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Abstract

In this paper we present a game theoretic approach to
solve the static load balancing preblem in o distributed
system which consists of heterogeneous computers con-
nected by a single channel communication network., We
use a cooperative game to model the load balancing
prablem. Our solution is based on the Nash Burgaining
Solution {NBS) which provides o Pareto optimal solu-
tion for the distributed system and is also a fair solu-
tion. An algorithm for computing the NBS is derived
Jor the proposed cooperative load balancing game. Our
scheme is compared with that of other existing schemes
under simulations with various system loads and con-
Jigurations. We show that the solution of our scheme
15 near optimal and is superior to the other schemes in
terms of fairness.

1. Introduction

In this paper, we consider the static load balancing
problem for single class jobs in a distributed computer
system that consists of heterogeneous host computers
(nodes) interconnected by a single channel communi-
cation network. Load balancing is achieved by trans-
ferring some jobs from nodes that are heavily loaded to
those that are idle or lightly loaded. A communication
delay will be incurred as a result of sending a job to a
different computer for processing.

The load balancing problem is formulated as a co-
operative game among the computers and the commu-
nication subsyvstem and game theory offers a suitable
modeling framework [2]. The several decision makers
{e.g. computers and the communication subsystem) co-
operate in making decisions such that each of them will

14244-0054-6/06/820.00 ©2006 IEEE

operate at its optimum. Based on the Nash Bargaining
Solution (NBS) which provides a Pareto optimal and
fnir solution, we provide an algorithm for computing
the NBS for our cooperative load balancing game.

Past work on load balancing jobs considered opti-
mization of the entire system expected response time
[17. 7, 9. 16, 6] or applied game theory without taking
into account the communication subsystem [4, 3, 14].

The main goal of our load balancing scheme is to
provide fairness to all the jobs, Le. all the jobs should
experience the same expected response time indepen-
dent of the allocated computer. The fairness of al-
location is an important factor in modern distributed
systems and our scheme will be suitable for systems
in which the fair treatment of the users’ jobs is as im-
portant as other performance characteristics. We show
that our cooperative load balancing scheme not only
provides fairness but also provides a Pareto optimal
operating point for the entire system. We make sim-
ulations with various svstem loads and configurations
to evaluate the performance of our cooperative load
balancing scheme.,

2. Cooperative Game Theory Concepts

In this section, we summarize some concepts and
results from cooperative game theory which are used
in the sequel.

Definition 2.1 (A cooperative game) A coopera-
tive game consists of:

= N players;

o A nonempty, closed and conver set X € RY which
ts the set of strategies of the N players.
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o For each player i, i = 1,2,.... N, an objective
function f;. Each f; is a function from X to R
and it is bounded below, The goal is to minimize
simultaneously all f;{X).

o For each playeri, i =1,2,..., N, a minimal value
of fi, denoted uf, required by player @ without
any cooperation to enter the game. The vector
u’ = (uf ull,....u%) is called the initial agree-
fent point.

We are interested in finding solutions for the coop-
erative game defined above that are Pareto optimal.

Definition 2.2 (Pareto optimality) [11] The point
t € U is said to be Pareto optimal if for each v e U,
vt <u, thenv = u. Here U, ' € RY is the set of
achievable performances [18].

Definition 2.3 (The Nash Bargaining Solution
(NBS))[12, 13, 15] A mapping S : G = RV is said to
be a NBS if:

'.)il S{U, uﬂ] € Lr“;

i) S{U,u") is Pareto optimal;

and satisfies the fairness azioms [13]. Here G denotes
the set of achievable performoences with respect to the
initial agreement point [18].

Definition 2.4 (Bargaining point) [15/ u* & a
(Nash) bargaining point if it is given by S(U, u") and
f~'(u") is called the set of (Nash) bargaining solu-
tions.

The following characterization of the Nash bargain-
ing point forms the basis for the results in the sequel.

Theorem 2.1 (Nash bargaining point character-
ization) [15, 18] Consider the assumptions from the
above definitions and references therein., Let J denote
the set of players who are alfe to achieve a performance
strictly superior to their initial performance and let Xg
denote the set of strategies that enable the players to
achieve at least their initial performances. Let the vee-
tor function {f;},j € J be one-to-one on Xy. Then,
there exists a unigue bargaining point u* and the set
of the bargaining solutions £~'(u*) is determined ly
solving the following optimization problems:

(P):  min[[(sx)-u) xeXo (1)
x jed

(Py):  min) In(fylx)—uj) x€Xp (2)
Jcd

Then, (Py) and (P)) are eguivalent. (P)) is a convex
optimization problem and has a unique solution. The
unique solution of (P, ) is the barguining solution. O

3. System Model

We consider a distributed systern model with n
nodes (or computers) connected by a single channel
communication network as shown in Figure 1. The
computers and the communication network are as-
sumed to be product-form quening network models.

lﬂ-|

node | node 2 node n

Ii r.t: I

Commaurication Network
Figure 1. Distributed System Model

Terminology and Assumptions:

(i) ¢ denotes the external job arrival rate at node
i. The total external job arrival rate of the system is
denoted by & = 37| ¢;. (ii) The job processing rate
(load) at node i is denoted by J;. (iii) #y denotes the
job low rate from node 7 to node §. (iv) A job arriving
at node { may be either processed at node § or trans-
ferred to another node j through the communication
network. The decision of transferring a job does not
depend on the state of the system and hence is static
in nature. (v} A job transferred from node § to node j
receives its service at node j and is not transferved to
other nodes. Il a node ¢ sends (receives) jobs to (from)
node j, node j does not send (receive) jobs to (from)
node i.

(vi) The response time of a job in a system as above
consists of a node delay (queuing and processing de-
lays) at the processing node and also some possible
communication delay incurred due to a job transfer,
We denote the mean node delay or the expected re-
sponse time of a job at node ¢ by Di(5;). Modeling
each node as an M/M/1 quening system gives [8, 17):

1

Di(3i) = prrgy 0

i (3)

where p; is the processing (service) rate of computer i,

{vii) We assume that the expected communication
delay from node ¢ to node § is independent of the
source-destination pair (i,j) but may depend on the
total traffic through the petwork denoted by A whers
A=Y, ¥ #;. We denote the mean communi-
cation delay I"ur a job by G(A). Modeling the commu-
nication network as an M/M/1 quening system gives
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[8, 17]:
] 1
G{Jt}—-—-—-—-l_m1 Jk{T (4)
where | is the mean communication time for sending
and receiving a job. Note that D5} and G{A) are
increasing positive functions,
(viii) we classify the nodes in the following way as

in [17):

o Sink (5): only receives jobs from other nodes but
it does not send out any jobs,

o Idle source (fy): does not process any jobs (4; =
0) and it sends all the jobs to other nodes, It does
not reeeive any jobs from other nodes,

o Active source (H,): processes some of the jobs
that arrive and it sends the remaining jobs (o other
nodes. But, it does not receive any jobs from other
nodes,

o Neutral {N): processes jobs locally without send-
ing or receiving jobs.

The network traffic A can be expressed i verms of
the variable 3; as

=3 glé. - Al (5)
(i) We define the following functions:
d,-[;i‘.-}_ﬂﬁ n Di(B1) = :'I'I-‘f:' (6)
g(A) = : InG(\) = {1_’!“ (7)
(@) = { ﬂj'%‘ . R @

-y
4. Cooperative Load Balancing

In this section, we formulate the load balancing
problem as a cooperative game among the computers
and the communication network. We consider an n+1
player game where the # computers try Lo minimize
their expected response time Di(3;) and the (n+ 1)¢h
player, the communication subsystem, tries to mini-
mize the expected communication delay G(A). 5o, the
objective function for each computerd, i = 1,... 7 can
be expressed as:

JilX) = Di(3;) (9)

and the objective function for the communication sub-
system can be expressed as:

)ert+1{a“f:| = GE-)": ““}

where X = L&'.,',-,ﬁmi]r
the n + 1 players.

is the set of strategies of

Definition 4.1 (The cooperative load balancing
game) The cooperative lond baluncing game consists

of:

o n computers and the communication subsystem as
plavers;

o The sel of strategies, X, is defined by the following

constraints:
8 < i, f=TL.o005n0 {11}
i f
Y a=Y 6i=9 (12)
i=1 i=l
£i20, §=1,...,n (13)
o For each computer i, i = 1,...,n, the objec-

tive function f;(X) = Dy(53:); for the communica-
tion subsystem, the objective function f,(X) =
G(M: X = [B1,.... 00, NT. The goal is to mini-
mize simultaneously all f;(X),i=1,....n+ L.

s For each playeri, i= 1....,n+1, the initial per-
formance u? = fi(X"), where X" is a zero vector
af length n + 1.

Remark 4.1 In the above definition, we can assume
that 3; < ji; to satisfy the compactness requirement for
X where fi; = py — € for a small € > 0. For simplicity
we ignore this in the sequel. We also assume that all
the players in the above game are able to achieve per-
formance strictly superior to their initial performance.

Theorem 4.1 For the cooperative load balancing gome
defined above there is a unigue bargaining point and
the barguining solutions are determined by solving the
following optimization problem:

min [G(\) [ Di(8:)] (14)
i =1

subject to the constraints (11) - (13).

Proof: In the Appendix. o
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Theoremn 4.2 Far the cooperative load balancing game
defined above the bargaining solution is determined by
solving the following optimization problem:

mn
min [Z]j In Di(53;) + InG(N)] (15)
==
subject to the constraints (11) - (13).
Proof: In the Appendix. o

Theoremn 4.3 The solution to the optimnization prob-
lem in Theorem 4.2 satisfies the relations

di(8;) = a+ g(A), Bi=0 (i€ Ry,
di(3i) = a + g(A), O<Bi<di (i€ Ry
a+g(A) 2 di(Bi) 2 a, Bi=¢ (ieN),
di(5;) = a, Bi>¢; (i€ 8),
(16)

subject to the total flow constraint,

S+ Y di+ Y dita+gN) =2 (7)

i€s iEN i Ha
where o 13 the Logrange maulfiplier.

Proof: In the Appendix. |

Since obtaining a closed form solution for o from eq.
(17) is notv possible, we use a simple method such as a
binary search to solve eq. (17) iteratively for a as in
[7}. Also, from Theorem 4.3, the following properties
which are true in the optimal solution can be derived
and their proofs are similar to those in [7].

Property 4.1

di(0) > a+g(}), if B =0,
di[*i’i}}ﬂ'i'g(l}}di{ﬂ}? iff n{.ﬂi{d'i:
a<dildi) <a+glA), i 5=,

o >di(d), iff 8i>di

Property 4.2 If 3 is an optimal solution to the prob-
lem in Theorem 4.2 then we have

.ﬂi = n! tE RI”!
Bi= di I':'r-r <t H":}"H* i€ R,,
,ﬂi = d'il i 1S JWﬁ'.!lr

fi=d a), i€8.

Property 4.3 If 3 is an optimal solution to the prob-

lem in Theorem 4.2 then we have X = As = Ay, where

As = Tiesldi M (a) — o4,
Ar = Tiep, O+ Lieg, [0 — d; ' (a+ g(As))].

Based on the above properties, we can have the [ol-
lowing definitions (eqs. (18) - (23)) for an arbitrary o
{=0).

S(a) = {ildi(¢1) < a} (18)

Asta) = " [d;H(a) — &) (19)

=S al
Ra{er) = {ildi(0) = o + g(As(a)}} (20}
Ra(a) = {ildi(¢:) > a + g(As(a)) > di(0)}  (21)
Apla)= D" i+ D [ —d; Ha+g(As(a))]

IERsla) fEHA ()
(22)
N{a) = {ila < di(¢) < a + glAs(a))} (23)
Thus, if an optimal « is given, the node partitions in
the optimal solution are characterized as

Ry = Ri(a).R, = Ry(a),N = N(a),5 = S(a) (24)

and
A= As = Ag = As(a) = Agla) (25)

We now present an algorithm (CCOOP} for obtain-
ing the Nash Bargaining Solution for our cooperative
load balancing game.

CCOOP algorithm:

Input:
Node processing rates: fiy, fa. ... fin;
Node job arrival rates: ¢y, do, ... @n;
Mean communication time: f.
Output:
Load allocation to the nodes: ;. fa, ... 7,.

1. Imitialization:
Bi—dpieN;i=1...,n
2. Sort the computers such that
dl{‘pl} E dﬂ{@"f} .. "dn{‘pu:]
If |'i|,|:¢|} T H{n} :"‘: dﬂ{ﬂ"“ﬂ}' sTOP
(No load balancing is required)
3. Determine ¢ {using a binary search):
a + di(¢)
b d(6n)
while(1) do
As{a) + 0
Arlo) 0
a « &b
Calculate: S(a), As{a), Rila), B.(a),
and Apla) (egs. (18) - (22)) in the
order given fori=1,....n
If (|As(er) — Apla)| < ) EXIT
If (As{a) > An(a))
hin
clse
a4 a
4. Determine the loads on the computers;
Bi+10, forie Rd{r.t':l
Bi +d; Ma+g(A), forie Rya)
B +—d; ), forie S(a)
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B + ¢i, [fori € N(a) (eq. (23))

Remark 4.2 (i} In step 2, we STOP when the total
(node + communication) time for a job to be trans-
ferred from a more powerful to o less powerful node
erceeds the node time on the less powerful node, if the
network traffic equals 0. This means that a job wall
run faster on the ‘origin’ node than if transferred to a
different node. (i) The running time of this algorithm
is (Malogn + nlogl/e), where ¢ denotes the accept-
able tolerance used for computing o in step 3 of the
algorithm. (111} This algorithm must be run periodi-
cally when the system parameters change in order to
recompute a new load allocation.

5. Experimental Results
5.1. Simulation Environment

We developed a simulation platform to evaluate the
performance of our CCOOP scheme. The performance
metrics used in our simulations are the erpected re-
sponse fime and the fairness index. The fairness index
[3], is used to gquantify the fairness of load balancing
schemes, We perform simulations to study the impact
of system utilization and heterogeneity on the perfor-
mance of the proposed scheme., We also implemented
the Overall Optimal Scheme (OPTIM) [7] and the Pro-
portional Scheme (PROP) [1] for comparison. In the
following we present and discuss the simulation results.

5.2. Performance Evaluation

Effect of System Utilization. System utilization
{p) represents the amount of load on the system and
is defined as the ratio of the total arrival rale to the
aggregate processing rate of the system:

p= 26
> N

We simulated a heterogencous system consisting of
16 computers to study the effect of system utilization.
The system has computers with four different process-
ing rates. The system configuration is shown in Table
1.

For each experiment the total job arrival rate in the
svstem P is determined by the system utilization p and
the aggregate processing rate of the system. We choose
fixed values for the system utilization and determined
the total job arrival rate ®. The job arrival rate for
each computer ¢y, ¢ = 1,....16 is determined from the
total arrival rate as ¢; = g%, where the fractions g

Table 1. System conflguratlon

Relative processing rale 2145 10
Number of computers f.i a3 2
Processing rate (jobs/sec) | 10 | 20 | 50 | 100

are given in Table 2. The mean communication time |
is assumed to be (L001 see.

Table 2. Job arrival fractions y; for each com-
puter

Computer | 1-2 | 3-6 | T-11 | 12-14 | 15-16
i 0.01 | 0.02 | 0.04 [ 0.1 0.2

In Figure 2, we present the expecied response time
of the system for different values of system utilization
ranging from 10% vo 90%. It can be seen that CCOOP
performs as well as OPTIM for p ranging from 10% (o
40% and is better than PROP for p ranging [rom 50%

to 60%. CCOOP approaches PROT at high system
utilization.
vl R 1
:i Hiid = .|I. B
_ER— £
| ar |- = i
R = _—

Figure 2. System Utilization vs Expected Re-
sponse Time

In Figure 3, we present the [airness index for differ-
ent values of system utilization. The CCOOP scheme
has a [airness index of almost 1 for any system utiliza-
tion. The fairness index of OPTIM drops [rom 1 at
low load to 0.89 at high load and PROP maintains a
fairness index of 0.73 over the whole range of system
loacds.

Effect of Heterogeneity. In this section, we study
the effect of heterogeneity on the performance of load
balancing schemes. One of the common measures of
heterogeneity is the speed skewness [16]. We study the
effectiveness of load balancing schemes by varying the
speed skewness.
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Figure 3. System Utilization vs Fairness Index

We simulated a heterogeneous syvstem of 16 comput-
ers (2 fast and 14 slow) to study the effect of hetero-
geneity. The slow computers have a relative processing
rate of 1 and the relative processing rate of the fast
computers is varied from 1 (homogeneous system) to
2(} (highly heterogeneous system). The system utiliza-
tion was kept constant (p = 60%) and the mean com-
munication time ¢ is assumed to be 0.001 sec. In Table
3, we present the processing rates (g jobs/sec) of the
computers in the systems and the total arrival rates
{#) for some of the cases. Cl and C2 represent the
fast computers and C3 through C16 represent the slow
computers,

Figure 4 shows the effect of speed skewness on the
expected response time, For low skewness, CCOOT be-
haves like the PROP. But, as the skewness increases,
the performance of CCOOP approaches to that of OP-
TIM which means that in highly heterogeneous systems
CCOOP is very effective.

Fig 5 shows the effect of speed skewness on the fair-
ness index. It can be observed that CCOOP has a
fairness index of almost 1 over all range of speed skew-
ness. The fairness index of OPTIM and PRODP falls
from 1 at low skewness to 0.92 and (.88 respectively at
high skewness.

Table 3. System parameters
Speed shewness | 1 1 B | 12| 16 | 20
i of C1,02 10| 40 | 80 | 120 | 160 | 200
i of C3-C16 10 10 | 10 | 10 100 | 10
P (jobs/sec) 96 | 132 | 180 | 228 | 276 | 324

6. Conclusion

In this paper we presented @ game theoretic ap-
proach to solve the static load balancing problem in

e aan
g P ——

T WO
T
i

E PR
F

Figure 4. Heterogeneity vs Expected Re-
sponse Time

Figure 5. Heterogeneity vs Fairness Index

distributed systems where the computers are connected
biy a single channel communication network., We used
a cooperative game to model the load balaneing prob-
lem. Our solution is based on the NBS which provides
a Pareto optimal and fair solution to the distributed
svstem. For the proposed cooperative load balane-
ing game we derived an algorithm for computing the
NBS. The performance of our scheme is compared with
that of other existing schemes under simulations. We
showed that our scheme is not only fair but also is
comparable with that of OPTIM in terms of the mean
response time,
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Appendix

In this section we present the proofs of the results
used in the paper.

Proof of Theorem 4.1
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The objective function for each player f;(X) (Defini-
tion 4.1) is convex and bounded below. The set of con-
straints is convex and compact. Thus, the conditions
in Theorem 2.1 are satisfied and the result follows. O
Proof of Theorem 4.2

The objective vector function {f;}, j€1,...,n+1
(Definition 4.1) of the plavers is a one-to-one function
of X. Thus, applying Theorem 2.1 the result follows.0

Proof of Theorem 4.3

Let u; and v; denote the network traffic into node ¢
and the network traffic out of node @ respectively. From
the balance of the total traffic in the network, we have

Suw=>u (27)
i=1 i=1

The load &; on node ¢ can then be written as
Bi=di+u;i—v; (28)

and the network traffic A can be written as

A=Y u (=) w) (29)
=1 i=1
Hence, the problem becomes:

min E{u,v) = [Z In Di{¢y +ui — ;) +1n GIZ )]
i=1 i=1 r'aﬂ:l
subject to

Si=di+ui—v 20, i=1l,...;n (31)

—Zﬂi+zt‘.‘=ﬂ (32)
=1 i=1

Bi=f+uwm—mi<pn i=L....n (33)
w=0 i=L....m (31)
w20, i=L...n (35)

The objective function in eq. (30) is convex and the
constraints are all linear and they define a convex poly-
hedron. This imply that the first-order Kuhn-Tucker
conditions are necessary and sufficient for optimality
[10].

Let e, 8 < 0,0 < 0,1 < 0 denote the Lagrange
multipliers [10] The Lagrangian is

Liu,v,a,d,1n,9) = Elu,v) + u{wi i+ i ;)

=1 =1

+Y Gl +ui—v)+ Y i+ Z vy (36)
i=1

i=1 =1

Remark We ignore the constraint in eg. (33) since all
the essociated multipliers will be zero of we introduce i
in the lagrangion.

The optimal solution satisfies the following Kuhn-
Tucker conditions:

L
ﬂ—m—dil:ﬁ"ii+ﬂj—ﬂi:|"'ﬁ+5i+l'lli—ﬂ
f=1:0 n {37)
AL 2
e —di{dh; + i — v;) + .ﬁ'(; v} +a
=i+ =0 i=1,....n {38}
%:—Zuﬁ—Zv;:ﬂ (39)
k=1 =l
di+ui—vi 20, dildi+ui—v)=0,
&<0, i=1,...,n {10)
>0, muw=0 m=<0 i=1..., 7l {11)
wl Ywy=0 <0, i=1,..., fl (12)

In the following, we find an equivalent form of eqs.
(37) - (42) in terms of §;. By adding egs. (37) and
(38) we have, —g(X i) =i+, i=1,..., 7. Since
g = 0, either 1y < 0 or ¥ < 0 {or both). Hence, from
eqs. (41) and (42), for each i, either u; =0 or v; =
(or both). We consider each case separately,

o Case I: u; = 0,v; = 0: Then, we have 3; = ;.
It follows from eq. (40) that 4; = 0. Substituting
this into eqs. (37) and (38) gives

dilfi) =a—1ni 2 « (43)
di(8i) = o+ g(A) + ¥ < a+ g(X) (14)
From the above, we have
a < di(d;) <a+gld) (13)
This case corresponds to neutral nodes.

o Case IT: wy = 0,v; > 0: Then, from eq. (42}, we
have ¢y = 0. We consider the following subcases.

— Case IL1 v; < d: Then, we have () < ; <
. It follows from eq. (40) that § = 0.
Substituting this into eqs. (37) and (38) gives

dilfi)=a-n>a {16)

di(B) = 9(A) + a {47)
This case corresponds to active sources.
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— (Case IL2 v; = ¢¢;: Then, we have 3; = 0 and
eqs. (A7) and (38) gives

di(Bil=a-=d—-ni>a (48)

di{Bi) = a4+ g(A) =6 = a+g(A) (49
Thus, we have

di(3i) 2 o + g(A) (50)
This case corresponds to idle sources.

o Case HI: u; > 0,v; = 0: Then, we have 8; > &;.
It follows from eqs. (40) and (41) that 4; = 0 and
1 = 0. Substituting this into eq. (37), we have

di(Bi) = a (51)
This case corresponds to sinks.

Eq. (39) may be written in terms of 3; as
n
> si=4% (52)
i=1

Using eqs. (47) and (51}, the above equation becomes

Yod N a)+Y di+ Y dMat+gN) =2 (53)

ies fEN ich,
which is the total flow constraint. ]
References

[1] ¥. C. Chow and W. H. Kohler. Models for dynamie
load balancing in a heterogeneous multiple processor
system. JEEE Trans, Comput., C-28(5):354-361, May
1979.

[2] D. Fudenberg and J. Tirole. Game Theory. The MIT
Press, 1994,

[3] D. Grosn and A. T. Chronopoulos. A game-theoretic
maodel and algorithm for load balancing in distributed
systems, In Proc. of the 16th IEEE International
Parallel and Distributed Processing Symposinm, pages
146-153, Ft Landerdale, Florida, USA, 2002,

[4] D. Grosu, A. T. Chronopoulos, and M. Y. Leung. Load
balancing in distributed systems: An approach using
cooperative games. In Proc. of the 16th IEEE Intl
Parallel and Distributed Processing Symp., pages H2-
61. Ft Landerdale, Florida, USA, April 2002.

[3] R. Jain, The Art of Computer Systems Perfor-
mance Analysis:  Technigues for Erperimental De-
sign, Measurement, Stmulation, and Modeling. Wiley-
Interscience, 1991,

[6] H. Kameda, J. Li, C. Kim, and Y. Zhang. Cph-
mal Load Balancing in Distributed Computer Systems.
Springer Verlag, London, 1997,

[7] C. Kim and I. Kameda. An algorithm for optimal
static load balancing in distributed computer systems.
IEEE Trans. en Computers, 41(3):381-384, March
1892,

|8] L. Kleinrock. Queneing Systems - Volume 1: Theory
John Wiley and Sons, 1975.

[9] J. Li and H. Kameda. A decomposition algorithm for
aptimal static load balancing in tree hierarchy network
configuration. [EEE Trans, Parallel and Distrabuted
Systems, 5(5):540-548, May 1994,

[10] D. G. Luenberger. Linear and Nonlinear Program-
ming. Addison-Wesley, Reading, Mass., 1984,

[11] A. Mas-Collel, M, D, Whinston, and 1. R. Green. M-
croeconomic Theory, Oxford Univ. Press, New York,
1995,

[12] A. Muthoo. DBargatning Theory with Applications.
Cambridge Univ. Press, Cambridge, 17.K., 1999,

[13] J. Nash. The bargaining problem. Econometrica,
18(2):155-162, April 1950,

[14] T. Roughgarden. Stackelberg scheduling strategies,
In Proc. of the 38rd Annual ACM Symp. on Theory of
Computing, pages 104-113, July 2001.

[15] A. Stefanescu and M. V. Stefanescu. The arbitrated
solution for multi-ohjective convex programming. fen,
Roum. Math. Pure Appl.. 29:593-508, 1984

[16] X. Tang and S. T. Chanson. Optimizing static job
scheduling in a nerwork of heterogeneous computers.
In Proc. of the Intl. Conf, on Parallel Processing, pages
A73-382, Augnst 2000.

[17] A. N. Tantawi and D. Towsley. Optimal static load
halancing in distributed computer syvstems. Journal
af the ACM, 32(2):445-465, April 1985,

[18] II. Yaiche, B. R. Mazumdar, and C. Rosenberg. A
game theoretic framework for bandwidth allocation
and pricing in broadband networks. [EEE / ACM
Trans. Networking, 8(0):66T-678, Qctober 2000,

Biographies

Satish Penmatsa received his B.Tech. in Com-
puter Science from Andhra University, India in 2000
and a M.Se. in Computer Science from the Univer-
sity of Texas at San Antonio in 2003, He is currently
pursuing a Ph.D. degree in Computer Seience at the
University of Texas at San Antonio. His research in-
terests include parallel and distributed systems, grid
computing and game theory. He is a student member
of the IEEE.

Anthony T. Chronopoulos received his Ph.D. at
the University of lllinois in Urbana-Champaign in 1987,
He is a senior member of IEEE (since 1997). He has
published 39 journal and 51 referced conference pro-
ceedings publications in the areas of Distributed Sys-
tems, ligh Performance Computing and Applications.
He has been awarded 13 federal/state government re-
search prants. His work is cited in over 220 non-co-
authors' research articles,

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:22:06 UTC from IEEE Xplore. Restrictions apply.



