorithm is as follows:

Algorithm 2.1. ATA - Orthogonals - step Orthomin(k)

1, x,, P = [r, = f–AxO, ArO,..., rO]’rO]

For i = O Until Convergence Do

2.

3.

4.

5.

6.

7.

8.

9.

Compute g,

xi+, = xi +f!!i

~+, = ~ – A<g,

Compute ~~

Compute R, = [L, AL,..., AL] ’L]

E+, = R,+,+ ~ W]:.,,.i.k+l)

Compute fi+, or,

~+, = AR,+,+ i %[4:=,
,=,_k+l

10. A’A – orthogonalize AF!+, using the Modified

Gram - Schmidt method to obtain AJ’i+l and ~i+l

EndFor.

Here &+l is orthogonalized.

Results for the PDE problem are shown in Table 2.1 for

the s-Step method and the A~A-Orthogonal s-Step method.

The initial values x(i)=O.05*mod(i,50) were used. The

stopping criterion was ll~i112 <10-6 with the maximun

number of iterations allowed set to 700. The number of

iterations to convergence, maximum error, and CPU time

are listed, The maximum error is the maximum value of

abs[x(i)-sol(i)] where x(i) is the calculated value and sol(i) is

the known solution, The s=l case is standard Orthomin(k).

For k=l and s>l, the maximum error for the s-Step method

shows a dramatic increase at s=12 while the Orthogonal s-

step method maintains the initial maximum error through

s=16. At s=20 the error increases very quickly, For k=2

and k=4, the s-Step method fails at s=12, The Orthogonal

method is stable through s= 16 for k=2 and again shows an

increase in the maximum error at s=20. For k=4, the

Orthogonal method shows an increase in the number of

iterations at s= 16 and an increase in the maximum error at

S=20.

To test the effect of removing the s x s linear system

solvers, a set of runs was made with A~A-orthogonalization

of P ~, but with the linear systems in place. The results in

Table 2,1 show minimal effect for the PDE problem.

Results for the ill-conditioned problem which severely tests

the numerical stability of the algorithms are shown in

Table 2,2, The advantage of the Orthogonal s-Step method

versus the s-Step method is apparent at s=8, k= 1 where the

iteration count and maximum error for the s-Step method

begin to increase, The Orthogonal method remains stable

through s= 12. For tests with k=4, the iteration count is
twice as high for the s-Step method at s=4.

Again, runs with the linear system solvers in place were

made for the ill-conditioned problem. There were some

improvements at s=16 for both k=l and k=4 but the

maximum error was still high (Table 2.2).

To test the effect of the stopping criterion, the parameter

“eps” was tightened from 10-10 to 10-1z. The results are

shown in Table 2.3. At s=8, the maximum error for the

Orthogonal method has improved by a factor of 65 but at

s= 12 it is roughly the same for the two cases.

458

3. p-Orthogonal s-Step Orthomin(k). An

alternative to A~A-orthogonalizing the direction vectors is

to simply orthogonalize the direction vectors within the

subspace Pi directly. This is simple to implement, but

does not diagonalize the matrices in the linear systems of

Algorithm 1.2 so they still have to be solved. This is

called the p-Orthogonal s-step Orthomin(k) algorithm:

Algorithm 3.1. p - Orthogonals - step Orthomin(k)

1. Xo, P = [r. =.f-AXO, ArO,. -., rO-’rO 1
For i = O Until Convergence Do

2.

3.

4.

5.

6.

7.

8.

9,

10.

11.

Compute ~i,~.

Call Scalarl

Xi+l = xi + ?(.Z;

r =q. -A@i1+1

Compute ~~, j = i-k+ l,”’.,i

Call Scalar2

[Compute Ri = q, A~,..., Aq-’q 1

Orthogonalize 8+1 using a Modified

Gram - Schmidt or Householder

method to obtain ~i+l

Compute A~i+l

EndFor.

Orthogonalization of the direction vectors was done with

the Modified Gram-Schmidt method and also with the

Householder technique. The Modified Gram-Schmidt is

generally more efficient but the Householder technique is
more accurate for ill-conditioned matrices [5, p, 219].

However, the Householder method is also more expensive.

Table 3.1 shows results for the PDE problem using s-Step

Orthomin(k) and p-Orthogonal s-Step Orthomin(k) with

Modified Gram-Schmidt and Householder
orthogonalization. The s-Step algorithm begins to show

instability ats= 12 (for k= 1). The Orthogonal algorithm is

stable through s=20, with the maximum error having the

same order of magnitude throughout for both Modified

Gram-Schmidt and Householder orthogonalization.

For k> 1, the p-Orthogonal s-Step method shows a higher

iteration count than the s-Step method at 5=4, especially for

k=4 . The direction vectors in Pi which are A~A -

orthogonalized to the k previous dirction vectors in the

other orthomin(k) methods discussed have been p-

orthogonalized here. This lack of A~A -orthogonalization to

the previous k vectors means that the p-Orthogonal s-Step

Orthomin(k) algorithm is not effective for k>l (see ill-

conditioned problem results at k=2 in Table 3.2).

Table 3.2 compares both orthogonalization methods applied

to the ill-conditioned problem with n=100 and a = 2 x 10s

and eps =1 x 10-1o. For k=l both orthogonal methods are

stable through s=20 (the s-Step method failed at 5=8).

However, for large values ofs (16 and 20) the Householder

orthogonalization produced maximum errors an order of

magnitude smaller than the Modified Gram-Schmidt method

which can be expected,

For k=4, the p-Orthogonal method shows a much higher

iteration count at k=2, due to the lack of A~A -

orthogonalization to the previous k vectors.

4. Performance. Numerical experiments were executed

on a CRAY Y-MP8 at Cray Research, Inc. in Eagan, MN.

This computer has eight processors, a 6 nanosecond clock

period, and 128 million 64-bit words of shared memory.

Performance analysis tools available with the UNICOS 6,0

operating system were used.

(i) Single Processor Performance.

The PERFTRACE performance tool uses the hardware

performance monitors on the CRAY Y-MP to determine

the amount of vectorization in the code and measure the

performance in Megaflops for each routine. The statistics

in Table 4.1 for the A~A-Orthogonal s-Step Orthomin(k)

code indicate that it is highly vectorized, since the peak

performance on a single CRAY Y-MP processor is 330

Megaflops.

The CPU seconds for the PDE problem with N=130

(where Nz is the order of matrix A) are included in Tables

2.1 and 3.1. The standard Orthomin(k) method is obtained

by setting s= 1 in the s-Step code. The best single

processor timing for Orthomin(k) was obtained for k=2.

The best s-Step Orthomin(k) timing was obtained with s=2

and k= 1. For both Orthogonal s-Step algorithms the best

single processor timings were also obtained with s=2 and

k=l. These four codes were then executed for problems

459

with N ranging from 32 to 256 with the results shown in

Table 4.2.

The Orthogonal methods take more time than the s-Step

method because of the added work to orthogonalize the Pi

direction vectors. Since the linear systems are not solved

in the A~A-Orthogonal method, it is faster than the p-

Orthogonal method.

(ii) Multiple Processor Performance

The codes were executed in parallel on the CRAY Y-MP

using the Autotasking feature of the Fortran compiling

system which provides automatic multitasking over the

eight processors. The parallel processing performance was

studied and measured using the “Atexpert” tool, an expert

system that predicts the expected performance on a

dedicated system from runs made on a nondedicated system.

The programmer can use the information provided by

Atexpert along with compiler directives explicitly inserted

in the code to iteratively enhance the parallel performance

of the program.

For the A~A-Orthogonal method, Atexpert showed that the

initial version of the program was 60% parallel. Amdahl’s

Law gives a maximum speedup of 1.4 on an 8 processor

system for this level of parallelism. The Atexpert tool

helps the programmer identify the parallel and serial regions

in the program. Once the troublesome serial regions have

been identified, compiler directives can then be inserted to

provide enhanced parallel execution. A simple example is

to tell the compiler to execute an inner loop on multiple

processors, when ordinarily it would not. Since the inner

loops for the largest problem are 65,536 elements long

(N=256) this was effective, Directives can also be inserted

to tell the compiler when potential dependencies inhibiting

parallel code generation can safely be ignored. Using these

techniques, the serial regions of the A~A-Orthogonal code

were attacked in order to provide a highly parallel program.

The value of orthogonalizing the P j direction vectors is that

it allows s to become larger. This means the number of

iterations is reduced with more work being done in each
iteration, a situation that should make more efficient use of

multiple processors. The additional work from the

orthogonalization should be compensated by the enhanced

parallel performance to obtain a faster algorithm.

Multiple processor runs were made on a dedicated CRAY Y-

MP8 for the Orthomin(k), s-step Orthomin(k), and A~A-

Orthogonal s-step Orthomin(k) algorithms, using the large

N=256 PDE problem. The results are given in Table 4.3

and illustrated in Figure 4.1. Only s=2 and s=4 results are

shown for the s-Step method since the numerical accuracy

tests with this method show loss of accuracy at s=8 (Table

3.2). For the A~A-Orthogonal method, s values of 2, 4,

and 8 are shown (k=l). The best absolute performance for

this problem was achieved with the A~A-Orthogonal 4-step

Orthomin(l) method using eight processors, However, the

speed-up factor of 3.76 on an eight processor system

indicates that maximum parallel performance is not being

achieved. This is due to remnants of serial code plus

overhead. A significant source of overhead (identified with

help from the Atexpert tool) is “load imbalance” in

parallelizing the Modified Gram-Schmidt orthogonalization

routine.

Using two processors, the load imbalance problem is

largely alleviated and the parallel A~A-Orthogonal method

is efficient, as shown by the 1.85 speed-up. Nevertheless,

for the two processor runs the elapsed time for the 2-step

Orthomin(l) method was significant y better. Therefore,

unless the user has a dedicated eight processor machine, 2-

step Orthomin(l) is the most effective algorithm.

5. Summary. This project demonstrated that the value

ofs in the s-Step Orthomin(k) algorithm can be increased

beyond s=5 by orthogonalizing the s direction vectors in

each iteration, Two orthogonalization schemes were

presented, The A~A -Orthogonal s-Step Orthomin(k)

algorithm provided good numerical accuracy through s=12

(k=l) for the ill-conditioned problem. For k>l, the A~A-

Orthogonal method was stable through s=8. The p-

Orthogonal s-Step Orthomin(k) showed stability through

s=20 (k=l) with the Householder orthogonalization

showing significantly greater numerical accuracy than

Modified Gram-Schmidt ats= 16 and s=20. However, the p-

Orthogonal method does not work well for k> 1. For the

PDE problem, both methods were stable through s=20

(k=l).

Performance measurements of the algorithms on a CRAY

Y-MP8 computer showed the A~A-Orthogonal 4-step

Orthomin(l) algorithm to be fastest using all eight

processors. However, the 2-step Orthomin(l) algorithm
using two processors was only 7~0 slower. Improvements

in the parallel performance of the Orthogonal s-Step

algorithms followed by implementation on systems with
more than eight processors (such as the sixteen processor

CRAY Y-MP C90) may show the Orthogonal s-Step

algorithms to be superior to the s-Step method.

Also note that in practice, preconditioning is used to

improve the condition number of the coefficient matrix and

speed up the convergence of the linear system.

6. Acknowledgements. This research was partially

supported by supported by NSF grant CCR-8722260. The

Minnesota Supercomputer Institute provided time on a

CRAY-2. CRAY Y-MP time was provided by Cray

460

Research, Inc. We wish to thank the reviewers for

comments that enhanced the quality of the presentaticm.

References

[1] A. T. Chronopoulos, “s-Step Iterative Metho,ds for

(Non)symmetric (Indefinite Linear Systems: SIAM J.

of Numerical Analysis, Vol. 28, No. 6, Dec. 1991.

[2] A. T. Chronopoulos and C. W. Gear, “s-Step Iterative

Methods for Symmetric Linear Systems,” .1. of

Computational and Applied Math., Vol. 25, 1!289, p.

153-168.

[3] Anthony T. Chronopoulos, “s-Step Orthomin and

GMRES Implemented on Parallel Computers,” Tech.

Rep. CSci No, TR 90-15, U. of Minneso(a, February

1990.

[4] H. Walker, “Implementation of the GMRES Method

Using Householder Transformations,” SIAM J. Sci,

S{af. Corrzp., 9 (1988), pp. 152-163,

[51 Gene H. Golub and Charles F. Van Loan, Matrix

Computations, second edition, Johns Hopkins, 1989,

Table 2.1. ArA-Orthogonal s-Step Orthomin(k) Cc~mpared to s-Step Ortomin(k) for PDE Problem.

s-Step Orthomin ATA-Orthogonal s-Step Orthomin A~A-Orthogonal s-Step Orthomin

Modified Gram-Schmidt Modified Ciram-Schmidt

No Linear Systems With Linear Systems

s k iterations max error CPU time iterations max error CPU time iterations max error CPU time

11 471 0.0003959 0.942 - . .

21 173 0.000558 0.824 173 0.0005563 1.116 173 0.0005561 1.187

41 88 0.0003412 1.129 88 0.0003414 1.485 88 0.0003414 1.6

81 63 0.0004254 2.444 63 0.0003623 3.167 64 0.0004789 3,532

12 1 48 0.0191 3.738 44 0,0003969 4.426 44 0.0003975 4.884

16 1 49 0.0568 6.357 31 0.0003831 5.164 30 0.0002646 5.56

20 1 55 0,0952 10.843 28 0.005214 6.924 26 0.00552 7.219

12 368 0.0003892 0.874 - -

22 179 0.0003959 1.104 179 0.0003957 1.411 179 0.0003959 1,476

42 108 0.0002909 1.976 108 0.000373 2.436 109 0.0002356 2.583

82 66 0.0002608 3.97 78 0.0004748 5.68 72 0.0005102 5.561

12 2 69 0.07796 8.76 51 0.0004469 7.639 49 0,0003899 7.835

16 2 *** *** *** 37 0.000329 9.382 36 0.0002384 9.69

20 2 *** *** *** 29 0.01133 11,146 30 0.000411 12.183

14 353 0.000404 1.091 -

24 213 0.0004432 1.91 213 0.0004332 2.345 213 0.0004253 2.358

44 125 0.000379 3.708 129 0.000281 4.419 130 0.0003655 4.467

84 148 0.000283 15.519 78 0.0002489 9.15 80 0.0003099 9.557

12 4 *** *** *** 54 0.000275 13.131 52 0.0003671 13.227

16 4 *** *** *** 60 0.0001806 25,198 60 0.0001419 26.516

20 4 *** *** *** 54 0.0193 34,575 55 0,0252 37.447

CPU time = 1 processor CPU tim e in seconds eps = 1.OE-6 N=130

s=l is standard Orthomin(k) *** = problem failed

461

Table 2.2. A~A-Orthogonal s-Step Orthomin Compared to s-Step Orthomin for Ill-Conditioned Problem

(eps=l.OE-10).

s-Step Orthomin A~A-Orthogonal s-Step Orthomin A~A-Orthogonal s-Step Orthomin

Modified Gram-Schmidt Modified Gram-Schmidt
No Linear Systems With Linear Systems

s k iterations max error iterations max error iterations max error

11 701* 18811

21 44 0.0001447 44 0.0003767 44 0.0003768

41 29 0,0006337 23 0.0001111 23 0.0001111

81 21 0.00207 10 0.0004373 10 0,000437

12 1 22 0.0175 7 0.0003538 7 0.0003266

16 1 30 41.267 13 83.833 6 0.4465

14 701* 14556

24 38 0.0001134 38 0.0001409 38 0.0001404

44 37 0,0006885 18 0.0004195 18 0.0004215

84 94 305.87 28 0.00002342 28 0,0001475

12 4 102 5.036 41 0.001952 36 0.0006365

16 4 *** *** 76 205.99 46 3.99

NOTE: alpha = 2.0E+6 * = problem reached iteration cou nt limit

s=l is standard Orthomin(k) *** = problem failed

Table 2.3. A~A-Orthogonal s-Step Orthomin Compared to s-Step Orthomin for Ill-Conditioned Problem

(eps=l.OE-12).

s-S tep Orthomin A~A-Orthogonal s-Step orthomin

Modified Gram-Schmidt

No Linear Systems

s k iterations max error iterations max error

11 701* 18811

21 52 0.00001061 52 8.505E-07

41 34 0,00001566 28 0.000008132

81 27 0,001034 13 0.000006738

12 1 35 0.01799 9 0.0002057

16 1 35 41.27 16 83.93

14 701* 14556 .

24 47 0.000009564 47 0.000008685

44 56 0.000006166 23 9.448E-07

84 121 305.87 50 0.000004859

12 4 *** *** 59 0.001941

16 4 *** *** 95 205.9

NOTE: alpha = 2.0E+6

s=l is standard Orthomin(k)

* = problem reached iteration cou nt limit

*** = problem failed

462

Table 3.1. p-Orthogonal s-Step Orthomin Compared to s-Step Orthomin for PDE Problem.

s k

11

21

41

81

12 1

16 1

20 1

12

22

42

82

12 2

16 2

14

24

44

84

12 4

s-Step Orthomin

iterations max error CPU time

471 0.0003959 0.942

173 0.000558 0.824

88 0.0003412 1.129

63 0.0004254 2.444

48 0.0191 3.738

49 0.0568 6.357

55 0.0952 10.843

368 0.0003892 0.874

179 0.0003959 1.104

108 0.0002909 1.976

66 0.0002608 3.97

69 0.07796 8,76
*** *** ***

353 0.000404 1.091

213 0.0004432 1.91

125 0.000379 3.708

148 0.000283 15.519
*** *** ***

s=l is standard Orthomin(k)

173

88

61

44

32

26

179

118

71

48

37

213

295

130

92

0.0006081

0.0003415

0.0004992

0.0004287

0.0004153

0.0002288

0.0003958

0.0004998

0.0005862

0.0003256

0.0002498

0.0004253

0.0002559

0.0003292

0.0003097

1.278

1.662

3.374

4.788

5.733

6.88

1.547

2.813

5.285

7.256

9.4

2.334

9.887

14.527

21.627

?
iterations max error

173

88

63

43

33

26

179

110

78

57

57

213

157

166

125

0,0006058

0.0003419

0.0004001

0.0003613

0.0003282

0.0003472

0.0003959

0.0003456

0.000562

0.0003229

0.0005329

0.0004233

0.0004863

0.0002661

0.0003779

eps = 1.OE-6 N=130

1.791

2.368

4.972

6.723

8.525

10.003

2.058

3.48

7.632

11.307

19,053

2.971

6.608

22,532

35.959

CPU time = 1 processor CPU time in seconds *** = problem failed

Table 3.2. p-Orthogonal s-Step Orthomin Compared to s-Step Orthomin for Ill-Conditioned Matrix (eps=l.OE-10).

s k

11

21

41

81

12 1

16 1

20 1

14

24

44

s-Step Orthomin

iterations max error

701* 18811

44 0.0001447

29 0.0006337

21 0.00207

22 0.0175

30 41.267

45 471.2

701* 14556

38 0.0001134

37 0.0006885

.
p-Orthogonal s-Step Orthomin ~

Modified Gram-Schmidt

iterations max error

44 0.0003902

23 0.0001125

11 0.00008743

7 0.000002226

6 0.0003545

5 0.0001649

128 0.0009316

84 0.0002993

NOTE: alpha = 2,0E+6 I s=l is standard Orthomin(k)
* = problem reached iteration couni limit

463

p-orthogonal s-Step Orthomin
Householder

iterations max error

44 0,00040967

23 0.00009717

10 0.001257

7 0,00001121

6 0.00002671

6 0.00003692

138 0.001331

87 0.000103

Table 4.1. Vector Performance of the A~A-Orthogonal s-Step Code Using the PERFTRACE Performance Analysis TOOI

Per fview Statistics Report

Showing Traced Routines

(Sorted by MegaFlops (Descending))

(CPU Times are Shown in Seconds)

Name Called Time Avg Tim EX % ACM % Mmems Mflops
—------— ------- ------ -. ------ -- ----- ----- ----- ——.-.

SORTHOMIN 1 2.96E+O0 2.96E+O0 59.9 59.9 344.3 249.7 **************

MATVEC 706 4.52E-01 6.40E-04 9.1 69.0 290.6 237.7 **

MGS 87 1.50E+O0 1.73E-02 30.4 99.4 313.2 195.7 *******

MESH 1 2.44E-02 2.44E-02 0.5 99.9 48.9 165.4

$MAIN 1 3.58E-03 3.58E-03 0.1 100.0 40.5 66.8

======== . === . . ==== ==. = = . = = .=. === = = = = = = = = = = = = = = = = = =

Totals 796 4.94E+O0 100.0 100.0 328.3 231.6

Table 4.2. Single Processor Performance.

N (size= N*N) 32 64 128 192 256

Time Iter Time Iter Time Iter Time Iter Time Iter

0rthomin(2) 0,022 95 0.107 166 0.885 383 3.304 663 7,748 881

2-step Orthomin(l) 0.026 61 0.123 98 0.763 167 2.571 252 6,134 341

4TA-Orth, 2-step Orthomin(l) 0.029 61 0.161 98 1.048 167 3.558 252 8.39 340

4TA-Orth. 8-step Orthomin(l) 0.076 22 0.462 37 2.99 61 9.822 89 20.53 105

p-Orth. 2-step Orthomin(l) 0.037 61 0.188 98 1.205 168 3.992 251 9.634 342

p-Orth. 8-step Orthomin(l) 0,093 22 0,522 37 3.327 62 10.81 90 23.47 110

Time = 1 processor CPU time in seconds

464

Table 4.3. Parallel Computation Speed-up on a CRAY Y-MP8.

l-step 0rthomin(2)

2-step Orthomin(l)

4-step Orthomin(l)

A~A-Orth. 2-step Orthomin(l)

A~A-Orth. 4-step Orthomin(l)

A~A-Orth. 8-step Orthomin(l)

Time

&

7.95

6.28

8.78

8.70

12,30

21.69

Time

2 proc.

8.83

4.87

6.35

6.07

7,24

11.75

;peed-lq

0.90

1.29

1.38

1.43

1.70

1.85

Time

@$&

8.36

5.79

5.19

5.95

5.37

7.46

0.95

1.08

1.69

1.46

2.29

2.91

Time

6 proc.

8.21

4.92

5.45

5.07

7!19

;Jleed-lq

Time = elapsed time in seconds on a dedicated machine, N=256

l-step C)rthomin 2) is the standard 0rthomin(2\lalgorithm
II \l II I I

4

3.5

3

2.5

$
u
a) 2
a
U)

1.5

1

0.5

0

0,97

1.28

1.61

2.42

3.02

Figure 4.1. Parallel Computation Speed-up on a CRAY Y-MP8,

Time

!QK&

8.88

5.16

5.02

4.98

4.56

5.76

0.90

1.22

1,75

1.75

2.69

3.76

~ Orthogonal s=8, k=l

~ Orthogonal 5.4, k.1

—e— 4-step Orthomin(l)

~ 2-step Orthmin(l)

__+__ 0rthomin(2)

o 1 2 3 4 5 6 7 8

Number of (OPUS

465

