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Abstract—1In this paper we present an analysis of power
control algorithms established over the past decade for cellular
telephone systems, in conjunction with utility functions intro-
duced recently to specify quality of service in wireless systems
providing data services. These algorithms are compared with
power control algorithms based on game theory established
relatively recently. The analysis shows that the Nash equilibrium
points to which the game theory based algorithms for power
control converge are not efficient, and that better solutions are
possible.

I. INTRODUCTION

Transmitter power control is a main component of radio
resource management at the physical layer of a wireless
communication system, and contributes to minimizing inter-
ference and increasing system capacity. Transmitter power
control contributes also to extending the battery life of mobile
terminals by ensuring that these transmit at the minimum
power level necessary to achieve a specified quality of service
(QoS). Power control is extremely important in Code Division
Multiple Access (CDMA) systems which have received in-
creasing attention lately as a multiple access scheme for future
generation wireless systems. CDMA systems are interference
limited, and power control is an effective way of reducing
the multiple access interference (MAI) and maintaining the
specified QoS requirements.

QoS can be defined in terms of a minimum signal-to-
interference-ratio (SIR) or signal-to-interference-plus-noise-
ratio (SINR) v}, for a given mobile terminal &, and the QoS
requirement may be expressed as

> Yk )

The value ~; is a threshold which ensures transmission quality
for user k£, and may be determined from the bit error rate
(BER) requirement that corresponds to the service performed
by mobile terminal k. This threshold-type definition for QoS is
well suited for terminals performing voice services like cellular
telephones, for which providing acceptable speech quality at
the telephone receiver is directly related to the SINR of the
mobile terminal [3]. In this case the target SIR is the same
for all users in the system, v}, = v*, Yk and depends on the
desired quality of speech at the receiver phone. We note that
numerous power control algorithms based on ensuring a QoS
criterion as specified by equation (1) have been developed for
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cellular telephone systems providing voice services over the
past decade [2], [4], [6], [9], [11], [13].

When the mobile terminal performs data transmission ser-
vices, as it is the case in wireless networks, the above QoS
definition is no longer appropriate [3], and concepts from
microeconomics have been used lately to define QoS in
wireless systems in terms of utility functions. In general, the
utility function measures the satisfaction of a given user with a
specific service, and in wireless communication systems utility
can be related to the SIR. From this perspective different
services, like voice and data, will have QoS described by
different utility functions. Based on this new formulation for
QoS, new power control algorithms for wireless systems have
been developed recently using a game theoretic approach to
maximize the utility functions [3], [8], [12].

In our paper we investigate the use of power control
algorithms established for voice systems [2], [7], [9], [11]
in conjunction with utility functions used to specify QoS for
data services [3], [8], [12]. Our work is motivated by the
fact that these algorithms are simple and well understood,
and are already present in current cellular telephone systems,
thus offering an alternative to the implementation of newly de-
veloped algorithms in initial deployment of future generation
wireless systems. We note that, while not specifically designed
for utility maximization, these algorithms provide comparable
performance in terms of the value of utility functions to the
recently established utility maximizing algorithms for power
control [8], [12], thus allowing a smooth transition to new
implementations for next generation systems.

II. UTILITY FUNCTIONS FOR WIRELESS SYSTEMS

The concept of utility is commonly used in microeconomics
and game theory to denote the level of satisfaction of a
decision-maker with specific products or services as a result of
its actions [10, Ch. 2]. In wireless communication systems the
level of satisfaction is related to the QoS that a mobile terminal
receives which is typically expressed in terms of BER or SIR
requirements.

In cellular telephone systems providing voice services,
utility is a step-like function of the SIR [3] which matches the
threshold QoS requirements in equation (1) that correspond to
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voice services:
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where U, is the value of the utility function for user k.
Utility functions for wireless systems providing data ser-
vices depend usually on both the SIR and the transmitted
power of a given terminal. This is because power is a valuable
commodity for a mobile terminal, and transmitting at the
lowest possible power will extend the terminal’s battery life
and contribute to increasing its level of satisfaction. One
choice of utility function proposed in [3] assumes that mobile
terminals transmit data in frames (or packets) of length M
bits, containing L. < M information bits at a data rate of R
bits/s, and expresses the utility function for terminal k& with
transmit power p, Watts as

_ LRf(w)
where
flw) = (1 =2P, )™ €

is the efficiency function for terminal k£ with P,, being the
terminal’s BER. In this case the utility function depends
explicitly on the terminal’s transmit power pj, and implicitly
on the terminal’s SIR 7. The dependence on the SIR ~y is
through P,, which depends on v, and the particular modu-
lation scheme employed. For example for BPSK modulation
P., = Q(v/27), for DPSK modulation P., = 0.5¢~7, for
coherent FSK P, = Q(,/7k), and for non-coherent FSK
P., = 0.5¢7%5%_ The utility function in equation (3) is
measured in bits/Joule and has a nice physical interpretation
as the number of information bits received successfully per
Joule of energy consumed for transmission. We note that, a
linear pricing factor of the form aypx may be included to
improve the efficiency of the power control algorithms based
on maximizing the utility function in equation (3) as it was
done in [12].

An alternative to this function considers the channel capac-
ity as the figure of merit and uses it to derive power con-
trol algorithms [8]. To provide a distributed implementation,
capacity is approximated by the Gaussian channel capacity
formula, and the utility function is expressed as

up = Rlogy(1+ v%) — arpr  VEk (5)

where W is the available bandwidth for communication, and
ay, is the pricing factor that corresponds to user k. The term
appy is a linear cost on transmit power and is included to
ensure that the utility maximization problem is well-defined.

III. DISTRIBUTED POWER CONTROL ALGORITHMS

Algorithms for power control in wireless systems can be
centralized or distributed. We note that centralized power
control (CPC) algorithms require a central controller which
knows the parameters of all radio links in the wireless system,
and are therefore not easy to be implemented [5]. In contrast,
in distributed power control (DPC) algorithms only knowledge

of a given terminal’s link is needed in order to adjust its
transmitted power independent of the other terminals. As
a consequence DPC algorithms have lower complexity and
require less computational power than CPC algorithms, and
are preferred in practical implementations. In this paper we
consider DPC algorithms based on ensuring a QoS criterion
as specified by equation (1), as well as algorithms based on
maximizing utility functions in equations (3) and (5).

We consider the uplink of a single-cell of a CDMA wireless
system with K mobile terminals transmitting data to the
base station. Each terminal transmits L information bits in
frames (or packets) of length A/ bits at a fixed rate of R
bits/sec. We denote the jth terminal transmitted power by p;,
7 =1,2,...,N, and the path gain of terminal j to the base

station by h;, j = 1,2,..., K. The signal to interference ratio
corresponding to terminal j is given by [12]
w hip;
Y= i (©)
Z hipr + o2
k=1,k#j

where W is the available bandwidth expressed in [Hz], and
o? is the average power of additive Gaussian white noise
(AWGN) power at the receiver. This expression assumes that
users in the CDMA system are assigned pseudorandom noise
(PN) sequences, and that conventional matched filter detectors
are used at the receiver [12]. We note that the SIR expression
for CDMA systems in equation (6) is similar to the SIR
expressions used in early papers on power control for cellular
radio systems providing voice services [2], [4], [7] which
assumed a system with a finite set of channels (either time or
frequency slots) rather than a CDMA scheme. We also note
that the SIR expression in equation (6) was also used in more
recent DPC algorithms [11].

A very simple DPC algorithm adjusts the transmitted power
of mobile terminals independently at discrete time instances
by increasing the transmitted power for a given terminal k if
the corresponding SIR -y, is below the specified target «;;, or
decreasing the transmitted power if the corresponding SIR
is above the specified target «y;;. The associated power update
equation is given by [2]

,y(n—l)
n n—1
( ):pl(C )k —

Py v

When the specified target SIRs «y; are feasible then the DPC
algorithm converges to a fixed point where equation (1) is
satisfied [2], [13]. Otherwise, when the target SIRs are not
feasible, transmit powers keep increasing indefinitely in an at-
tempt to reach the specified SIR values, and the DPC algorithm
will not converge. To avoid this situation, the DPC algorithm
described by equation (7) is modified, and an upper bound
on transmit power is imposed. The power update equation
becomes then

1<k<K,n>1 ()

(n—1)
p;n) = min {PnLaacypEgn_l)’Yk—*}, 1 < k < K, n > 1
v

k
(3)
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and corresponds to the constrained DPC (CDPC) algorithm
[7]. For feasible target SIRs the CDPC algorithm converges
to the fixed point where where equation (1) is satisfied for all
terminals. When the target SIRs are not feasible the CDPC
will reach a fixed point where equation (1) is satisfied for
only a subset of terminals, while the other terminals for which
equation (1) is not satisfied will transmit at the maximum
allowed power level.

The DPC and CDPC algorithms are first-order algorithms
in the sense that they require only the current power level in
the power update equation. For faster convergence a second-
order power control (SOPC) algorithm was proposed [9]. This
requires power levels at current and previous iterations, and
the associated power update equation is

(n—1)
chn) = min {Pmazv max {szna W(n)pggn_l)vk— +

*

Yk

n [1 —w<">} p,g"“")}}, 1<k<K,n>1 (9

where w is the relaxation factor which may be fixed or may
vary according to the iteration [9], and P,,;, is a lower bound
on transmit power imposed to avoid non-positive values for
power. We note that, when w is fixed and equal to 1, the
power update in equation (9) becomes identical to that in
equation (8), and the SOPC algorithm reduces to the CDPC
algorithm.

Recently, an alternative to the CDPC algorithm described
by equation (8) was proposed [11]. The exponential DPC
algorithm (EDPC) uses an exponential function of the SIR,
and the associated power update equation is given by [11]

_ * (n—
pén) — min {Pmam7 pgcn 1)65[’Yk Yk

1<k K a1

(10)
where £ > 0 is a parameter which should be optimized for
fast convergence speed. We note that the power update in

equation (10) can be rewritten as

e (n—1)
(n—1)€

Dr —mln{Pmaxapk W},lﬁjﬁN,nZI

1D
which shows that in this case the power update equation
is similar to that of previous DPC algorithms, but uses an
exponential function of the SIR rather than the SIR directly.
The motivation for this choice is based on the convergence
properties of the exponential function [11] which converges
asymptotically when time approaches infinity, and for which
the convergence speed may be adjusted through the positive
parameter &.

We note that both the SOPC and EDPC algorithms are
power constrained, and that they behave similar to the CDPC
with respect to the target SIRs: when these are feasible they
will converge to a point where equation (1) is satisfied for all
terminals, otherwise at the fixed point equation (1) is satisfied
for only a subset of terminals, while the other terminals will
transmit at the maximum allowed power level.

Using a game theoretic approach distributed power control
is formulated as a non-cooperative game in [12] in which users
adjust transmit powers to maximize their corresponding utility
functions in equation (3). The resulting utility maximization
algorithm (UTI1) has a power update similar to that in
equation (8) with the difference that the users update powers
only if their corresponding utility is not decreased by the
power update, otherwise they keep their powers unchanged.
The value of «y; in this case is the SIR that corresponds to a
Nash equilibrium point of the non-cooperative power control
game and will be discussed in Section IV.

An alternative game theoretic approach is presented in [8],
and uses the utility functions in equation (5). The resulting
distributed power control algorithm (UTI2) has the following
power update equation

p™ =FMp" T +b) n>1 (12)

where p is the vector containing user powers, b is a constant
K-dimensional vector with elements

R Ro?
b = — 13
k aprIn2  Why (13)
M is a K x K matrix expressed in terms of user path gains
as
R
M=—(I-H 14
SI-H) (14)

with I being the identity matrix of order K, and elements of
matrix H being h;; = h;/h; (with h;; = 1), and F(-) is a
diagonal mapping from R¥ to RX given by

Praz it 2> Proe
Fk(ﬂf): x if 0<2< Phas (15)
0 if <0

No target/equilibrium SIRs are used in the power update in
this case, and the resulting equilibrium SIRs depend on the
pricing strategy used [8].

IV. TARGET SIRS AND UTILITY MAXIMIZATION

In general, in cellular telephone systems users have uniform
QoS requirements, which imply uniform target SIRs that
depend on the desired quality of the speech signal at the
receiver phone. This is a subjective QoS measure and has
no direct relationship to system operating parameters like
link quality or the type of modulation used for transmission.
We note that power control algorithms established for voice
systems presented in Section III (DPC, CDPC, SOPC, EDPC)
work also with non-uniform SIRs, as long as these are feasible.
When the set of non-uniform specified SIRs are not feasible
and no maximum power limits are set, user powers increase
indefinitely in an attempt to meet the specified targets. In the
case of constrained power control algorithms (like the CDPC,
SOPC, or EDPC), with maximum power limits and unfeasible
SIRs, the algorithms stop when the maximum power value for
all users is reached, regardless of the resulting SIR values.
When only a subset of the specified non-uniform SIRs is
feasible constrained power control algorithms converge to a
fixed point where equation (1) is satisfied for only a subset
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of terminals, while the other terminals for which equation (1)
is not satisfied will transmit at the maximum allowed power
level.

In power control algorithms based on utility maximization,
UTI1 [12] and UTI2 [8], user SIRs at the end of the algorithm
are not established a priori as in the case of DPC, SOPC, or
EDPC algorithms, but rather correspond to a Nash equilibrium
point for the system. At a Nash equilibrium point no terminal
can further increase its corresponding utility through individual
action. User SIRs at a Nash equilibrium point depend on
actual characteristics of the wireless system like the link
quality or modulation scheme employed. For the UTI1 power
control algorithm the unique Nash equilibrium point of the
corresponding non-cooperative power control game is obtained
from the following relation [12]

fOi) = f (v

where f/(-) is the first derivative of the efficiency function
f(-). We note that different modulation schemes have different
efficiency functions and imply in general different equilibrium
SIRs, and that even for the same modulation scheme different
packet lengths M imply different equilibrium SIRs [1].

For the UTI2 power control algorithm different pricing
strategies implied by the user pricing factor a; imply different
equilibrium SIRs [8]. We note that in this case a fair allocation
of SIRs is obtained when the pricing factor ay, for a given user
k is proportional to the corresponding path gain hy, and results
in uniform SIRs for all users in the system [8].

To conclude this section we note that, if the SIRs corre-
sponding to Nash equilibrium points of non-cooperative power
control games are feasible for DPC, SOPC, or EDPC algo-
rithms, then one could use these algorithms as an alternative
way of reaching the equilibrium SIRs. However, reaching the
equilibrium SIRs does not guarantee that corresponding utility
functions will also be maximized, since final powers yielded
by different power control algorithms are usually different.

(16)

V. SIMULATION RESULTS

We have simulated the power control algorithms presented
in Section III for a CDMA system with a single cell and K = 9
users situated at distances 310 m, 460 m, 570 m, 660 m, 740 m,
810 m, 880 m, 940 m, and 1000 m from the base station. The
available bandwidth is W = 1 MHz, the data rate is R =
10 kbps, the power spectral density o2 = 107! W/Hz. For
DPC, CDPC, SOPC, and EDPC algorithms the target SIR was
identical for all terminals v* = 12.4. This value was chosen to
be equal to the Nash equilibrium SIR for the non-cooperative
power control game that define algorithms UTI1 and UTI2, in
order to allow a meaningful comparison of considered power
control algorithms. We note that for algorithm UTI1 the Nash
equilibrium SIR of v* = 12.4 corresponds to a system using
non-coherent FSK modulation that transmits frames of length
M = 80 bits, with L = 64 information bits per frame, and
for algorithm UTI2 uniform equilibrium SIR ~+* = 12.4 is
obtained for a pricing factor of aj, = 1.725 x 1017 hy,.

Transmitted power [dBm]

5 L L L L L L
300 400 500 600 700 800 900
Distance [m]

1000

Fig. 1. Final user transmit powers for a system with 9 users after running
various distributed power control algorithms discussed in section III.

For the power constrained algorithms (CDPC, SOPC,
EDPC, UTII1, and UTI2) the maximum transmit power level
is 33.0103 dBm (2 W) for all terminals. Each algorithm
was initialized with the same set of randomly generated
transmit powers which was equal to 31.6141 dBm, 28.64 dBm,
30.4409 dBm, 29.9387 dBm, 31.4342 dBm, 31.0109 dBm,
29.8067 dBm, 27.1475 dBm, and 31.2104 dBm, and the final
transmit powers corresponding to all terminals yielded by the
algorithms are presented in Figure 1. We note that the target
SIR is achieved with minimum transmit power for the EDPC
algorithm, and that the unconstrained DPC algorithm implies
the maximum transmit power for the same target SIR and
initial power values. We also note that the UTI1 and UTI2
algorithms yield transmit powers similar to those obtained with
the SOPC algorithm.

The values of the utility function in equation (3) that
correspond to the transmit powers yielded by the DPC, CDPC,
SOPC, and EDPC algorithms are plotted together with the
value of the utility function yielded by algorithm UTII in
Figure 2. As it is expected from the expression of the utility
function in equation (3), for the same target SIR the algorithm
for which the target SIR is achieved with minimum power
implies maximum utility function. We note that the values of
the utility function implied by algorithm UTI1 are very close
to those corresponding to the transmit powers yielded by the
SOPC algorithm. We also note that the highest values of the
utility function correspond to the transmit powers yielded by
the EDPC algorithm, which suggests that the Nash equilib-
rium point achieved by algorithm UTII is inefficient. This
observation agrees with [12] which shows analytically that the
Nash equilibrium of the non-cooperative power control game
implied by maximization of utility function in equation (3) is
not efficient.

A similar plot containing the values of the utility function in
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Fig. 2. Final user utilities computed using equation (3) for a system with 9

users after running various distributed power control algorithms discussed in
section III.

equation (5) for transmit powers yielded by the DPC, CDPC,
SOPC, and EDPC algorithms along with the value of the utility
function yielded by algorithm UTI2 is given in Figure 3. As
it can be noticed from the expression of the utility function
in equation (5), in this case for uniform target/equilibrium
SIRs and with pricing factors proportional to the path gains,
users get the same utility. We note that the utilities implied by
algorithm UTI2 are very close to those corresponding to the
transmit powers yielded by the CDPC and SOPC algorithms.
We also note that the highest values of the utility function
correspond again to the transmit powers yielded by the EDPC
algorithm, which suggests that the Nash equilibrium point
achieved by algorithm UTI2 is also an inefficient one.

VI. CONCLUSIONS

In this paper we investigate the use of power control
algorithms established for cellular telephone systems in con-
junction with utility functions used in wireless data systems.
We compared these algorithms with power control algorithms
based on game theory established relatively recently. Our
analysis has shown that the CDPC and SOPC algorithms imply
utilities similar to those achieved by the utility maximization
algorithms UTI1 and UTI2. The analysis has also shown that
the Nash equilibrium points to which the UTI1 and UTI2
algorithms converge are not efficient, and that better solutions
are possible by using the EDPC algorithm. An analytical
investigation of the EDPC algorithm in conjunction with utility
functions will be the object of future research.
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