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Abstract

Distributed Key Generation (DKG) protocols are
indispensable in the design of any cryptosystem used
in communication networks. DKG is needed to gen-
erate public/private keys for signatures or more gen-
erally for encrypting/decrypting messages. One such
DKG (due to Pedersen) has recently been generalized
to a provably secure protocol by Gennaro et al. We
propose and implement an efficient algorithm to com-
pute the (group generator) parameter � required in the
DKG protocol. We also implement the DKG due to
Gennaro et al. on a network of computers using se-
cure sockets. We run tests which show the efficiency of
our implementation.

1 Introduction

1.1 Preliminaries

In order to achieve secure communications between
several servers (called players) running on (differ-
ent) computers by exchanging messages (which are
encrypted/decrypted) public/secret keys are required.
DKG algorithms aim to generate and distribute the
keys in a secure fashion. A corrupted player is one who
is faulty for some reason (e.g. system malfunction or
external attack ) and thus the messages which he sends
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should not be trusted as correct by the other players.
If the number of corrupted players exceeds a certain
threshold then the DKG algorithm fails to generate and
distribute the keys for secure communication.

DKG protocols are used in the design of discrete
logarithm based cryptosystems for secure communi-
cation in computer networks (see [1],[2],[3],[4],[5],[6]
and references therein).

The simplified architectural model consists of �
servers (called � � 
 � � � � ) which cooperate to generate
two keys, one public and one private. The public-
key is made public and the private-key is kept secret
and it is shared by the players. The shared private-key
is guaranteed to be secret assuming that an adversary
player can only compromise fewer than n/2 players.
This secret key is used to encrypt/decrypt messages or
compute signatures.

In Shamir’s discrete-log based secret sharing proto-
col a trusted party is used to generate a random value

� (the secret key) and (the public key) y = � � is made
public. In the DKG each (of n) players shares a ran-
domly chosen secret � � . The secret-key � is the sum of
the shared � � ’s. The public-key � � � � is the product
of the � � � � � � .

We make the following assumptions for the dis-
tributed system model implementing the DKG proto-
col.

Players : We assume � players running on dif-
ferent computers connected via a secure point-to-point
network. We also assume that the network has a secure
broadcast capability.

Network communication: We assume a partially
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synchronous communication model in which the mes-
sages are delivered within a maximum fixed time
bound.

Faulty Player : A player which is corrupted can
act as an adversary. He can send and receive messages
to/from other players. In the worst case an adversary
could communicate last in each communication round
(called rushing adversary).

Modular Arithmetic: We assume that all the play-
ers obtain an initial input from a trusted party of a triple�

� � � � � � , where � and � are primes ( � is the greatest di-
visor of � 	 � ) and � a generator of the subgroup � �
of order � in � �� . The protocol computes a private-key

� in � � and a public-key � � � � � � � � .
Feldman ( [2] ) introduced the verifiable secret shar-

ing protocol (called Feldman VSS). It uses a trusted
dealer (who is assumed never to be corrupted) to share
a (secret) key � among � parties. Pedersen ([5] ) de-
signed a distributed protocol (Ped-DKG) to achieve
the distribution of the key � without a central dealer.
It consists of � parallel runs of Feldman-VSS. Each
player selects a random secret (share) � � and executes
Feldman-VSS to share it with others. The secret �

(which need not be computed) is the sum of the (un-
corrupted) players secret shares. Gennaro et al ([4])
showed that the Ped-DKG protocol may be insecure
under some attacks. They proposed a secure protocol
(called here GJKR-DKG protocol from the initials of
the last names of the authors).

We next present the Ped-DKG and GJKR-DKG
protocols.

1.2 Distributed Key Generation Protocol: Ped-
DKG

1. Each player � � chooses a random polynomial� � � � � over � � of degree � :

� � � � � = 	 � � + 	 � ! �
+ . . . + 	 � # � #

� � broadcasts $ � % = � ' 
 ) mod � for * � , � . . . � � .
Denote 	 � � by

� � and $ � � by � � . Each � � computes
the shares � � 3 =

� � � 4 � mod � for
4

� � � . . . � � and
sends � � 3 secretly to player � 3 .

2. Each � 3 verifies the shares he received from the
other players by checking for 6 � � � . . . � � :

� 9 
 : �

#;
% < �

� $ � % �
3 ) � � � � (1)

If the check fails for an index 6 , � 3 broadcasts a> � � �  	 6 � � against � � .

3. If more than � players complain against a player
� � , then that player is clearly faulty and therefore
disqualified. Otherwise � � reveals the share � � 3
matching Eq. 1 for each complaining player � 3 .
If any of the revealed shares fails this equation,

� � is disqualified. We define the set B D $ E to be
the set of non-disqualified players.

4. The public value � is computed as � =F � G H I K L � � mod � . The public verification val-
ues are computed as $ % �

F � G H I K L $ � % mod �
for * � � � . . . � � . Each player � 3 sets his share of
the secret as � 3 � P � G H I K L � � 3 mod � . The se-
cret shared value � itself is not computed by any
party, but it is equal to � = P � G H I K L � � mod � .

1.3 Distributed Key Generation Protocol :
GJKR-DKG

Generating � :

1. Each player � � performs a Pedersen-VSS of a
random value

� � as a dealer:

(a) � � chooses two random polynomials
� � � � � ,� Q� � � � over � � of degree � :� � � � � = 	 � � + 	 � ! �

+ . . . + 	 � # � #
� Q� � � � = S � � + S � ! �

+ . . . + S � # � #
Let

� � = 	 � � =
� � � , � . � � broadcasts T � % =

� ' 
 ) VW Y

 ) mod � for * � , � . . . � � . � � com-

putes the shares � � 3 =
� � � 4 � , �

Q� 3 =
� Q� � 4 � mod

� for
4

� � � . . . � � and sends � � 3 , �
Q� 3 to

player � 3 .

(b) Each player � 3 verifies the shares he re-
ceived from the other players. For each
6 � � � . . . � � , � 3 checks if

� 9 
 : VW 9 Q

 : �

#;
% < �

� T � % � 3 ) � � � � (2)

If the check fails for an index 6 , � 3 broad-
casts a > � � �  	 6 � � against � � .
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(c) Each player � � who, as a dealer, received
a complaint from player � � broadcasts the
values � � � , �

�� � that satisfy Eq. 2.

(d) Each player marks as � � � � � � � � 
 � � � any
player that either

i. received more than � complaints in Step
1(b), or

ii. answered to a complaint in Step 1 (c)
with values that falsify Eq. 2.

2. Each player then builds the set of non-disqualified
players �  � � . (We show in the analysis that
all honest players build the same set �  � � and
hence, for simplicity, we denote it with a unique
global name.)

3. The distributed secret value � is not explic-
itly computed by any party, but it equals � �

� � � � � � � � � mod � . Each player � � sets his share
of the secret as � � � � � � � � � � � � � mod � and the

value � �� � � � � � � � � �
�� � mod � .

Extracting � � 
 � mod � :

4. Each player � � �  � � exposes � � � 
 �  mod �
via Feldman VSS:

(a) Each player � � , � � �  � � , broadcasts
� �  � 
 ! 

 
mod � for " � $ & ' ' ' & � .

(b) Each player � � verifies the values broadcast
by the other players in �  � � , namely, for
each � � �  � � , � � checks if


 *  + �

,-
 . 0

1 � �  2 � 3 4 6 � � (3)

If the check fails for an index � , � �
7 6 4 � � � � � � against � � by broadcasting the
values � � � , �

�� � that satisfy Eq. 2 but do not
satisfy Eq. 3.

(c) For player � � who receives at least one valid
complaint, � ' � ' values which satisfy Eq. 2
and not Eq. 3, the other players run the
reconstruction phase of Pedersen-VSS to
compute

� � ,

 � 1 � 2 , � �  for " � $ & ' ' ' & �

in the clear. For all players in �  � � , set
� � � � � 0 � 
 �  mod � . Compute � �; � � � � � � � � mod � .

2 An algorithm for computing a generator of� =

The DKG algorithm requires all players to have the
same values of � & � & 
 and

?
numbers, where � is a

large prime number and � is a large prime divisor of
� @ A . The number 
 is an element of the multiplica-
tive group B CD of order � and

?
is an element of the sub-

group E = in B CD generated by 
 . To find a large prime
number we used the Matlab package. After finding the
prime number � , we used Matlab to find prime factors
of � @ A and took the largest prime from the solution
set.

The order of an element in a multiplicative group
B CD is defined as the minimum degree to which that
number needs to be raised to get the identity element
of the multiplicative group. In other words 
 needs to
satisfy the following condition: 
 = mod � = 1. The
problem of finding 
 comes down to finding roots
of the polynomial � = - 1 in 4 6 � � arithmetic. Note
that the identity element of B CD is a trivial solution of
this equation and will not be taken into account. We
have used two approaches to solve this problem. The
first approach was exhaustive search, starting from
the smallest element of B CD each number is tested
and if it does not satisfy the condition � = mod � =
1 we would proceed to the next smallest element of

B CD . However, this approach is not efficient. We have
implemented another algorithm based on the bisection
method. This new algorithm is supposed to narrow
down the interval in which the number 
 can be found
with higher probability and perform the exhaustive
search for 
 on this interval first. The modification to
the bisection method was made so that it was possible
to be used in modular arithmetics: all elements of

B CD less than � 
 � are considered to be positive and
all others are negative. The algorithm takes several
input parameters: the primes � and � , maximum
number of iterations and the minimal interval size. In
each iteration we find the middle point of the interval7 , check if is the solution and if it is not proceed
recursively on one of the interval halves. If the value
of the he function


 1 � 2 �
1 � = @ A 2 mod � changes

the sign when � grows from 7 to the end point of
interval, the upper half is chosen. Otherwise, we set
the interval for the next iteration to the lower half.
The base interval is set from 2 to � @ A . The bisection
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is performed a specified maximum number of times
or until the length of the interval becomes less then
the minimum size required by the algorithm. In every
iteration we store the bounds of the intervals that will
not be considered. After narrowing down the interval
to certain size exhaustive search is performed. If the
� is not found in the current interval we proceed with
the exhaustive search on the last saved interval. We
traverse the intervals in the reverse order until the � is
found. In each step the size of the interval is twice the
size of the interval in the previous step.

The Algorithm:
1. Set the bounds of the initial interval � = 2,

� � � � � ; set number of iterations � � � � and mini-
mum interval size � � � � � � � � 


� ; set the bound for pos-
itive numbers � � � � � � � � � . Calculate the value of
the function

 � � � �
� � � � � � mod � at the ends of the

interval: � �
 �

� � and � �
 � � � and if � = 0 or � = 0

display the � and exit.
2. Perform steps 3 to 5 � � � � number of times.
3. Calculate a new interval bound � �

�
�

� � � � �
and the function value � �

 � � � . If � � � exit.
4. If � and � are not of the same sign, save bounds

of interval from � to � and set the lower interval bound
equal to � ; else save bounds of interval from � to � and
set upper bound equal to � .

5. If � � � � � � � � � � � � 

� proceed to � � � � � 	 .

6. Perform exhaustive search on interval � to � and
exit if � is found.

7. Repeat � � � � � � 
 to � � until � is found.
8. Set � to the lower bound of the smallest interval

that has not yet been searched.
9. Set � equal to the upper bound of the same inter-

val.
10. Perform exhaustive search on interval � to � and

exit if � is found.
We have used both algorithms to find the group gen-

erator for large primes. The execution times for both
algorithms varies highly based on the values of prime
numbers � and � , even if the � numbers are roughly
of the same size. In all cases the bisection method is
either as fast as the exhaustive search or much faster.
The significant speedup was obtained when the execu-
tion time is long.

The fourth number required,
�

is an element of the
subgroup � � in � �� generated by � . It is important

that nobody knows the discrete log of
�

with respect
to � . To generate

�
first we find a random number 


in � �� . To generate a random element in the subgroup
generated by � it is enough to set

�
� 


�
mod � where

� �
�

� � � � � � . If � � does not divide � � � then
�

is in
the group generated by � .

3 Implementation of the GJKR-DKG proto-
col

In this implementation all the players have to run
the same code and exchange information without mak-
ing use of an intermediate server. We followed a
client/server model using secure sockets as presented
in [7]. This way the player is both able to establish
a connection to a peer as well as handling incoming
requests.

This has been possible by using threads, which op-
erate independently (our implementation in particular
used the pthreads). Our development has been per-
formed on the Intel/Linux platform. We use the Red-
Hat 8 distribution and the GNU C compiler (gcc).

The DKG implementation with 2-players:
The main program spawns a reader and a writer

thread. These two threads are in charge of reading and
writing the information from/to a shared buffer that is
used to keep the information exchanged between the
players. While listening for a connection both players
attempt a connection to a peer. When both peers have
established a connection the main program of each
player starts to produce the DKG information. This in-
formation is written to the shared buffer, which is mon-
itored by the reader thread. When the reader thread
finds a message it fetches it from the buffer and send it
to the other player over the OpenSSL connection pre-
viously established. On the other side the writer thread
is monitoring the connection and receives the message
that is then put into the buffer.

This producer/consumer process has been per-
formed using a basic semaphore technique.

The buffer has a semaphore variable that is used to
lock the data when something is using it. Both the
main program and the threads wait until the semaphore
is green (lock=0) before using the buffer. This pre-
vents corruption in the buffer and preserves the order
of the operations. When a thread needs the buffer it
waits until the semaphore is green (lock=0). When this
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happens it sets the lock to 1 (red signal), performs the
necessary operations to the buffer, and then releases
the lock (green signal).

In the 3-players version the approach is similar but
this time we have more outgoing and incoming con-
nections (2+2 per player). The 3-players program has
the following changes: (i) When it starts the reader
thread establishes a connection to each peer (2). (ii)
It listens for incoming connections and it spawns one
thread per connection (2).

Figure 1 describes a 3-players run and how data is
pulled/written from/to the shared buffer and then ex-
changed between peers through network connections.
In order to simplify the data exchange we designed a
specific protocol. When a player sends an object to
one or more peers it creates a packet using the follow-
ing format:

Destination Sender Object Values list

Destination: it is either “B” (broadcast) or the peer id
of the receiver. Broadcast sends the packet to all peers.
Sender: id of the sender player Object: the object
type sent. Types are qualified using the characters C,
S, $, A, !, X.
‘C’: C values as defined in DKG algorithm; ‘S’: S
share values; ‘$’: S’ share values; ‘A’: A as defined
in DKG; ‘!’: Complaint sent by a player to all peers;
‘X’: Disqualification (when received used to remove a
peer from QUAL set).
Value(s): value(s) of the object
Lock/Unlock The main program and the threads have
to compete for the buffer access. Once the buffer is
obtained it has to be locked in order to prevent another
method either to overwrite or read wrong data. In order
to guarantee a safe access to the buffer we used the
following method:

While Lock==1 do wait() // wait for buffer to be
released

Lock=1; // lock buffer
� modify or read Buffer �

Lock=0; // release buffer
Now that we have the 3-players version, which

spawns a thread at each incoming connection, it is
not difficult to extend this to n players. Then the
reader right must open n-1 connection to the different

Figure 1. Asynchronous communication be-
tween three players using threads

peers. These connections are persistent because they
are opened at the beginning of the program and closed
at the end.

4 Test Results and Conclusions

Our testing has been performed on a 100Mbps net-
work of Linux workstations with Pentium 4 2.4GHz
and 512MB of RAM. We implemented: (I) the Bisec-
tion and Exhaustive search algorithms (Matlab); (II)
the GJKR DKG algorithm (gcc and OpenSSL ([7])
with two, four and eight players).

Our results are the following: Table 1 contains the
execution time of the Bisection and Exhaustive search
algorithms to compute � after � and � have been com-
puted.

Tables 2-4 contain the run times (in seconds) of the
GJKR DKG protocol, where:

C = total computation time (excluding communica-
tion and wait times); R = total read communication
time ; W = total write communication time ; TE = to-
tal execution time to run the Gennaro protocol;

Conlcusions: (1) Table 1 shows that the Bisection
is an efficient algorithm to compute the parameter �

which is necessary to run the DKG protocol. (2) Ta-
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bles 2-4 demonstrate that the GJKR DKG can be effi-
ciently implemented using secure sockets. We observe
that the Read and Waiting times (imposed for synchro-
nization) take the longest time. This is the first attempt
(known to us) to implement with the GJKR DKG pro-
tocol using secure sockets. In future work, we plan
to to optimize our code so that the overall time takes
fractions of a second.

Table 1. Execution times for computing the
generator of � �

Table 2. Runtimes of DKG with 2 players
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