
Dynamic Multi-User Load Balancing in Distributed Systems

Satish Penmatsa and Anthony T. Chronopoulos

The University of Texas at San Antonio
Dept. of Computer Science

One UTSA Circle, San Antonio, Texas 78249, USA
spenmats, atc @cs.utsa.edu

Abstract

In this paper, we review two existing static load bal-
ancing schemes based on M/M/1 queues. We then use
these schemes to propose two dynamic load balancing
schemes for multi-user (multi-class) jobs in heterogeneous
distributed systems. These two dynamic load balancing
schemes differ in their objective. One tries to minimize the
expected response time of the entire system while the other
tries to minimize the expected response time of the individ-
ual users. The performance of the dynamic schemes is com-
pared with that of the static schemes using simulations with
various loads and parameters. The results show that, at
low communication overheads, the dynamic schemes show
superior performance over the static schemes. But as the
overheads increase, the dynamic schemes (as expected)
yield similar performance to that of the static schemes.

1. Introduction

Load balancing is one of the most important problems
in attaining high performance in distributed systems which
may consist of many heterogeneous resources connected via
one or more communication networks. In these distributed
systems it is possible for some computers to be heavily
loaded while others are lightly loaded. This situation can
lead to a poor system performance. The goal of load bal-
ancing is to improve the performance of the system by bal-
ancing the loads among the computers.

There are many studies on static load balancing for
single-user (single-class) and multi-user (multi-class) jobs

Student Member IEEE
Senior Member IEEE

This work was supported in part by National Science Foundation under
grant CCR-0312323.

1-4244-0910-1/07/$20.00 c 2007 IEEE.

that provide system-optimal solution [9, 13, 14] and ref-
erences there-in. Individual-optimal policies based on
Wardrop equilibrium when the number of users are infi-
nite are studied in [9]. User-optimal (class-optimal) policies
based on Nash equilibrium are studied in [6, 12] for finite
number of users. Many dynamic load balancing policies ex-
ist [7, 10, 1, 2, 3, 4, 11, 15] and references there-in. Most
of these dynamic policies are for single-class jobs and their
main objective is to minimize the expected response time of
the entire system. So, individual users jobs may get delayed
which may not be acceptable in current distributed systems,
where the users have requirements for fast job execution.

In this paper, we propose two dynamic load balancing
schemes for multi-user jobs in heterogeneous distributed
systems. The computers in the distributed system are con-
nected by a communication network. We review two ex-
isting static load balancing schemes and extend them to dy-
namic schemes. These two existing load balancing schemes
differ in their objective. (i) The first scheme, GOS [9]
tries to minimize the expected response time of the entire
system. (ii) The second scheme, NCOOPC tries to min-
imize the expected response time of the individual users
(to provide a user-optimal solution). We base our dynamic
schemes on the static schemes (i) and (ii). The performance
of the dynamic schemes is compared with that of the static
schemes using simulations with various system conditions.
The results show that, at low communication overheads,
the dynamic schemes show superior performance over the
static schemes. But as the overheads increase, the dynamic
schemes as expected tend to perform similar to that of the
static schemes.

The paper is organized as follows. In Section 2, we
present the system model. In Section 3, we review the two
static load balancing schemes based on which the dynamic
schemes are proposed in Section 4. The performance of
the dynamic schemes is compared with that of the static
schemes using simulations in Section 5. Conclusions are
drawn and future work is stated in Section 6.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

2. System Model

We consider a distributed system model as shown in Fig-
ure 1. The system has ‘ ’ nodes connected by a commu-
nication network. The nodes and the communication net-
work are modeled as M/M/1 queuing systems (Pois-
son arrivals and exponentially distributed processing times)
[8]. Jobs arriving at each node may belong to ‘ ’ different
users.

We use the terminology and notations similar to [12] and
also introduce some additional notations as follows:

: Mean interarrival time of a user job to node .

: Mean job arrival rate of user to node ().

: Total job arrival rate of user .

: Total job arrival rate of the system.

: Mean service time of a job at node .

: Mean service rate of node ().

: Job processing rate (load) of user at node .

, is the vector of loads at node
from users .

, is the load vector of all nodes
(from all users).

, is the vector of loads of user
to nodes .

: Job flow rate of user from node to node .

: Job traffic through the network of user .

= ; .

: Mean number of jobs of user at node .

: Number of jobs of user at node at a given
instant.

: Time period for the exchange of job count of each
user by all the nodes.

: Time period for the exchange of arrival rates of
each user by all the nodes.

: Mean communication time for sending or receiving
a job from one node to another for any user.

: Mean utilization of the communication network
().

: Mean utilization of the communication network
excluding user traffic ().

We assume that the jobs arriving from various users to a
node differ in their arrival rates but have the same execution
time.

Communication Network

Processor

x x

node 2

node i

node 1 node n

β i

φ i

j

j

ri ir
jj

Figure 1. Distributed System Model

3. Static Load Balancing

In this section, we study two static load balancing
schemes based on which two dynamic load balancing
schemes are derived in the next section. These static
schemes are also used for comparison in Section 5 to eval-
uate the performance of the dynamic schemes.

The following are the assumptions for static load balanc-
ing, similar to [9]. A job arriving at node may be either
processed at node or transferred to another node for re-
mote processing through the communication network. A
job can only be transferred at most once. The decision of
transferring a job does not depend on the state of the system
and hence is static in nature. If a node sends (receives)
jobs to (from) node , node does not send (receive) jobs
to (from) node . For each user , nodes are classified into
Active source nodes (), Idle source nodes (), Neutral
nodes () and Sink nodes () as in [9].

The expected response time of a user job processed at
node is denoted by . The expected communication
delay of a user job from node to node is denoted by

and it is assumed to be independent of the source-
destination pair but it may depend on the total traffic
through the network, .

Based on our assumptions on the node and the network
models in the previous section, we have the following rela-
tions for the node and communication delays [8]:

(1)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

(2)

This static load balancing scheme is proposed and stud-
ied in [9]. It minimizes the expected job response time of
the entire system. The problem of minimizing the entire
system expected job response time is expressed as

(3)

subject to the constraints:

(4)

(5)

The above nonlinear optimization problem is solved by
using the Kuhn-Tucker theorem and an algorithm to com-
pute the optimal loads () is presented in [9]. The user
marginal node delay and marginal communication
delay are defined as

(6)

(7)

where denotes the mean number of user jobs
in node and denotes the mean number of user
jobs in the communication network.

Here, we review a static load balancing scheme whose
goal is to minimize the expected job response time of the in-
dividual users (to obtain a user-optimal solution). This
problem is formulated, taking into account the users mean
node delays and the mean communication delays, as a non-
cooperative game among the users.

This noncooperative approach for multi-user job alloca-
tion with communication and pricing (NASHPC) for grid
systems was studied in [12]. The grid users try to minimize
the expected cost of their own jobs. The problem was for-
mulated as a noncooperative game among the grid users and
the Nash equilibrium provides the solution. Here, we are in-
terested in the load balancing algorithm for multiuser jobs
without pricing. Therefore, we take ();

= 1 (,); and = = 1
in equation (6) of [12]. Then, we obtain a noncooperative
load balancing game where the users try to minimize the
expected response time of their own jobs.

Each user () must find her workload ()
that is assigned to node () such that the ex-
pected response time of her own jobs () is minimized,
where

(8)

(9)

Each user minimizes her own response time independently
of the others and they all eventually reach an equilibrium.
We use the concept of Nash equilibrium [5] as the solution
of this noncooperative game. At the equilibrium, a user can-
not decrease her own response time any further by changing
her decision alone.

The vector is called the load bal-
ancing strategy of user () and the vector

is called the strategy profile of the
load balancing game. The strategy of user depends on
the load balancing strategies of the other users. At the
Nash equilibrium, a user cannot further decrease her ex-
pected response time by choosing a different load balanc-
ing strategy when the other users strategies are fixed. The
equilibrium strategy profile can be found when each user’s
load balancing strategy is a best response to the other users
strategies.

The best response for user , is a solution to the follow-
ing optimization problem:

(10)

subject to the following constraints for the existence of a
feasible strategy profile:

(11)

(12)

(13)

We define the following functions for each user :

(14)

(15)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

if

if
(16)

The solution to the optimization problem in (10) is simi-
lar to the one in [12] where the and in Theorem
3.1 of [12] are replaced by the above equations and

(equations (14) and (15)). The is used as the La-
grange multiplier which categorizes the nodes for each user

into sets of Active source nodes (), Idle source
nodes (), Neutral nodes () and Sink nodes
(). The denotes the network traffic of user

because of jobs sent by the set of Active and Idle source
nodes as determined by and is the network traffic
of user because of jobs received by the set of Sink nodes
as determined by [12].

The best response of user () can be deter-
mined using a BEST-RESPONSE algorithm similar to that

in [12] where the , and in [12] are replaced by

, and above. The optimal loads of each user
() the equilibrium solution, can be ob-

tained using an iterative algorithm where each user updates
her strategies (by computing her best response) periodically
by fixing the other users startegies. The users form a vir-
tual ring topology to communicate and iteratively apply the
BEST-RESPONSE algorithm to compute the Nash equilib-
rium. This is implemented in the following algorithm.

NCOOPC distributed load balancing algorithm:

Each user , in the ring performs the fol-
lowing steps in each iteration:

1. Receive the current strategies of all the other users
from the left neighbor.

2. If the message is a termination message, then pass the
termination message to the right neighbor and EXIT.

3. Update the strategies () by calling the BEST-
RESPONSE.

4. Calculate (equation (9)) and update the error norm.

5. Send the updated strategies and the error norm to the
right neighbor.

At the equilibrium solution, the of each user at
all the nodes are balanced.

4. Dynamic Load Balancing

Kameda [16] proposed and studied dynamic load
balancing algorithms for single user job streams based on
M/M/1 queues in heterogeneous distributed systems. We
follow a similar approach to extend GOS and NCOOPC to

dynamic schemes. In this section, we propose these two
distributed dynamic load balancing schemes for multi-user
jobs.

A distributed dynamic scheme has three components: 1)
an information policy used to disseminate load information
among nodes, 2) a transfer policy that determines whether
job transfer activities are needed by a computer, and 3) a
location policy that determines which nodes are suitable to
participate in load exchanges.

The dynamic schemes which we propose use the number
of jobs waiting in the queue to be processed (queue length)
as the state information. The information policy is a pe-
riodic policy where the state information is exchanged be-
tween the nodes every time units. When a job arrives at
a node, the transfer policy component determines whether
the job should be processed locally or should be transferred
to another node for processing. If the job is eligible for
transfer, the location policy component determines the des-
tination node for remote processing.

In the following we discuss the dynamic load balancing
schemes.

The goal of DGOS is to balance the workload among the
nodes dynamically in order to obtain a system-wide opti-
mization to minimize the expected response time of all
the jobs over the entire system. We base the derivation of
DGOS on the static GOS of Section 3.

We use the following proposition to express the marginal
node delay of a user job at node (in equation (6))
in terms of the mean service time at node () and the mean
number of jobs of user at node (,).

Proposition 4.1 The user marginal node delay in equa-
tion (6) can be expressed in terms of and (

) as

(17)

Proof: In the Appendix.

Rewriting equation (7) in terms of , we have

(18)

We next express of Proposition 4.1 and from
equation (18), which use the mean estimates of the system
parameters, in terms of instantaneous variables.

Let denote the utilization of the network at a given
instant. Replacing ’s, the mean number of jobs of users

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

at node by ’s and , the mean utilization of the network
by , in equations (17) and (18), we obtain (for user)

(19)

(20)

The above relations are used as the estimates of the user
marginal virtual node delay at node and user marginal

communication delay. Whereas GOS tries to balance the
marginal node delays of each user at all the nodes statically,
DGOS will be derived to balance the marginal virtual node
delays of each user at all the nodes dynamically. For a user

job arriving at node that is eligible to transfer, each po-
tential destination node () is compared
with node .

Definition 4.1 If , then node is said to be
more heavily loaded than node for a user job.

We use the following proposition to determine a light
node relative to node for a user job, in the DGOS
algorithm discussed below.

Proposition 4.2 If node is more heavily loaded than node
for a user job, then, , where

(21)

Proof: In the Appendix.
We next describe the components of dynamic GOS (in-

formation policy, transfer policy and location policy).
1) Information policy: Each node () broad-

casts the number of jobs of user () in its
queue (’s) to all the other nodes. This state informa-
tion exchange is done every time units.

2) Transfer policy: A threshold policy is used to deter-
mine whether an arriving job should be processed locally or
should be transferred to another node. A user job arriving
at node will be eligible to transfer when the number of jobs
of user at node is greater than some threshold denoted
by . Otherwise the job will be processed locally.

The thresholds at a node () for each
user () are calculated as follows:

Each node broadcasts its arrival rates () to all the
other nodes every time units where . Using
this information all the nodes execute GOS to determine the
optimal loads (). These optimal loads are then converted
(using Littles law [8], see proof of Proposition 4.1) into op-
timal number of jobs of user that can be present at node

(thresholds). The above calculated thresholds are fixed
for an interval of time units. This time interval can be
adjusted based on the frequency of variation of the arrival
rates at each node.

3) Location policy: The destination node for a user job
() at node that is eligible to transfer is de-
termined based on the state information that is exchanged
from the information policy. First, a node with the short-
est marginal virtual delay for a user job (lightest node) is
determined. Next, it is determined whether the arriving job
should be transferred based on the transfers the user job
already had.

(i) A node with the lightest load for a user job is de-
termined as follows: From Proposition 4.2, we have that if

, then node is said to be more heavily loaded than
node for a user job. Else, if then node is said
not to be heavily loaded than node . Let
and . If , then node is the lightest
loaded node for a user job. Else, no light node is found
and user job will be processed locally.

(ii) Let denote the number of times that a user job has
been transferred. Let () be a weighting factor
used to prevent a job from being transferred continuously
and let () be a bias used to protect the system from
instability by forbidding the load balancing policy to react
to small load distinctions between the nodes. If ,
then the job of user will be transferred to node . Other-
wise, it will be processed locally.

We next describe the dynamic GOS (DGOS) algorithm.

DGOS algorithm:

For each node ():

1. Jobs in the local queue will be processed with a mean
service time of .

2. If the time interval since the last state information ex-
change is units, broadcast the ’s ()
to all the other nodes.

3. If the time interval since the last threshold’s calculation
is units,

i. Broadcast the ’s () to all the
other nodes.

ii. Use the GOS algorithm to calculate ’s,
.

iii. Use ’s, to recalculate the thresh-
olds (,).

When a job of user () arrives with a mean
interarrival time of :

4. If , then add the job to the local job queue.
Go to Step 1.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

5. Determine the lightest node (,)
for the user job as follows:

i. Calculate where is given by
Proposition 4.2.

ii. Calculate .

iii. If , then node is the lightest loaded node
for the user job.

iv. If , where is the number of transfers
the job has already had, send the user job to
node . Go to Step 1.

v. Add the user job to the local queue. Go to Step
1.

The goal of DNCOOPC is to balance the workload
among the nodes dynamically in order to obtain a user-
optimal solution (to minimize the expected response
time of the individual users). We base the derivation of
DNCOOPC on the static NCOOPC of Section 3.

We use the following proposition to express in
equation (14) in terms of the mean service time at node
() and the mean number of jobs of user at node (,

).

Proposition 4.3 Equation (14) can be expressed in terms of
and () as

(22)

Proof: Similar to Proposition 4.1.

Rewriting equation (15) in terms of and , we have

(23)

Let denote the utilization of the network at a given
instant as in DGOS and denote the utilization of the
network at a given instant excluding user traffic. We next
express of Proposition 4.3 and from equation (23),
which use the mean estimates of the system parameters, in
terms of instantaneous variables.

(24)

(25)

NCOOPC tries to balance the of each user
() at all the nodes () statically
whereas DNCOOPC tries to balance the of each user at
all the nodes () dynamically. For a user job
arriving at node that is eligible to transfer, each potential
destination node () is compared with
node .

Definition 4.2 If , then node is said to be
more heavily loaded than node for a user job.

We use the following proposition to determine a light
node relative to node for a user job, in the DNCOOPC
algorithm discussed below.

Proposition 4.4 If node is more heavily loaded than node
for a user job, then, , where

(26)

Proof: Similar to Proposition 4.2.
The description of the components of dynamic

NCOOPC (information policy, transfer policy and location
policy) is similar to that of the components of dynamic
GOS. To calculate the threshold’s in DNCOOPC, all the
nodes execute NCOOPC every time units to determine
the optimal loads (). A node with the lightest load for a
user job is determined using Proposition 4.4.

We next describe the dynamic NCOOPC (DNCOOPC)
algorithm.

DNCOOPC algorithm:

For each node ():

Steps 1., 2. are similar to DGOS.

3. Steps (i), (iii) are similar to DGOS.

ii. Use the NCOOPC algorithm to calculate ’s,
.

When a job of user () arrives with a mean
interarrival time of :

4. If , then add the job to the local job queue.
Go to Step 1.

5. Determine the lightest node (,)
for the user job as follows:

i. Calculate where is given by
Proposition 4.4.

– Steps (ii) - (v) are similar to DGOS.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

Table 1. System configuration.
Relative service rate 1 2 5 10
Number of computers 6 5 3 2
Service rate (jobs/sec) 10 20 50 100

5. Experimental Results

In this section, we evaluate the performance of the pro-
posed dynamic schemes (DGOS and DNCOOPC) by com-
paring them with the static schemes (GOS and NCOOPC)
using simulations. The load balancing schemes are tested
by varying some system parameters like the system utiliza-
tion, overhead for job transfer, bias and the exchange period
of state information.

We simulated a heterogeneous system consisting of 16
computers to study the effect of various parameters. The
system has computers with four different service rates and
is shared by 10 users. The system configuration is shown
in Table 1. The first row contains the relative service rates
of each of the four computer types. The relative service
rate for computer is defined as the ratio of the service
rate of to the service rate of the slowest computer in the
system. The second row contains the number of computers
in the system corresponding to each computer type. The
third row shows the service rate of each computer type in
the system. The performance metric used in our simulations
is the expected response time.

System utilization () represents the amount of load on
the system. It is defined as the ratio of the total arrival rate
to the aggregate service rate of the system:

(27)

For each experiment the total job arrival rate in the sys-
tem is determined by the system utilization and the ag-
gregate service rate of the system. We choose fixed values
for system utilization and determined the total job arrival
rate . The job arrival rate for each user
is determined from the total arrival rate as ,
where the fractions are given in Table 2. The job ar-
rival rates of each user , to each computer ,

, i.e. the ’s are obtained in a similar manner.
The mean service time of each computer ,

and the mean interarrival time of a job of each user ,
to each computer that are used with the

dynamic schemes are calculated from the mean service rate
of each computer and the mean arrival rate of a job of each

Table 2. Job arrival fractions for each user
User 1 2 3-6 7 8-10

0.3 0.2 0.1 0.07 0.01

user to each computer respectively. The utilization of the
network at an instant () and the utilization of the network
at an instant without user traffic () are obtained by
monitoring the network for the number of jobs of each user
that are being transferred at that instant. The mean commu-
nication time for a job, , is set to 0.01 sec. The overhead
(OV) we use is defined as the percentage of service time that
a computer has to spend to send or receive a job.

In Figure 2, we present the effect of system utilization
(ranging from 10% to 90%) on the expected response time
of the static and dynamic schemes studied when the over-
head for job transfer is 0. The bias for job transfer () is
set to 0.4 for both DGOS and DNCOOPC. The exchange
period of state information (P) is 0.1 sec. The weighting
factor for job transfer () is set to 0.9 for both DGOS and
DNCOOPC.

From Figure 2, it can be observed that at low to medium
system utilization (load level), both the static and dynamic
schemes show similar performance. But as the load level in-
creases, the dynamic schemes, DGOS and DNCOOPC, pro-
vide substantial performance improvement over the static
schemes. Also, the performance of DNCOOPC which min-
imizes the expected response time of the individual users is
very close to that of DGOS which minimizes the expected
response time of the entire system. We note that these dy-
namic schemes are based on heuristics (by considering the
solutions of the static schemes), and so the performance of
DGOS may not be optimal (in terms of the overall expected
response time) in all cases compared to DNCOOPC.

In Figure 3, we present the expected response time for
each user considering all the schemes at medium system
utilization (). It can be observed that in the case of
GOS and DGOS there are large differences in the users’ ex-
pected response times. NCOOPC and DNCOOPC provides
almost equal expected response times for all the users. Al-
though, we plotted the users execution times at load level

, this kind of behavior of the load balancing
schemes has been observed at all load levels. We say that
NCOOPC and DNCOOPC are fair schemes (to all users),
but GOS and DGOS are not fair.

From the above, we conclude that the DNCOOPC is a
scheme which yields an allocation that makes almost as ef-
ficient use of the entire system resources as DGOS (as seen
in Figure 2) and also tries to provide a user-optimal solution

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90

Ex
pe

cte
d R

es
po

ns
e T

im
e (

se
c)

System Utilization (%)

GOS
NCOOPC

DGOS
DNCOOPC

Figure 2. Variation of expected response time
with system utilization (OV = 0)

Figure 3. Expected response time for each
user (OV = 0)

(as seen in Figure 3).
Figures 4 and 5 show the variation of expected response

time with load level for the static and dynamic schemes tak-
ing the overhead for job transfer into consideration. In Fig-
ure 4, the overhead for sending and receiving a job is set to
5% of the mean job service time at a node and in Figure 5,
the overhead is set to 10% of the mean job service time at
a node. The other parameters (and P) are fixed as in
Figure 2.

From Figure 4, it can be observed that at low and
medium system loads the performance of static and dy-
namic schemes are similar. At high loads, although the ex-
pected response time of DGOS and DNCOOPC increases,
the performance improvement is substantial compared to
GOS and NCOOPC. As the overhead increases to 10%
(Figure 5), at high system loads, the performance of dy-
namic schemes is similar to that of static schemes. This is
because the dynamic schemes DGOS and DNCOOPC are

more complex and the overhead costs caused by such com-
plexity degrades their performance.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90

Ex
pe

cte
d R

es
po

ns
e T

im
e (

se
c)

System Utilization (%)

GOS
NCOOPC

DGOS
DNCOOPC

Figure 4. Variation of expected response time
with system utilization (OV = 5%)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90

Ex
pe

cte
d R

es
po

ns
e T

im
e (

se
c)

System Utilization (%)

GOS
NCOOPC

DGOS
DNCOOPC

Figure 5. Variation of expected response time
with system utilization (OV = 10%)

From the above simulations it can be observed that at
light to medium system loads (e.g = 10% to 50% in
Figure 5), the performance of DGOS and DNCOOPC is
insensitive to overheads. But, at high system loads (e.g.

= 80% to 90% in Figure 5) the performance of DGOS
and DNCOOPC degrades with overhead and static schemes
may be more efficient because of their less complexity.

In Figure 6, we present the variation of expected re-
sponse time with system utilization of DNCOOPC for var-
ious biases. The overhead is assumed to be 5%. The other
parameters are fixed as in Figure 2. It can be observed
that as the bias increases, the expected response time of

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

DNCOOPC increases and for a high bias (e.g. = 1), the
performance of DNCOOPC is similar to that of GOS. The
effect of bias on DGOS is similar.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50 60 70 80 90

Ex
pe

cte
d R

es
po

ns
e T

im
e (

se
c)

System Utilization (%)

GOS
bias 0.2
bias 0.6
bias 0.8
bias 1.0

Figure 6. Variation of expected response time
of DNCOOPC with system utilization for vari-
ous biases (OV = 5%)

In Figure 7, we present the variation of expected re-
sponse time of DNCOOPC with exchange period of system
state information. The system utilization is fixed at 80%.
The other parameters are fixed as in Figure 2. From Fig-
ure 7, it can be observed that the expected response time of
DNCOOPC increases with an increase in exchange period.
This is because, for high values of P, outdated state infor-
mation is exchanged between the nodes and optimal load
balancing will not be done. The effect of exchange period
on DGOS is similar.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1 2 3 4 5

Ex
pe

cte
d R

es
po

ns
e T

im
e (

se
c)

Exchange Period (sec)

GOS OV = 0%
GOS OV = 5%

GOS OV = 10%
DNCOOPC OV = 0%
DNCOOPC OV = 5%

DNCOOPC OV = 10%

Figure 7. Variation of expected response time
with exchange period (= 80%)

6. Conclusions and Future Work

In this paper we proposed two dynamic load balancing
schemes (DGOS and DNCOOPC) for multi-user jobs in
heterogeneous distributed systems. DGOS tries to minimize
the expected response time of the entire system, whereas
DNCOOPC tries to minimize the expected response time
of the individual usres. These dynamic schemes use the
number of jobs of the users in the queue at each node as
state information. We used simulations to compare the per-
formance of the dynamic schemes with that of the static
schemes (GOS and NCOOPC). It was observed that, at low
communication overheads, both DGOS and DNCOOPC
show superior performance over GOS and NCOOPC. Also,
the performance of DNCOOPC which tries to minimize the
expected response time of the individual users is very close
to that of DGOS which tries to minimize the expected re-
sponse time of the entire system. Furthermore, DNCOOPC
provides almost equal expected response times for all the
users and so is a fair load balancing scheme. It was also ob-
served that, as the bias, exchange period and the overheads
for communication increases, both DGOS and DNCOOPC
yield similar performance to that of the static schemes. In
future work, we plan to propose dynamic load balancing
schemes where the jobs arriving from various users to a
node not only differ in their arrival rates but also differ in
their execution times.

Acknowledgements

Some of the reviewers comments which helped improve
the quality of the paper are gracefully acknowledged.

Appendix

In this section we present the proofs of the results used
in the paper.

Proof of Proposition 4.1

The expected response time of a user job processed at
computer in equation (1) can be expressed in terms of
as

Using Little’s law () [8], the
above equation can be written in terms of ,
as

(28)

Remark: Note that we assume the jobs from various users
have the same execution time at a node.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

The user marginal node delay at node , , is de-
fined as

which is equivalent to

Taking the partial derivative of the above equation with re-
spect to , we have

Using Little’s law [8], the above equation can be written in
terms of , as

which is equivalent to (using equation (28))

Thus, we have

Proof of Proposition 4.2

For a user job, node is said to be more heavily loaded
relative to node if . Substituting equation
(19) for and , we have

which is equivalent to

Thus, we have

Replacing the right-hand side of the above equation by ,
we have where

References

[1] L. M. Campos and I. Scherson. Rate of change load balanc-
ing in distributed and parallel systems. Parallel Computing,
26(9):1213–1230, July 2000.

[2] A. Corradi, L. Leonardi, and F. Zambonelli. Diffusive load-
balancing policies for dynamic applications. IEEE Concur-
rency, 7(1):22–31, Jan.-March 1999.

[3] A. Cortes, A. Ripoll, M. A. Senar, and E. Luque. Perfor-
mance comparison of dynamic load balancing strategies for
distributed computing. In Proc. of the 32nd Hawaii Intl.
Conf on System Sciences, pages 170–177, Feb. 1999.

[4] R. Elsasser, B. Monien, and R. Preis. Diffusive load balanc-
ing schemes on heterogeneous networks. In Proc. of the 12th
ACM Intl. Symp. on Parallel Algorithms and Architectures,
pages 30–38, July 2000.

[5] D. Fudenberg and J. Tirole. Game Theory. The MIT Press,
1994.

[6] D. Grosu and A. T. Chronopoulos. Noncooperative load bal-
ancing in distributed systems. Journal of Parallel and Dis-
tributed Computing, 65(9):1022–1034, Sep. 2005.

[7] C. C. Hui and S. T. Chanson. Improved strategies for dy-
namic load balancing. IEEE Concurrency, 7(3):58–67, July-
Sept. 1999.

[8] R. Jain. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion, and Modeling. Wiley-Interscience, 1991.

[9] H. Kameda, J. Li, C. Kim, and Y. Zhang. Optimal Load Bal-
ancing in Distributed Computer Systems. Springer Verlag,
London, 1997.

[10] P. Kulkarni and I. Sengupta. A new approach for load bal-
ancing using differential load measurement. In Proc. of Intl.
Conf. on Information Technology: Coding and Computing,
pages 355–359, March 2000.

[11] S. H. Lee and C. S. Hwang. A dynamic load balancing ap-
proach using genetic algorithm in distributed systems. In
Proc. of the IEEE Intl. Conf. on Evolutionary Computation,
pages 639–644, May 1998.

[12] S. Penmatsa and A. T. Chronopoulos. Price-based user-
optimal job allocation scheme for grid systems. In Proc.
of the 20th IEEE Intl. Parallel and Distributed Proc. Symp.,
3rd High Performance Grid Computing Workshop, Rhodes
Island, Greece, April 25-29, 2006.

[13] X. Tang and S. T. Chanson. Optimizing static job scheduling
in a network of heterogeneous computers. In Proc. of the
Intl. Conf. on Parallel Processing, pages 373–382, August
2000.

[14] A. N. Tantawi and D. Towsley. Optimal static load balanc-
ing in distributed computer systems. Journal of the ACM,
32(2):445–465, April 1985.

[15] Z. Zeng and B. Veeravalli. Rate-based and queue-based dy-
namic load balancing algorithms in distributed systems. In
Proc. of 10th Intl. Conf. on Parallel and Distributed Systems
(ICPADS’04), pages 349–356, July 2004.

[16] Y. Zhang, H. Kameda, and S. L. Hung. Comparison of dy-
namic and static load-balancing strategies in heterogeneous
distributed systems. IEE Proc. Computers and Digital Tech-
niques, 144(2):100–106, March 1997.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:36:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00410043004d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

