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Abstract— Next generation wireless systems will be required to
support heterogeneous services with different transmission rates
that include real time multimedia transmissions, as well as non-
real time data transmissions. In order to provide flexible trans-
mission rates to each terminal, efficient use of system resources
requires transmission rate control in addition to power control. In
this paper, we present an algorithm for joint transmission rate
and power control based on a non-cooperative game theoretic
approach. A new utility function that includes pricing is defined
for joint transmission rate and power control, and a detailed
analysis of the existence and uniqueness of Nash equilibrium for
the non-cooperative joint transmission rate and power control
game with pricing is presented. Numerical results obtained from
simulations that compare the proposed algorithm with alternative
algorithms on joint rate and power control are also presented in
the paper.

I. INTRODUCTION

The increasing demand for data services in current and fu-
ture generation wireless communication systems has generated
the need for more efficient use of radio resources. We note
that emerging data services and Internet access in cellular
phones has resulted in new algorithms for power control
for information sources other than the voice services, since
transmitting speech signals through wireless links is different
from transmitting wireless data [5]. In wireless data services
the principal purpose of power control is to provide each signal
with adequate quality without causing unnecessary interfer-
ence to other signals. In addition, efficient power control helps
to minimize the battery drain in mobile and portable terminals.
Recent results on the power control algorithms for wireless
data can be found in [1]–[3], [5], [7], [9].

Next generation wireless systems will include heteroge-
neous services such as real time multimedia transmissions, as
well as non-real time data transmissions. In order to provide
flexible transmission rates to each terminal, efficient use of
system resources in this case requires transmission rate control
in addition to power control, and this has resulted in the
need for joint rate and power control in wireless systems. We
note that very little work has been done in this field, and
related work can be found in [4], [8]. In [4], joint rate and
power control is approched from a game-theoretic perspective,
and modeled as two different games. One disadvantage of
the algorithm in [4] is that all terminals must first find the
rate of transmission and then apply power control to allocate
the powers. An alternative algorithm for joint rate and power

control based on game theory is the one proposed in [8]. We
note that this does not consider the concepts of pricing, and in
this case the terminal closer to the base station achieves higher
rates at lower powers, while terminals farther away from the
base station transmit at full power with very low rates. We also
note that when no pricing is included, each terminal maximizes
its corresponding utility by adjusting rate and power, without
taking into account the potential harmful effect (amount of
interference) it has on other users in the system.

An effective way to deal with harmful effects in non-
cooperative environments is to introduce pricing to control
the overall satisfaction experienced by users in the system, as
shown by their corresponding utility functions. In this paper,
we introduce a new utility function for joint rate and power
control in wireless systems. We formulate the problem as
a non-cooperative game in terms of intrinsic properties of
the channel (SIR and power), and we decouple it from the
lower layer decisions such as modulation and coding. We
introduce also the concept of pricing and require the users to
maximize net utilities, that is utility minus pricing. We show
that there exists a Nash equilibrium in the non-cooperative
joint rate and power control game with pricing, and we also
show by simulation that this equilibrium is superior to that
of the joint rate and power control game without pricing.
We propose a joint rate and power control algorithm which
finds an optimal rate of transmission and allocates the power
required to transmit by solving a single game theory problem.

The paper is organized as follows: in Section 2 we describe
the system model and introduce the new utility function.
In Section 3 we present the formulation of joint rate and
power control as a non-cooperative game. In Section 4 we
introduce pricing, and investigate existence and uniqueness of
Nash equilibrium in the non-cooperative game with pricing.
Simulation setup and numerical results are presented Section
5, followed by final conclusions and future work in Section 6.

II. SYSTEM MODEL AND UTILITY FUNCTION

We consider a single-cell of a CDMA wireless communica-
tion system with N mobile terminals (users) transmitting data
to the same base station, in which the SIR corresponding to a
given user j is expressed as [5]

γj =
W

rj

hjpj∑N
k=1,j �=k hkpk + σ2

j = 1, 2, ..., N (1)
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where W is the available spread-spectrum bandwidth (in [Hz]),
σ2 is the Additive White Gaussian Noise (AWGN) power
spectral density at the receiver, hj is the path gain of user j to
the base station, and rj , respectively pj , are the transmission
rate, respectively power, of user j. This expression assumes
that users in the CDMA system are assigned pseudorandom
noise (PN) sequences, and that conventional matched filter
detectors are used at the receiver [5].

The objective of each user is to optimize its transmis-
sion rate and power in a distributed manner, such that its
corresponding utility is maximized. The concept of utility
functions originates in microeconomics, and refers to the level
of satisfaction a decision maker receives as a result of its
actions. Different utility functions have been considered for
wireless communication systems [3], [5]. The utility function
considered in [5] depends on the modulation technique, cod-
ing, and packet size. The utility function considered in [3] does
not include the lower layer characterstics such as modulation
technique and coding. In general, utility functions used in
power control must satisfy two main properties [5]: 1) For
fixed transmit powers, the utility increases with the increase
in the SIR of the terminal, and 2) For fixed SIRs, the utility
decreases as the transmitted power increases. In addition, for
rate control the utility function must also satisfy: a) For fixed
transmission rates, the utility increases with the increase in the
SIR of the terminal, and b) For fixed SIRs, the utility increases
as the rate increases. All these observations have prompted us
to consider the following utility function in our game theoretic
approach to joint rate and power control

uj =
rj ln(Kγj)

pj
[bits/sec/Watt] (2)

where K is a constant that determines the quality of service
requirements. The utility function uj of user j, can be regarded
as the ratio of throughput, Tj , to the transmitted power, pj ,
with Tj = rjf(γj) and f(γj) the frame success rate of user
j. Here we consider the frame success rate as a logarithmic
function of the SIR f(γj) = ln(Kγj), which implies that the
value of K is

K =
ef(γj)

γj
(3)

Therefore the general expression of the considered utility
function is

u =
r ln(Kγ)

p
[bits/Joule] (4)

We note that the utility is not defined when transmit power
pj = 0, and we impose a lower bound p̂ on all user transmit
powers, that is pj ≥ p̂, which is the minimum power level for
transmission for all users in the system.

III. FORMULATION OF A NON-COOPERATIVE GAME

Let G = [N , {Pj , Rj}, {uj(·)}] denote the non-cooperative
rate and power control game (NRPG), where N =
{1, 2, ..., N} is the index set for the active mobile users in
the cell, Pj is the strategy set of user powers, Rj is the
strategy set of user rates, and uj(·) is the utility function.

Each user selects a rate rj ∈ Rj and a power pj ∈ Pj .
Let the rate vector r = (r1, r2, ..., rN )T ∈ RN

j (RN
j =

Rj ×Rj × ...×Rj), power vector p = (p1, p2, ..., pN )T ∈ PN
j

(PN
j = Pj ×Pj × ...×Pj) (where T represents the transpose

operator) denote the outcome of the game in terms of selected
rate and power levels of all the users. The resulting utility
of user j obtained by expending pj is given in equation
(2). Here we assume that the strategy spaces Rj and Pj of
each user are compact and convex sets with maximum and
minimum constraints. For user j we consider strategy spaces
Rj = [rj , rj ] and Pj = [pj , pj ] which are closed intervals, the
smallest power pj ≥ p̂.

In a distributed rate and power control game, each user
adjusts rate rj and power pj in order to maximize the utility
uj . Formally, the NRPG is expressed as

max
rj∈Rj ,pj∈Pj

uj(r, p), for allj ∈ N (5)

where uj is given in (2) and Rj = [rj , rj ] and Pj = [pj , pj ]
are the strategy spaces of user j. The optimization problem for
user j is to find a transmission rate r̃j from the strategy space
Rj , that maximizes the utility function uj . The maximum rate
occurs at a point for which the partial derivative of uj with
respect to rj is zero (∂uj/∂rj = 0). We obtain the condition
for maximizing the transmission rate

ln(Kγj) − 1 = 0 (6)

For power allocation, the optimization problem for user j
is to find the power level p̃j from the strategy space Pj , that
maximizes the utility function uj (∂uj/∂pj = 0), which leads
to the same condition for maximizing utility as in equation (6).
Thus, we note that maximum utility occurs under the same
condition for both rate and power control.

The condition for optimum rate and power control can be
used to obtain the value of the constant K. By rearranging
equation (6), the value of K is obtained

K =
e

γ̃
(7)

where γ̃ is the target SIR, which can be assumed to be
transmitted to each user by the base station. We note that the
value of K in (7) is obtained when there are no errors in the
transmission. However, this is not guaranteed in real systems,
and a more practical way of finding the value of K is to equate
ln(Kγ) to the probability of correct reception (Pc)

ln(Kγ̃) = Pc =⇒ K =
ePc

γ̃
(8)

From equation (8), we note that the value of the target SIR
γ̃ can be determined by the value of K in

γ̃ =
ePc

K
(9)

The advantage of this procedure is that the target SIR can
be determined by adjusting the value of K, a feature which is
not present in previous related work [3], [5], [8]. Numerical
simulations performed show that by changing the value of K
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users can attain a different equilibrium SIR. We note that the
base station can compute the value of K (depending on the
number of active mobile users in the cell, probability of correct
reception, all the practical considerations) and transmits it to
the mobile users. Thus, the mobile users will employ the joint
rate and power control game to achieve the QoS requirements.

The Nash equilibrium is the solution for non-cooperative
game theoretic problems. A Nash equilibrium in trans-
mission rates exists and is unique in the game G =
[N , {Pj , Rj}, {uj(·)}], for all j = 1, 2, ..., N . A Nash equi-
librium in transmit powers for the same game G also exists
and is unique. We omit the proofs due to space restrictions.

IV. NON-COOPERATIVE RATE AND POWER CONTROL

GAME WITH PRICING

In non-cooperative rate and power control, each terminal
maximizes its own utility by adjusting its rate and power, but
it ignores the harm (amount of interference) it imposes on
the other users. Pricing is an effective tool used to deal with
these harmful effects. An efficient pricing mechanism makes
the decentralized decisions compatible with the overall system
efficiency by encouraging efficient sharing of the resources
as opposed to the aggressive competition of the pure non-
cooperative games.

We define a non-cooperative game with pricing in which
the price is proportional to the rate of the terminal. Let Gp =
[N , {Rj , Pj}, {up

j (·)}] denote the non-cooperative rate and
power control game with rate pricing (NRPGP), where N =
{1, 2..., N} is the index set for the active mobile users in the
cell, Rj is the rate strategy set, and up

j (·) is the utility function.
The utilities for the NRPGP are

up
j (r,p) = uj(r,p) − cj(rj) (10)

where cj : R → �+ is the pricing function of terminal j ∈ N .
We impose a linear pricing scheme in which the price increases
monotonically with the rate of user j.

cj(rj) = crj

The pricing factor c should be tuned such that each user’s
self interest leads to overall improvement of the system. The
NRPGP with linear pricing is considered as:

NRPGP max
rj∈Rj ,pj∈Pj

up
j (r, p) = uj(r,p) − crj ,∀j ∈ N (11)

To derive an algorithm for the NRPGP game we adopt a rate
and power control algorithm in which each terminal maximizes
its net utility (up

j (r,p) = up
j ). This can be achieved at a point

for which the partial derivative of up
j with respect to rj is

equal to zero.

∂up
j

∂rj
=

1
pj

[−1 + ln(Kγj)] − c = 0 (12)

Rearranging (12), the condition for maximizing utility with
rate pricing becomes

ln(Kγj) − 1 − cpj = 0 (13)

For power allocation, the optimization problem for user j
is to find the power level p̃j from the strategy space Pj , that

maximizes the utility function uj (
∂up

j

∂pj
= 0). We have

∂up
j

∂pj
= rj

[
pj

1
Kγj

Kγ′
j − ln(Kγj)

p2
j

]
(14)

By rearranging (14), the condition for maximizing the utility
becomes ln(Kγj) − 1 = 0, which is same as (6).

Definition 1: A rate vector r = (r1, ..., rN ) is a Nash
equilibrium of the NRPGP Gp = [N , {Pj , Rj}, {up

j}] if, for
every j ∈ N , uj(rj , r−j) ≥ uj(r′j , r−j) for all r′j ∈ Rj .

Theorem 1 (Existence): A Nash equilibrium in the transmis-
sion rates exists in the game Gp = [N , {Pj , Rj}, {up

j (·)}] if,
for all j = 1, 2..., N :

1) Rj is a nonempty, convex, and compact subset of some
Euclidean space �N .

2) uj(r) is continuous in r and quasi-concave in rj .
Proof: We assumed that each user has a strategy space that is
defined by the maximum and minimum rates, and all the rates
in between. So the first condition on the strategy space Pj is
satisfied.

To show that a function is quasi-concave it is sufficient to
show that it is concave, and we use the second derivative test
for this.

∂up
j

∂rj
=

1
pj

[
rj

1
Kγj

Kγ′
j + ln(Kγj)

]
− c

=
1
pj

[−1 + ln(Kγj)] − c

(15)

∂2up
j

∂r2
j

=
1
pj

∂γj/∂rj

γj
= − 1

pjrj
(16)

From (16), note that ∂2up
j/∂r2

j < 0, ∀j ∈ N , which means
that uj is a concave function of rj . Therefore, this guarantees
the existence of a Nash equilibrium. �

Next we prove the uniqueness of the Nash equilibrium point
of the game Gp by proposing the best response of user j in
game Gp similar to proposition 1.

Proposition 1: For a game Gp = [N , {Rj , Pj}, {up
j}], the

best response of user j, given the transmission rates vector of
other users rj is given by: ρj(rj) = min(r̃j , r),∀j ∈ N , where
r is the maximum rate of transmission of user j’s strategy
space Rj .

Proof: Let ρj(r−j) be the best response function of the jth

user as a best strategy that the user j can take to attain the
maximum utility given the other users’ strategy r−j . Formally,
terminal j’s best response ρj : R−j → Rj is the mapping that
assigns to each r−j ∈ R−j the set

ρj(r−j) = {rj ∈ Rj : uj(rj , r−j) ≥ uj(r′j , r−j),∀r′j ∈ Rj}
(17)

where this is a set containing only one point. Therefore r̃j is
the unconstrained maximum of the utility function uj .

r̃j = arg max
rj∈�+

up
j (18)
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In addition, as seen from (16), ∂2up
j/∂r2

j < 0, ∀rj ∈ �+,
which implies that the maximum is unique.

When r̃j is not feasible, each user j will transmit at the
maximum rate r since the target function is increasing on the
set {rj : rj < r̃j}. This implies that rj = r is the best response
of user j. �

Theorem 2 (Uniqueness): The Nash equilibrium of the joint
rate and power control game with pricing is unique.

Proof: By Theorem 1, we know that there exists an equi-
librium. Let r̃ denote the Nash equilibrium. By definition,
the Nash equilibrium has to satisfy r̃ = ρ(r) where ρ(r) =
(ρ1(r), ρ2(r), ...ρn(r)) is the best response vector of all users.
The key aspect of uniqueness is to show that the best response
function ρ(r) is standard. A function is said to be standard if
it satisfies the following properties:

• positivity: ρ(r) > 0
• monotonicity: if r ≥ r′ then ρ(r) ≥ ρ(r′)
• scalability: for all µ > 1, µρ(r) > ρ(µr)

These properties can be easily verified for ρ(r). It is shown
in [6] that the fixed point r̃ = ρ(r) is unique for a standard
function. Therefore, the Nash equilibrium is unique. �

Definition 2: A power vector p = (p1, ..., pn) is a Nash
equilibrium of the NRPGP Gp = [N , {Pj , Rj}, {up

j (·)}] if,
for every j ∈ N , uj(pj , p−j) ≥ uj(p′j , p−j) for all p′j ∈ Pj .

Theorem 3: A Nash equilibrium in the transmit powers
exists in the game Gp = [N , {Pj , Rj}, {up

j (·)}] if, for all
j = 1, 2, ..., N :

1) Pj is a nonempty, convex, and compact subset of some
Euclidean space �N .

2) uj(p) is continuous in p and quasi-concave in pj .
We assumed that each user has a strategy space that is defined
by the maximum and minimum powers, and all the power
values in between. As a consequence, the first condition on
the strategy space Pj is satisfied.

∂2up
j

∂p2
j

= rj
ln(Kγj) − 1

p3
j

(19)

We know that the probability of correct reception is always
less than or equal to 1 (Pc ≤ 1 ⇒ log(Kγ) ≤ 1). By using
this condition in the above equation (19), we conclude that
∂2up

j/∂p2
j ≤ 0, which implies that uj is a quasi-concave

function of pj optimized on the convex set Pj . This proves
condition 2, and guarantees existence of a Nash equilibrium.
�

Proposition 2: For a game Gp = [N , {Pj , Rj}, {up
j}], the

best response of user j, given the power vector of other users
p−j is given by: νj(p−j) = min(p̃j , p),∀j ∈ N , where p is
the maximum transmit power of user j’s strategy space Pj ,
and p̃j is the unconstrained maximum of the utility function
uj .

p̃j = arg max
pj∈�+

up
j (20)

In addition, ∂2up
j/∂p2

j < 0, ∀pj ∈ �+, which implies that
this maximum is unique. This can be proved in a similar
manner shown in proposition 1 and Theorem 2 since the

best response vector ν(p) = (ν1(p), ν2(p), ..., ν2(p)) is also
a standard function. Therefore, there exists a unique Nash
equilibrium point. �

We now present an asynchronous rate and power control
algorithm which converges to the unique Nash equilibrium
point (r̃, p̃) of game Gp. Assume that the user j updates its
transmission rates and powers at time instances in the set Tj =
{tj1, tj2....}, with tjk < tjk+1, tj0 = 0. Let ε be a small
number (e.g. 10−7). Generate a sequence of rates and powers
as follows

Algorithm: Consider the non-cooperative rate and power
control game (NRPGP) as given in (11). Generate a sequence
of rate and powers as follows

1) Set the initial power vector at time t = 0 equal to any
random vector p.

2) For all j ∈ N , such that tk ∈ Tj

a) Compute r̃j = arg maxrj∈Rj
up

j (r, p). Then set
the transmission rate: rj(tk) = min (r̃j , r).

b) Given the prior power p(tk−1), compute p̃j =
arg maxpj∈Pj

up
j (r, p). Then set the transmit

power: pj(tk) = min (p̃j , p).
3) If ‖p(tk), p(tk−1)‖ ≤ ε, STOP and declare the Nash

equilibrium as p(tk). Else, k = k + 1 and go to step 2.

V. SIMULATION SETUP AND NUMERICAL RESULTS

We demonstrate the improvement in the performance ob-
tained as a result of the NRPGP algorithm on a single
cell CDMA system. We compare the results with those
obtained using the NRPG mentioned in Section 3, and
with the rate and power control algorithm described in
[8]. As in [8], the users are considered at distances d =
[50, 100, 150, 200, 250, 300, 350, 400, 450, 450, 500] m from
the base station, and are assumed to be stationary. There is
no forward error correction, and the propagation model is
hj = c/d4

j , where dj is the distance between user j and
the base station and c = 0.097. The system parameters are
considered as follows:

• Spread spectrum bandwidth W = 3.84 × 106 Hz (chip
rate).

• AWGN power at the receiver σ2 = 10−15 W/Hz.
• Maximum power of each user p = 0.2 Watts.
• Minimum power of each user p = p̂ = 10−4 Watts, .
• Maximum rate of transmission for each user r = 96 kbps.
• Minimum rate of transmission for each user r = 0 kbps.

We considered the target SIR as 12.42 (equal to the equilib-
rium SIR obtained by the algorithm in [5]) and then calculate
the value of the constant ’K’ using equation (7). The value of
K = 0.21886. We considered the coefficient of pricing to be
a small value (c = 5).

The equilibrium powers, rates, and SIRs for all the users
are presented in Figure 1. We note that the users closer the
base station transmits with higher rates and lower powers than
the users farther from the base station. We also note that,
while the equilibrium transmission rates and powers are the
same as in NRPG and in the algorithm in [8], there is a
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Fig. 1. Numerical results obtained from simulations.

considerable decrease in the powers of all the users under
NRPGP while the transmission rates remain the same. In
addition the total satisfaction experienced by user (as seen
in their corresponding utility functions) increases significantly
when using the NRPGP when compared with the NRPG as
seen in the utility plot in Figure 1.

VI. CONCLUSION

In this paper we applied game theoretic concepts to model
the problem of joint transmission rate and power control. A
new utility function, defined as the ratio of throughput to
the transmit power was developed. The maximization of the
utility function results in optimal transmission rate and power.
We introduced the concept of pricing the users according to
their transmission rates. A distributed joint rate and power
control algorithm was developed, which was based on users
maximizing their own net utilities which is the difference of
the utility function and the pricing function, to calculate its
transmission rate and power. The non-cooperative joint rate
and power control algorithm with pricing was shown to give
the same equilibrium rates and SIRs as the algorithm in [8],
but with a significant decrease in the powers of each user.
It was also shown that there is a significant increase in the
utilities of all users because of pricing.
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