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Abstract

In this paper we propose a price-based user-optimal
job allocation scheme for grid systems whose nodes are
connected by a communication network. The job allo-
cation problem is formulated as a noncooperative game
among the users who try to minimize the expected cost
of their own jobs. We use the concept of Nash equilib-
rium as the solution of our noncooperative game and
derive a distributed algorithm for computing it. The
prices that the grid users has to pay for using the com-
puting resources owned by different resource owners are
obtained using a pricing model based on a game the-
ory framework. Finally, our scheme is compared with
a system-optimal job allocation scheme under simula-
tions with various system loads and configurations and
conclusions are drawn.

1. Introduction

A Grid [5] is a distributed computing infrastructure
which uses the resources of many independent comput-
ers connected by a network to solve large-scale compu-
tation problems. It can also be viewed as a collec-
tion of clusters where the computers in a cluster are
connected by a fast local area network. The compu-
tational resources in a grid cluster may be under the
same administrative domain or can have different re-
source owners. The grid controllers try to solve the
computational problems of the grid users by allocating
them to the idle computing resources. These resources
which may have different owners can be enabled by
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an automated negotiation mechanism by the grid con-
trollers.

The grid computing systems should be able to assign
efficiently the jobs from various users to the computa-
tional resources in a grid which is commonly known as
the job scheduling/load balancing problem. The pur-
pose of job scheduling is to improve the performance
of the grid system through an appropriate distribution
of the user's application load.

Past game theory and other related works on job
allocation and load balancing in general distributed
systems and also in grid systems can be found in
[8, 18, 15, 7, 10, 21, 11, 1] and references there
in. However, they did not take the communication-
subsystem/fairness-to-the-users into account. Here, we
consider a grid model where the computers are con-
nected by a communication network. Prior to any job
scheduling, the grid controllers submit the users jobs
to the various computers based on their resource avail-
ability. Then, job scheduling is achieved by transferring
some jobs from a heavily loaded computer to a lightly
loaded one.

The objective of the job allocation scheme we pro-
pose is to minimize the cost of the individual grid users.
Since the grid controllers act on behalf of the grid users,
we use the term 'grid user' instead of 'grid controller'
to avoid ambiguity. The scheme is formulated as a
noncooperative game among the grid users who try to
minimize the expected cost of their own jobs. The main
goal of our job allocation scheme is to provide fairness
to all the users, i.e. all the users should have the same
expected cost independent of the allocated computer.

In a grid system, to allocate a job to a resource,
an agreement should be made between the grid user
and the resource owner. We use a pricing model based
on the bargaining game theory to obtain the prices
charged by the resource owners (computers) [8]. Simi-
lar economic models are studied in [2, 20, 16, 17, 3, 4
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The two players (users and computers) negotiate until
an agreement is reached. Each user has to play an in-
dependent game with each computer to obtain its price
per unit resource on that computer. We simulated this
pricing model and used the prices obtained for job al-
location.

The rest of the paper is organized as follows. In sec-
tion 2, we present the system model. In section 3, we
formulate the job allocation problem as a noncoopera-
tive game among the grid users. In section 4, the per-
formance of our user-optimal job allocation scheme is
compared with a system-optimal job allocation scheme
by simulations. Conclusions are drawn in section 5.

2. System Model

We consider a grid system model as shown in Figure
1. The system has n nodes connected by a communi-
cation network and is shared by m users. The nodes
could be either single computers or clusters (of several
computers). The nodes and the communication net-
work are assumed to be product-form queuing network
models. In the sequel we use 'computer' and 'node' in-
terchangeably. The terminology and assumptions used
similar to [13] are as follows:

* Q2: Job arrival rate of user j to computer i.

* o: Total job arrival rate of user j.

*_Xi ==1Ij

* (: Total job arrival rate of the system.

* b=z;mii0.
* : Service rate of computer i.

* di2: Job processing rate (load) of user j at com-
puter i.

* /i [i9s i ? /** * f?S ]T; 73 [71,2,? * n7]T

* 73k [k3V3k 7 Ik]T.*k= [1 32 ?***?n]

:j Job flow rate of user j from computer r to
computer s.

. : Job traffic through the network of user j.

>rAi n n xi A :1L7 2. Am']T.

* pz Price per unit resource on computer i for user

_. .

Communication Network

Figure 1. Grid System Model

A job arriving at node i may be either processed at
node i or transferred to a neighboring node j for remote
processing through the communication network and is
not transferred to any further nodes. The decision of
transferring a job does not depend on the state of the
system and hence is static in nature. If a node i sends
(receives) jobs to (from) node j, node j does not send
(receive) jobs to (from) node i.

For each user j, nodes are classified into the follow-
ing as in [13]:

* Idle source (Rh): does not process any user j jobs
(d] =O).

* Active source (RiA): processes some of the user j
jobs that arrive and it sends the remaining user j
jobs to other nodes. But, it does not receive any
user j jobs from other nodes.

* Neutral (Ni): processes user j jobs locally without
sending or receiving user j jobs.

* Sink (Si): only receives user j jobs from other
nodes but it does not send out any user j jobs.

Assuming that each computer is modeled as an
M/M/1 queuing system [14], the expected response
time of an user j job processed at computer i is given
by:

Fi - (i "
k- ) (1)

We assume that the expected communication delay
of a job from node r to node s is independent of the
source-destination pair (r, s) but may depend on the
total traffic through the network denoted by A where
A = 1j Ai. Modeling the communication network as
an M/M/1 queuing system [141, the expected commu-
nmcation delay of an user j (j 1 m) job is given
by:

GJ (A) (1 \ Ak (2)1- t Er AkD tk,-1
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where t is the mean communication time for sending
and receiving a job form one computer to the other for
any user. Note that FG Q5) and Gi (A) are increasing
positive functions.

The network traffic of user ? can be expressed in
terms of the variable j as:

2Ai0t-lfl (3)

Thus, the overall expected response time of user j
is given by:

T() = -- i3 (i) + -¢ G (A) (4)

i~~~~1i
* + A az A) +(5)~(p~ Zm pk) + i(l - tZEmL1 Ak)(5

Let ki be a constant which maps the execution time
to the amount of resources consumed at computer i and
let k, be a constant which maps the communication
delay to the amount of resources consumed from the
communication network. We assume that the price the
users have to pay for consuming a unit resource of the
network is constant for all the users and denote it by
PcG

Thus, the overall expected cost of user j is given by:

- 1 kip-- kcpctA'
- i= (ii - =Z t ) + j l- tZT1 Ak)

(6)

3. Noncooperative Game among the
Users

In this section, we formulate the job allocation prob-
lem as a noncooperative game among the users. We
use the game theory terminology as in [9]. Each user
j (U 1,...,m) must find the workload (/3) that is
assigned to computer i such that the expected price
of his own jobs (Di(/)) is minimized. The vector
,/3J - [/33,/ *, /] is called the job allocation strat-
egy of user j (j = 1,.=.,m) and the vector /R -
[/1, j2,, ,' , ]is called the strategy profile of the job
allocation game. The strategy of user j depends on the
job allocation strategies of the other users.

The assumptions for the existence of a feasible strat-
egy profile are as follows:

a~~~~H f nsfe-1 i I]_Tr]-

(i) Positvait : En7> i1 j,n,j *
r(ii) CnsfPervatin:nX */3X 1,..ffJ -

(iii) Stability: Z7n1 j < jti, i - 1... ,;

A Noncooperative job allocation game consists of a
set of players, a set of strategies, and preferences over
the set of strategy profiles:

(i) Players: The m users.

(ii) Strategies: Each user's set of feasible job allocation
strategies.

(iii) Preferences: Each user's preferences are repre-
sented by its expected price (DJ). Each user j
prefers the strategy profile 3* to the strategy pro-
file /*3 if and only if Di(G*) < Di),

We need to solve the above game for our job alloca-
tion scheme. A solution can be obtained at the Nash
equilibrium [6] which is defined as follows.

Definition 3.1 (Nash equ'ilibrium): A Nash equi-
librium of the job allocation game defined above is a
strategy profile j* such that for every user j (j =
1,1... , Tn):

/ E argnin DI(, . . ?, ,7. .3m)
/3V

(7)

At the Nash equilibrium, a user j cannot further
decrease its expected price by choosing a different job
allocation strategy when the other users strategies are
fixed. The equilibrium strategy profile can be found
when each user's job allocation strategy is a best re-
sponse to the other users strategies.

The best response for user j, is a solution to the
following optimization problem (BRi):

minD(Di3)
o3i

(8)

subject to the constraints:

(9)

i=

Z/3i < /I,
j=1

(10)

(11)

Remark 3.1 In finding the solution to BRjE the
strategies of all the other users are kept fixed and so
the variables in BRE are the workloads of user j, .e.
Ri -R R jM- M1 7 ~2 7 * * * 7 Ar ) -

X > ol i 1,...,n

i - 1,.,
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In order to solve the optimization problem in eq.
(8), we define the following functions:

f,j (,3) = [kipi3 (3)1=Fi7 i/Li
(pj 3j)2

where Hii = ij- Zk=1,kti Z

__9 kcpctg-jgi(A) [kcpcA'G (A)] (gj tAi)

where g-j (1-tL1 k+j Ak),

(12)

Property 3.2 If ij is an optimal solution to the prob-
lem in eq. (8) then we have

=O i R( ) S

dJ=(t2 )(di l2 =a +gi? aX 1ieRa

t~ ~~EN4)(t1=J ) iES

(13) Property 3.3 If/i is an optimal solution to the prob-
lem in eq. (8) then we have Ai = AJ = A3 , where

AS= Eiesi [(f ) oi li =ai -)-X ]
-_ F-iGRj Ot+rieR,[M - (fi (i =ig(A)

if
X
> ki

if x < kip?
-(14

(14)
The best response strategy of user j, which is the

solution of BRi, is given in the following theorem.

Theorem 3.1 The solution to the optimization prob-
lem BRj satisfies the relations

fi (3) > ac +)g (A), 03=O (i& R),
f?3 (/3) = ai + g,2 (A) 0 < A3J< (i C Rj ):
ai +g (A) > f (i) > aS di=X (i ENi),
fi3(di) ai, di>> ( E Sj),

subject to the total flow constraint,

(fi) '(/ii 3i-, ) + +
iCsi iLNJ

E (fI) -'w(i lj a+gi (A)) = oi
i

where oi is the Lagrange multiplier.

(15)

(16)

Remark 3.2 The conditions in Property 3.1 help to
partition the nodes into one of the four categories men-

tioned above for user j. Once the node partition for
user j is known, his optimal loads can be calculated
based on Property 3.2. Property 3.3 states that the job
flow out of the sources equals the job flow into the sinks
for each user j.

Based on the above properties, we can have the fol-
lowing definitions (eqs. (17) - (22)) for an arbitrary cai

(0)O
sS(a -) fj1f'(IfiAI3 ) < all

Ai (ai) = [(fj) (ilSj) -oil
ie Si (ai)

(17)

(18)

RI (a') -= {fi f(il j3jo) > a' +g(AAxj-j ()j))} (19)

a o = {ilfi(fi l3jj) > a + AJ-A (aj)) >

(il3 (20)

Proof: The proof uses analogous methodology to [13,
9] and is omitted due to lack of space. El

Since it is not possible to obtain a closed form so-

lution for &i from eq. (16), we use a binary search to
solve eq. (16) iteratively for cai similar to [13]. Also,
the following properties which are true in the optimal
solntion can be derived from Theorem 3.1 and their

proofs are similar to those in [131.

Property 3.1
fi (Xj13j-) > aJ + g (A)) iff 0=O,

fl(fhj ) > ai +gi(A) > f7j(/ji33=0)
iff O < 23 < b,

*itvJ < ffi (t 13=g3j ttt

<\ai + gV-i(), f
af> J f >dJ1 ,\a <

AR(&)E i + E [0-
3.d(aj ) iE 3(aj )

( 1ij) (/3i 3 i gj (Ai \j=>,S(-3)
(21)

NI(al - {ica3 < fjAzj.)} < aj+gj(A1.-,
(22)

Thns, if an optimal &i is given, the node partitions in

the optimal solution are characterized as

R =- R3(a) , R3 - R/(a), _= N (
Si si (aJ) (23)

and

Ai Aj AJ A f(a )'-S-"R - St --Rk

0,

(24)
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In the following, we present an algorithm for deter-
mining user j's best response strategy:

BEST-RESPONSE algorithm:
Input: Oij, Ap k. kn.
Output: /3J.
1. Initialization:

i22 E Ni; i = 1, .. ,n
2. Sort the computers such that

W~~~~~(AB1x=¢>1)_f< (O I;BI7 I}B =¢0S
If fi(011B3j=O) +gJQ\ > fi(/ 3n n

STOP (No load balancing is required).
3. Determine ai (using a binary search):

a f-f (/1 1,3j )

b =fnj (Pn on =0n
while(1) do

AR(aJ) = 0

R C-0 0
aij_Pa+b2
Calculate: SJ (ol) Aj (aJ), Rj (ai),
Ra (aJ), and Ai (o ) (eqs. (17) - (21))
in the order given for i - 1,..,n
If (I AS4(oJ) - Ajo) < E) EXIT
If (A-°(aJ) > A-7(ai))

b +- &i

else
a *- &i

4. Determine user j's loads on the computers:
3+h 0, for i E R (atJ)

0B +-(fi) ,1(iji=3fi= i±g(,)), for i E Rj(aj)
, fi A j =, for i E SJ(caJ)

~-F ;, for i E NJ(a&) (eq. (22))

Remark 3.3 The running time of this algorithm is
O(n log n + n log 1/E), where e denotes the tolerance
used for computing &x in step S of the algorithm.

In order to obtain the equilibriunm allocation, we
need an iterative algorithm where each user updates
his strategies (by computing his best response) period-
ically by fixing the other users startegies. We can set a
virtual ring topology of the users to communicate and
iteratively apply the BEST-RESPONSE algorithm to
compnte the Nash eqnilibrinm similar to 1[91

In the following we present the iterative algorithm
(NASHPC) for computing the Nash equilibrium for our
noncooperative job allocation game. One of the users
can initiate the algorithm (initiating user) who cal-
culates his initial strategies by fixing the other users
startegies to zero. An iteration is said to be complete

if this initiating user receives a message from his left
neighbor. He then checks if the error norm is less than
a tolerance in which case he sends a terminating mes-
sage to his right neighbor to be propagated around the
ring.

NASHPC distributed job allocation algorithm:
Each user j, j = 1,... , m in the ring performs the

following steps in each iteration:

1. Receive the current strategies of all the other users
from the left neighbor.

2. If the message is a termination message, then pass
the termination message to the right neighbor and
EXIT.

3. Update the strategies (IJ) by calling the BEST-
RESPONSE

4. Calculate Di (eq. (6)) and update the error norm.

5. Send the updated strategies and the error norm to
the right neighbor.

This algorithm can be restarted periodically or when
the system parameters are changed. Users will use the
strategies that are computed (at the Nash equilibrium)
and the system remains in equilibrium.

4. Experimental Results

We perform simulations to study the impact of sys-
tem utilization and heterogeneity on the performance
of the NASHPC scheme. We also implemented the fol-
lowing job allocation scheme for comparison purposes:

* Global Optimal Scheme with Pricing and Commu-
nication (GOSPC) : This scheme minimizes the
expected cost over all the jobs executed by the grid
cluster. This is an extension of the overall optimal
scheme [13] in the multi-class environment to in-
clude pricing. The loads (Q2) for each user are
obtained by solving the following nonlinear opti-
mization problem:

m 7n

minD(f)D - - [ kipipj3Fij (j)+kkp,AiJGJ (A)]
j=1 i=1

(25)
snbject to the constraints:

i

Aflq5 j -1, ...,~m (26)
i=1

Xj > O (-1- 1 mI 27)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:12:32 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. System configuration.
Relative service rate 1 2 5 10
Number of computers 6 5 3 2
Service rate (jobs/sec) 10 20 50 100

1 2 3 4

The performance metrics used in our simulations are
the expected response time and the fairness index [12].
The fairness index (defined from the users' perspec-
tive),

-1(C) -- [Z c=
Mm C2I'C'- lj= w (28)

is used to quantify the fairness of job allocation
schemes. The parameter C is the vector C =
(C1, C2, ... , Cm) where Cj is the expected cost of user
j's jobs. If all the users have the same total expected
price, then I = 1 and the system is 100% fair to all
users and it is cost-balanced. If I decreases, then the
job allocation scheme favors only some users. In the
following we present and discuss the simulation results.

4.1. Effect of system utilization

System utilization (p) represents the amount of load
on the system. It is defined as the ratio of the total
arrival rate to the aggregate service rate of the system:

P= (, (29)
i:=1 Pi

We simulated a heterogeneous system consisting of
16 computers to study the effect of system utilization.
The system has computers with four different service
rates and is shared by 10 users. The system config-
uration is shown in Table 1. The first row contains
the relative service rates of each of the four computer
types. The relative service rate for computer Ci is de-
fined as the ratio of the service rate of CG to the service
rate of the slowest computer in the system. The second
row contains the number of computers in the system
corresponding to each computer type. The third row
shows the service rate of each computer type in the
system. The last row shows the values for ki. It is
assigned based on the service rate of the computer 181.
The price vector po for each user is obtained based on
the alternating offer bargaining game described in sec-
tion 1. k, and Pc are assumed to be 1 in all the following
experiments.

For each experiment the total job arrival rate in the
system Y is determined by the system utilization p and
the aggregate service rate of the system. The total job

arrival rate @ is chosen by fixing the system utilization.
The job arrival rate for each user O3, j = 1, ..., 10 is de-
termined from the total arrival rate as =i= qj b, where
the fractions qj are given in Table 2. The job arrival
rates of each user j, j = 1, . . . , 10 to each computer
i, i 1,.. .,16, i.e. the 02's are obtained in a similar
manner. The mean communication time t is assumed
to be 0.001 sec.

Table 2. Job arrival fractions qi for each user
User 1 2 3-6 7 8-10
q3 0.3 0.2 0.1 0.07 0.01

In Figure 2, we present the expected response time
of the system for different values of system utilization
ranging from 10% to 90%. It can be observed that the
performance of the NASHPC scheme which minimizes
the cost of each user is very close to that of GOSPC
which minimizes the cost of the entire system.

Figure 3 shows the fairness index for different values
of system utilization. The fairness index of GOSPC
varies from 1 at low load, to 0.95 at high load. The
NASHPC scheme has a fairness index close to 1 and
each user obtains the minimum possible expected price
for its own jobs (i.e. it is user-optimal). So, GOSPC
scheme whose objective is to reduce the overall cost of
the grid cluster is unfair whereas NASHPC is fair to
each user.

0.3

0.25

cl)
'I)

E

al)

a)

a)

a)
cry

x
LU

0.2

0.1 5

0.1

System Utilization (%)

Figure 2. System Utilization vs Expected Re-
sponse Time
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0.96
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0.92
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Figure 3. System Utilization vs Fairness Index

4.2. Effect of heterogeneity

Here we study the effect of heterogeneity on the per-
formance of our job allocation scheme. One of the com-
mon measures of heterogeneity is the speed skewness
[19] which is defined as the ratio of maximum service
rate to minimnum service rate of the grid computers.
The effectiveness of NASHPC is studied by varying the
speed skewness.
We simulated a heterogeneous system consisting of

16 computers (2 fast and 14 slow) to study the effect
of heterogeneity. The slow computers have a relative
service rate of 1 and the relative service rate of the fast
computers is varied from 1 (homogeneous system) to 20
(highly heterogeneous system). The system utilization
was kept constant (p = 60%) and the mean communi-
cation time t is assumed to be 0.001 sec. In Table 3, we
present the service rates (pi jobs/sec) of the compnters
in the systems and the total arrival rates (D) for some
of the cases. Cl and C2 represent the fast comput-
ers and C3 through C16 represent the slow computers.
The fractions used to determine the job arrival rate of
each user are those presented in Table 2.

a3)

a)
C1=

ID
a1)

Li.

NASHPC and GOSPC schemes yield almost the same
expected response time which means that in highly het-
erogeneous grid systems the NASHPC scheme is very
effective.

From Figure 5, it can be observed that the fair-
ness index of NASHPC is very close to 1. The fair-
ness index of GOSPC drops from 1 at low skewness to
0.46 at high skewness. This shows that the GOSPC
scheme produces an allocation which does not guaran-
tee equal expected price for all the users in the grid
cluster. The performance of NASHPC scheme is close
to that of GOSPC with the additional advantage of
user-optimality.

2 4 6 8 10 12 14
Max Speed / Min Speed

Figure 4. Heterogeneity vs Expected
sponse Time

1.1

0.9

0.8

0.7

Table 3. System parameters
Speed skewness 1 4 8 12 16 20
[i of C1,C2 10 40 80 120 160 200
pi of C3-C16 10 10 10 10 10 10
( (jobs/sec) 96 132 180 228 276 324

0.6

0.5

0.4

Figure 4 shows the effect of speed skewness on the
expected response time of the two schemes. It can
be observed that, increasing the speed skewness, the

Re-

2 4 6 8 10 12 14 16 18 20
Max Speed / Min Speed

Figure 5. Heterogeneity vs Fairness Index
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5. Conclusion

In this paper we proposed a price-based user-optimal
job allocation scheme for grid systems. The nodes in
the system are connected by a communication network.
The job allocation problem is formulated as a nonco-

operative game among the users whose objective is to
minimize the expected cost of their own jobs. We used
the Nash equilibrium as the solution of our game and
proposed an algorithm to compute the load allocation
of the users at the equilibrium. We performed simula-
tions with various system loads and configurations and
compared our scheme (NASHPC) with an overall op-

timal scheme (GOSPC). Based on the simulations, we

observed that the performance of the NASHPC scheme
is not only comparable with that of GOSPC in terms
of the expected response time, but also provides an al-
location which is fair (in terms of cost) to all the grid
users.
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