
An Efficient Distributed Key Generation Protocol
for Secure Communications with Causal Ordering

Caimu Tang (Student Member, IEEE)
Department of Computer Science

University of Southern California, Los Angeles
caimut@cs.usc.edu

Anthony T. Chronopoulos (Senior Member, IEEE) 1

Department of Computer Science
University of Texas at San Antonio, San Antonio

atc@cs.utsa.edu

Abstract— In this paper, we propose an elliptic curve based
distributed key generation protocol in communication systems
with causal ordering semantics on broadcast messages.

I. INTRODUCTION

The seminal work of Shamir [8] and later Feldman [2] on
the (t, n) (where n is the number of shares of a secret and
t is the threshold) threshold scheme is based on a simple
polynomial interpolation over a Galois field, GF(q), where
q is a prime or some power of a prime p by which it is an
extension field of Z/pZ . Pedersen [7] gives an extension to
Feldman’s non-interactive approach which allows that each
party can verify the information about the secret without
communicating to other parties, and any t of these parties
can later find the secret (1 ≤ t ≤ n), and fewer than t
parties get no information about the secret.

Existing distributed key generation (DKG) protocols are
based on either discrete logarithm problem (DLP) over a
finite field or integer factorization problem (IFP). In order to
maintain a certain level of secrecy, key lengths in both cases
have to be long enough to be secure due to recent developed
subexponential algorithms on IFP and DLP. Elliptic curve
cryptosystems (ECC), on the other hand, are safe against
some common algorithmic techniques, e.g. index-calculus
[4]. There is no specific subexponential algorithm for el-
liptic curve discrete logarithm problem (ECDLP) if some
precaution is exercised upon selecting a proper curve and
associated parameters.

In [2], a non-distributed version of verifiable secret shar-
ing (VSS) scheme is presented in which the dealer (a dealer
is defined as the threshold coordinator which distributes
the shares to each player) selects and encrypts a “secret
message”, s, and gives a “share” of s, to each of n players.
All communications use broadcast messages and the players
can verify the authenticity of the dealer. Shamir’s (n, t, t+1)
threshold cryptography can be used as a building block to
VSS. The first distributed version of VSS denoted by DF-
VSS in this paper is presented in [6], and it is based on

1This research of Dr. Chronopoulos was supported, in part, by a grant
from the Center for Infrastructure Assurance and Security at The University
of Texas at San Antonio and by NSF CCR-0312323.

Feldman VSS (where each player acts as a dealer). In [3],
an improved (in terms of its secrecy) version of DF-VSS is
presented and it is called DKG. This protocol can tolerate
the attack where the adversary can force the public key to
have a biased distribution. DKG tolerates up to t halting
players for n ≥ 2t + 1 and t eavesdropping players for
n ≥ t + 1 and t static malicious adversary for n ≥ 3t + 1.

ECC has been also applied to smart card [9] applications
and sub-second key generation performance on signature
verification and key generation has been reported. In sum-
mary, the advantages of using ECC compared to competing
approaches are given as follows: 1) Much more flexibility
with many curves to choose from. 2) More efficient key
generation, validation algorithms with a low processing
overhead. 3) Smaller key size for a similar level of secrecy.

In this paper, we propose a new protocol called elliptic
curve based distributed key generation (ECDKG), which is
based on DF-VSS and uses ECC as the building block.
It is built upon common adversary models and is immune
to these adversaries. Compared to DKG, this new protocol
enjoys all advantages of DKG besides short key length and
moreover flexibility of protocol setup. Our initial implemen-
tation results show that it takes time in the sub-second range
to generate keys even in a large network, and this allows
ECDKG to be used in many applications. This protocol can
be used for efficient threshold signature algorithms.

In Section II, our models are presented and our key
generation protocol is shown in Section III. Implementation
results are given in Section IV. We conclude this paper in
Section V.

II. OUR MODELS

We assume that there are two kinds of channels available,
broadcast channel and private channel, and any two play-
ers can communicate via their respective private channel.
Private channels are assumed to be at least as secure as
the building block cryptosystems. Message broadcasting
uses a flooding mechanism, i.e., scoped flooding with a
time-to-live scope. Messages from ECDKG follow different
semantics. For a broadcast message, it either reaches all
recipients or none. Furthermore, if it reaches all recipients,

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:43:57 UTC from IEEE Xplore. Restrictions apply.

the reception order by these players is random. We de-
note this as message broadcasting semantics (MBS). We
also require a causal ordering (i.e. happened-before) on
message-delivery semantics between a given pair of sender
and recipient, i.e., message m1 from sender p1 reaches
recipient p2 before message m2 from p1 if p1 sends m1

before m2. We denote this as message ordering semantics
(MOS). In this communication model, we also assume that
no message loss can occur during transmission. Once a
message is sent by a player (faulty or not), the message will
reach its intended recipient(s) in a uniformly bounded time
interval. For a halting adversary, messages which would
have been delivered if the protocol were followed, are not
considered to be sent. Furthermore, due to the happened-
before semantics, all successive messages from this halting
adversary are blocked.

The adversaries can be categorized into two types: 1)
static, 2) dynamic and adaptive. For a static adversary,
decision on which player to break into is made before the
run of the protocol. That is all players are taken as the same
to the adversary. It can immediately read any message sent
on a non-private channel, and when a player is corrupted,
all its states and partial results are exposed to the adversary.
The message processing time by the adversary is ignored
in a static adversary model under the assumption that the
adversary has more computing power than any of the honest
players. There are four types of adversaries dealt with in
this paper: 1) Halting adversary. In the protocol run, a
player may not respond to a message either deliberately
or due to stop-fail type of failure. 2) Eavesdropper. An
adversary passively monitors the channel, and accesses all
public messages. 3) Static malicious adversary. Before the
protocol executes, this type of adversaries have already
decided which player to corrupt during the execution of the
protocol. This decision can not be changed by exploiting the
runtime information obtained during protocol execution. 4)
Replay adversary. A replay adversary buffers message and
sends these out whenever necessary to impersonate a honest
player. This type of attacks is applicable to a multi-stage
protocol. One static attack example is presented in [3] in
which two faulty players collude to make a bias on the
public key. DF-VSS fails to prevent this attack, because it
may cause that the generated public key does not follow
a uniform distribution over the given field. We call this the
GJKR attack. The design of our proposed protocol has taken
into account these adversaries.

III. OUR PROPOSED KEY GENERATION PROTOCOL

Our distributed key generation protocol is based on the
improved version of DF-VSS [3] with enhancement on
efficiency and protection against adversaries enumerated in
Section II. A description of this protocol is given below.
We use field GF(q) as the ground field where q is prime or

some proper power of a prime. We assume that each player
has a unique random identification number p i ∈ GF(q) and
players know these numbers of each other.

Notation: In this paper, GF∗(q) denotes the induced
multiplicative group of GF(q). G denotes the main subgroup
of order p which is derived from a point T , and used as the
base group of ECDKG; ⊕ denotes the point add operator
over G and

∑⊕ denotes the point summation under ⊕, and
Si = {pj |j �= i, 1 ≤ j ≤ n} is the set of peer players of pi.

Let n be the total number of players who want to form
a secure group, and they are identified by the distinct IDs
(p1, p2, · · · , pn), where pi ∈ GF∗(q). We use “player i” or
pi interchangeably in this paper. Let E/GF(q) be an additive
group based on a properly preselected elliptic curve E, and
T be a point in E/GF(q). The cardinality of E/GF(q)
is a prime number or has a large prime factor for the
cryptographical purpose. We use p to denote this prime
hereafter.

In this paper, we assume that point multiplication (a
point multiplied by a scalar in GF∗(q)) and point addition
are performed in G, all other arithmetic operations are
performed in finite field GF(q) unless otherwise specified.
To evaluate Q(x)T , we first evaluate Q(x) using field
arithmetic operations in GF(q), then we take modular p
to the result of Q(x), and (Q(x) mod p) is the point
multiplication scalar on point T to get the result point in
G. Note that the bit length of Q(x) is normally longer than
that of p. We also assume that there is another point T ′ in G
whose discrete logarithm with respect to T is not known to
any of these n players. ECDKG consists of four algorithms:
the key distribution algorithm (KD), the key verification
algorithm (KV), the key check algorithm (KC) and the key
generation algorithm (KG). The protocol at p i is given next.

Protocol 1: ECDKG(pi, τ, Q = {p1, p2, · · · , pn})
Given: τ , timeout value; Q, a set of non-disqualified

members. Execute:
set Qi = Q
KD(pi, t, T)
KV(pi, t, T)
while(1) {

if(timeout with τ) {
KG(pi, Qi); exit
}

KC(pi, t, Qi)
} �
Algorithm 1: KD(i, t, T)
1) Initialization: pick (2t + 2) random numbers uni-

formly, aik ∈ GF(q) and bik ∈ GF(q) (0 ≤ k ≤ t), as
polynomial coefficients to generate two polynomials
of degree t as follows:

fi(z) =
t∑

k=0

aikzk f ′
i(z) =

t∑
k=0

bikzk

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:43:57 UTC from IEEE Xplore. Restrictions apply.

• compute sij = fi(pj) mod p, and s′ij = f ′
i(pj)

mod p (j ∈ Si).
• compute (t + 1) public values: Pik = (aikT) ⊕

(bikT ′) (0 ≤ k ≤ t).

2) Dissemination of private information: sends a message
containing sij and s′ij to pj using the private channel
between pi and pj (j ∈ Si).

3) Dissemination of public information: broadcasts a
message containing {Pik|0 ≤ k ≤ t}. �

Algorithm 2: KV(i, t, T)
Receive sji and s′ji sent by pj (j ∈ Si), then for j ∈ Si,

do the following:

1) verify

(sjiT) ⊕ (s′jiT
′) =

t∑⊕

k=0

(
pi

kPjk

)
(1)

2) broadcast a complaint against pj , if (1) fails for pj .
3) broadcast sij and s′ij that satisfy (1), if pi receives a

complaint to him from pj . �
Algorithm 3: KC(i, t, Qi)
Update share si: pj is removed from Qi and update si =∑
j∈Qi

sji,
if one of the following two conditions holds:

1) received t + 1 or more distinct complaints against pj .
2) received a re-broadcasted sji and s′ji, but the received

sji and s′ji still falsifies (1). �
Algorithm 4: KG(i, Qi)
Generate public key:

1) computes Ai0 = ai0T and broadcasts Ai0.
2) receives Aj0 (j ∈ Qi) and compute public key as

yi =
∑⊕
j∈Qi

Aj0. �
Remarks: 1) Since at pj ,

sji =

(
t∑

k=0

pk
i ajk

)
s′ji =

(
t∑

k=0

pk
i bjk

)

Equation (1) should hold at pi for j ∈ Si. This explains
the necessity of Step 2 of Algorithm 2 if (1) is violated.
2) When t + 1 or more complaints received against one
player, the contribution of secret from that player is a
public knowledge by Lagrangian interpolation. Therefore,
it is necessary to exclude pj in Step 1 in Algorithm 3. 3) A
timeout mechanism is used in ECDKG to countermeasure
the GJKR attack and the halting adversary. ECDKG does
not require a strong synchronization since the timeout value
can absorb the clock drifts among players, i.e. adjusting
τ ′ = τ + dmax, where dmax is the maximum clock drift
among these n players and τ ′ is the adjusted timeout
value. In fact, in practice, DKG implicitly requires a similar
timeout mechanism for public key extraction and against
the halting adversary. 4) Although ECDKG is essentially
a two-round protocol, the actual duration of the second

round is much smaller than that of the first round. By
noticing that the key generation is usually run once at
the initialization stage of an application, it should not be
considered as an issue. This timeout value should be set
equal to half of the longest roundtrip time between any
two players. This value is proven to be sufficient as shown
in the proof of Proposition 5. 5) T ′ can be pre-computed
in a distributed fashion based on the standard DKG with
all the n players involved. A simple scheme is given as
follows: i) all players run DKG to generate a uniform
random number r ∈ GF(q) and no single player knows r
and each has a shared piece of it. ii) each player broadcasts
a point with its shared piece multiplied to point T , and set
T ′ = (r1T) ⊕ (r2T) ⊕ · · · ⊕ (rnT). No single player in
this simple scheme knows the discrete logarithm of T ′ with
respect to T . This point is pre-computed. 6) The information
dissemination order is private information first followed by
the public information. 7) The secrecy of ECDKG partially
depends on the intractability of ECDLP. If ECDLP can be
solved efficiently, the problem to find the shared secret of
ECDKG can be solved efficiently; however, the inverse does
not hold in general. The following propositions hold for
ECDKG.

Proposition 1: Uniqueness of Q: When the protocol
ECDKG terminates, the set of non-disqualified players is
the same across all uncorrupted players if the number of
corrupted players is less than t + 1 for n ≥ 3t + 1.

Proof: We prove that any two players pi and pj have
the same set. The proof proceeds as follows: we first show
that Qi ⊂ Qj and then by symmetry, Qj ⊂ Qi, we conclude
that Qi = Qj for any two uncorrupted players p i and pj .

Let pu ⊂ Qi, since pk passed the KV algorithm, i.e. there
are at most t complaints against it and all his complaints (if
any) are correctly resolved, we have,

(suiT) ⊕ (s′uiT
′) =

t∑⊕

k=0

(
pi

kPuk

)
Since pu’s public information has been sent to pi, pu’s
private information is already available to p i when pi

receives the public information. By the MBS, the same
public information should also be available to p j by this
time. By the MOS, the private information suj and s′uj

should be already available to pj at this time. After the
KD algorithm, all messages are broadcast messages. If pi

receives them, so does pj . If pu is uncorrupted, suj and s′uj

are correct at pj , then,

(sujT) ⊕ (s′ujT ′) =
t∑⊕

k=0

(
pj

kPuk

)
This means that pu will pass the KV algorithm.

If there are at most t corrupted players, the number of
complaints against pj is at most t. Therefore, pu will pass

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:43:57 UTC from IEEE Xplore. Restrictions apply.

Step 1 of the KC algorithm. Since pu is always able to re-
broadcast suk and s′uk to any complaining player (corrupted
or not) pk, all uncorrupted players will include pu in their
respective non-disqualified set. Therefore, pu will pass Step
2 of the KC algorithm. Since n ≥ 3t + 1, the protocol exits
with nonempty non-disqualified set of size at least t + 1.
So, Qi ⊂ Qj . This completes the proof by noticing the
symmetry
Now that all non-disqualified sets are the same, we denote
this unique set by Q hereafter.

Proposition 2: The public keys generated by all players
in Q are the same.
This follows directly from Proposition 1. Hereafter, we
denote by y this common public key.

Proposition 3: Threshold secret sharing: if t + 1 players
of Q collaborate, the secret corresponding to y can be
revealed. However, no secret can be revealed if less than
t + 1 players collaborate.

Proof: Without loss of generality, assume that there
are n players in Q (n ≥ t + 1), and we consider the first
t + 1 players (p1, p2, · · · , pt+1). We consider the following
polynomial:

F (z) =

∑

k∈Q

ak0

+

∑

k∈Q

ak1

 z + · · ·+

∑

k∈Q

akt

 zt

where the coefficients are unknown. There are available
shares si (1 ≤ i ≤ t + 1).

Based on the construction of si in ECDKG, we have
si = F (pi) (1 ≤ i ≤ t+1). By Lagrangian interpolation, we
can uniquely compute all the coefficients of F (z), therefore
F (0). By noticing that y = F (0)T , the shared secret is
revealed. When less than t players collaborate, in order
to use the Lagrangian interpolation, one has to solve the
ECDLP in order to recover at least one secret share from
public information.

Proposition 4: ECDKG is immune to the GJKR attack.
Proof: Denote the time to execute the KG algorithm

in ECDKG by t0. When t < t0, Ai0 is hidden inside Pi0

(i ∈ Q). This is due to the fact that the discrete logarithm
of T ′ is unknown, and ai0 and bi0 are unknown. Therefore
GJKR attack can not bias the public key distribution before
timeout.

When t ≥ t0, Ai0 and Q are public knowledge. However,
secret shares correspond to y are already decided. First,
generation of public key simply collects those A i0 in Q.
Second, any bias on y will render it useless.

Proposition 5: Protocol soundness: when there are less
than t + 1 corrupted players, ECDKG will terminate in a
uniformly bounded time. In particular, this duration is less
than 4τ + δ, where τ equals half of the longest roundtrip
time between any two players and δ > 0.

Proof: At the beginning of Step 2 of the KV algorithm,
one τ is required for all public and private information to

be delivered. There is a 2τ duration needed for complaints
to be sent and satisfied. Therefore, the timeout value can be
set at 3τ + δ for some margin δ > 0. In the end, one more
τ is needed for the generation of the public key.

If there are more than t corrupted players, they can decide
at will to allow or disallow any player to be included in Q.
This can be done via controlling the complaints in Step 2
of the KV algorithm.

Proposition 6: In ECDKG, when the number of cor-
rupted players is less than t + 1 and n ≥ 3t + 1, corrupted
players can only complain against each other.

Proof: Without loss of generality, assume that
p1, p2, · · · , pt are the corrupted players under control of
some adversary and the rest are the honest players.

If pi (1 ≤ i ≤ t) complains against pj for some j > t,
there are two cases to consider: 1) pj can correctly convince
all uncorrupted players by revealing its private information
as done in Step 3 in the KV algorithm; 2) there are at most
t complaints against pj , so pj can pass Step 2 in the KV
algorithm. Therefore, any complaint from the first t players
can not affect any uncorrupted player. When n ≥ 3t + 1,
ECDKG will succeed since the cardinality of Q is always
greater than t during the course of the protocol execution.

Proposition 7: Secrecy of ECDKG: ECDKG enables
(n, t, t + 1) threshold secret sharing.
Remarks on Proposition 7: In order to show the secrecy,
an oracle uses a simulator and proves that a transcript
can be produced with knowledge of only public available
information, and this transcript is indistinguishable from that
produced by the protocol. The actual proof is omitted here
and it is similar to that of DKG in [3] with an exception on
that the discrete logarithm is based on the additive group G
instead of GF(q).

IV. IMPLEMENTATION RESULTS

In general, ECC has advantages over other cryptosystems,
but the choice of parameters including the curve used could
significantly affect the overall performance. ABC curves
(i.e. Koblitz curves) are used in our implementation. For
the use of ABC curves, the order of the group always has
a large prime factor. The use of ABC curves makes our
protocol suitable for applications in networks with resource
constrained devices. This type of curves has this form:
y2 + xy = x3 + ax2 + 1, where a ∈ GF(2). The curve is
represented by a quintuple [1, a, 0, 0, 1] in PARI/GP. The do-
main parameters related to ECDKG are given as follows: 1)
threshold value t and one field element for the coefficient a
corresponding to a unique quintuple. 2) field representation
type, for polynomial basis, the irreducible polynomial and
the coefficients of it are required; for normal basis, which is
most efficient for raising the unique identification number
pi to a power less than (t + 1), the base element θ of the

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:43:57 UTC from IEEE Xplore. Restrictions apply.

basis is needed. 3) point representation, point compression
type, coordinate system type and the selected point whose
order must have a large prime factor p (p > 2160) which is
almost guaranteed in the case of ABC curves. 4) cofactor h
which can be either 2 or 4 since m has to be a prime, and
h multiplied by p gives the number of points in the group
E/GF(2m).

We first itemize overhead of ECDKG including computa-
tion and communication. Table I shows the communication
cost where U(t) = t log2(t). Each cell in Tab. I consists of
two expressions in (x, y) format where x is the arithmetic
cost on G – the elliptic curve main subgroup, and y is the
arithmetic cost on GF(q). Table II shows the number of
messages involved in each algorithm, and the transmission
column consists of two expressions in (x, y) format where
x is the transmission cost in private channel and y is that
in broadcast channel. Note that in Tab. I, the evaluation of

TABLE I

WORST-CASE COMPUTATION COST OF ECDKG

Multiplication Addition
KD (2t + 2, 2nU(t + 1) (t + 1, 2nt)
KV (n(t + 3), nU(t + 1) (n − 1)(t + 1), 0)
KC (2t, 0) (t, n − 1)
KG (1, 0) (n − 1, 0)

an exponent in GF(q) uses repeated squaring and that of
point multiplication in G uses τ -adic Non-Adjacent Form
which makes point doubling almost ‘free’ and converts point
multiplication operation to a few point addition operations.

TABLE II

WORST-CASE COMMUNICATION COST OF ECDKG

Reception Transmission Adversary
KD 0 (n − 1, 1) all (n > t)
KV n − 1 (0, t + 1) all (n > t)
KC t(n − 2t − 1) + t (0, 0) static (n > 3t)
KG n − 1 (0, 1) all (n > t)

Note that in Tab. II for the reception overhead in the KC
algorithm, although the KC algorithm is included in a loop,
the number of received messages must be upper bounded
by the total number of messages actually transmitted. The
worst-case memory requirements are given as follows: For
the KD algorithm, this is 2(t+1) log2(p)+C, where C is the
worst-case memory requirement for performing individual
point multiplication. For the KV algorithm, the worst-case
memory requirement is (2n+t+1) log2(p)+C. For the KC
algorithm, the static malicious adversary yields the worst-
case memory requirement which is (n−1) log2(p)+C. The
memory requirement for the KG algorithm is a constant.

We used Intel PXA 255 200 MHz processor as the plat-
form running PARI/GP to simulate the protocol. Table III
shows the key generation times for 5 players under varying
key sizes and message roundtrip times where “RT-x” is for

the roundtrip time at x ms and “K-x” is for the NIST ABC
curves [1] in the field GF(2x). Table IV shows the key
generation times for 10 players under varying key sizes and
message roundtrip times. In both cases, the threshold is set
at 3.

TABLE III

KEY GENERATION TIMING (N = 5, T = 3)

log2(p) Curve RT-10 RT-100 RT-500
K-163 163 [1, 1, 0, 0, 1] 90 ms 279 ms 1.079 s
K-233 232 [1, 0, 0, 0, 1] 204 ms 384 ms 1.184 s
K-283 281 [1, 0, 0, 0, 1] 292 ms 472 ms 1.272 s

TABLE IV

KEY GENERATION TIMING (N = 10, T = 3)

log2(p) Curve RT-10 RT-100 RT-500
K-163 163 [1, 1, 0, 0, 1] 163 ms 343 ms 1.143 s
K-233 232 [1, 0, 0, 0, 1] 356 ms 535 ms 1.336 s
K-283 281 [1, 0, 0, 0, 1] 516 ms 696 ms 1.496 s

In above tables, the costs of field additions in GF(q) and
the point additions in G are negligible, and the computation
cost is dominated by the field multiplication in GF(q). The
point multiplication is efficiently performed using the τ -adic
non-adjacent form. This makes the computation of ECDKG
much more efficient compared to distributed key generation
based on DLP or IFP which takes time in the range of
seconds to generate a key on Intel PXA 255 200 MHz.

V. CONCLUSION

In this paper, we proposed the elliptic curve distributed
key generation protocol. It is well suited for secure appli-
cations with resource constraints and provides high level of
secrecy with efficiency and small key size.

REFERENCES

[1] ANSI X9.62, Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Key Agreement and Key Transport
Protocols.

[2] P. Feldman, “A Practical Scheme for Non-Interactive Verifiable Secret
Sharing”, Proc. 28th IEEE FOCS, 1987.

[3] R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, “Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems”, Proceeding
Eurocrpt, 1999.

[4] M.-D. Huang, K. L. Kueh, and K. Tan, “Lifting Elliptic Curves and
Solving the Elliptic Curve Discrete Logarithm Problem”, Lecture
Notes in Computer Science 1838, pp. 377-384.

[5] N. Koblitz, “The State of Elliptic Curve Cryptography,” Designs,
Codes and Cryptography, 19, 173-193(2000), Kluwer Academic
Publishers, Boston.

[6] T. Pedersen, “A Threshold Cryptosystem Without a trusted Party”,
Advances in Cryptology – Eurocrypt ’91. LNCS 547, Springer-Verlag.

[7] T. Pedersen, “Non-Interactive and Information-Theoretic Secure Ver-
ifiable Secret Sharing”, Advances in Cryptology – Crypto’91, LNCS
576, Springer-Verlag.

[8] A. Shamir, “How to Share a Secret”, Communications of the ACM,
Vol. 22, No. 11, Nov. 1979.

[9] C. P. Schnorr, “Efficient Signature Generation by Smart Cards”,
Journal of Cryptology, Vol. 4, pp. 161-174, 1991.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:43:57 UTC from IEEE Xplore. Restrictions apply.

