Implementation of Distributed Loop Scheduling Schemes on the TeraGrid

Satish Penmatsa'; Anthony T. Chronopoulos'! Nicholas T. Karonis®3, and Brian R. Toonen?

'University of Texas at San Antonio
Dept. of Computer Science
San Antonio, TX 78249
{spenmats, atc} @cs.utsa.edu

Abstract

Grid computing can be used for high performance com-
putations. However, a serious difficulty in concurrent pro-
gramming of such heterogeneous systems is how to deal
with scheduling and load balancing of such systems which
may consist of heterogeneous computers on different sites.
Distributed scheduling schemes suitable for parallel loops
with independent iterations on heterogeneous computer
clusters have been proposed and analyzed in the past. Here,
we implement the previous schemes in MPICH-G2 and
MPIg on the TeraGrid. We present performance results for
three loop scheduling schemes on single and multi-site Ter-
aGrid clusters.

1. Introduction

Modern scientific applications are computation and data
intensive requiring extremely powerful computing systems.
The emergence over the past decade of grid middleware
has helped to spawn computational grids [19] around the
world that provide unprecedented computational power and
storage capacity. The US National Science Foundation’s
TeraGrid (TG) [7], the US Department of Energy’s Earth
System Grid (ESG) [5] and Open Science Grid (OSG) [6],
Japan’s National Research Grid Initiative (NAREGI) [4],
and the European Commission project Enabling Grids for
E-scienceE (EGEE) [2] are just a few examples of the many
grids in existence today. While there are examples of appli-
cations that have been successfully developed or modified
to run efficiently on computational grids [11, 23, 28, 26, 15],
these successes have often come through customized solu-
tions and the exploration for new or even general techniques

*Student Member IEEE
TSenior Member IEEE

1-4244-0910-1/07/$20.00 2007 IEEE.

2Northern Illinois University

Dept. of Computer Science
DeKalb, IL 60115

{karonis, btoonen} @niu.edu

3 Argonne National Laboratory
Math. and CS Division
Argonne, IL 60439

that efficiently harness the power of computational grids
like the ones we describe here is an area of active research.

So-called computational Grids enable the coupled and
coordinated use of geographically distributed resources for
such purposes as large-scale computation, distributed data
analysis, and remote visualization. The development or
adaptation of applications for Grid environments is made
challenging, however, by the often heterogeneous nature of
the resources involved and the fact that these resources typ-
ically reside in different administrative domains, run differ-
ent software, are subject to different access control policies,
and may be connected by networks with a widely varying
performance characteristics.

The Globus Toolkit [17, 3] is a collection of software
components designed to support the development of appli-
cations for high-performance distributed computing envi-
ronments, or “Grids” [18, 19]. Core components typically
define a protocol for interacting with a remote source, plus
an application program interface (API) used to invoke that
protocol. Higher-level libraries, services, tools, and appli-
cations use core services to implement more complex global
functionality.

MPICH-G2 [24] is a complete implementation of the
MPI v1.1 [8] standard that is specifically designed to run on
computational grids. It uses Globus Toolkit services to pro-
vide a single interface to securely launch applications that
can span many different administrative domains and to au-
tomatically convert data transferred between machines with
different architectures (e.g., big endian and little endian ma-
chines). Through the use of MPI idioms MPICH-G2 en-
ables running applications to discover process distribution
to, for example, create communicators that group processes
executing on the same location and also to manage network
heterogeneity by configuring inter-cluster network links to
use either multiple TCP streams and striped messages or
to use UDP with added reliability, both for increased band-
width utilization for large data transfers. MPICH-G2 also
takes advantage of its knowledge of the performance dif-

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:40:13 UTC from |IEEE Xplore. Restrictions apply.

ferences found in a grid’s heterogeneous network by imple-
menting grid topology-aware collective operations for im-
proved performance [22].

The developers of MPICH-G2 have recently completed
their latest MPI library called MPIg that is intended to be
MPICH-G2’s successor. MPlg, like MPICH-G2, is specifi-
cally designed to run on computational grids and also uses
services from the Globus Toolkit to securely launch appli-
cations and to automatically convert data. However, MPIg,
unlike MPICH-G?2 is based upon MPICH-2, the most recent
release from the MPICH group at Argonne National Labo-
ratory [1], and is fully integrated with the web services now
distributed in version 4.x of the Globus Toolkit (i.e., GT4).

MPIg has the same fundamental architecture as its pre-
decessor MPICH-G2 using a vendor-supplied MPI for intra-
cluster messaging where available and an [P-based protocol,
most commonly TCP, for inter-cluster messages across the
wide-area. In addition, however, there are two new low-
level features embedded deep within MPIg’s design.

First, while MPICH-G2 use the Globus-1O library from
the Globus Toolkit for its inter-cluster messaging MPIg
instead uses the more advanced Globus-XIO library [10].
This shift enables MPIg to take advantage of Globus-XIO’s
modular design to quickly implement and study protocols
other than TCP/IP. In the past implementing alternative
protocols like GridFTP [9], RBUDP [21], and UDT [20]
each required significant modification to MPICH-G2. Also,
Globus-XIO’s so-called “transformation module” makes it
easy for XIO users like MPIg to compose their own proto-
col stack (e.g., adding encryption or compression) for inter-
cluster messaging.

Second, and more importantly, MPIg now uses multi-
ple threads to transport messages. The greatest challenge
in developing successful MPI grid applications is dealing
with the network performance heterogeneity inherent in
grids. Inter-cluster network performance, as characterized
by latency and bandwidth, across the wide area often dif-
fers from faster intra-cluster networks by orders of magni-
tude. While the decrease in available bandwidth can play a
role, particularly for applications that send large messages
across the wide area, more often it is the latency, which
is measured in milliseconds to tens of milliseconds across
the wide area as opposed to a few microseconds within a
cluster, that proves to be the most problematic. Accord-
ingly, many message-passing applications are characterized
by their “latency tolerance” and application and middleware
groups spend a significant amount of their time searching
for “latency-hiding techniques”. When executed on multi-
core systems, like the ones used to conduct the experi-
ments described in this paper, MPIg’s multi-threaded design
now allows MPI applications to experience a true overlap
of computation and communication by calling MPI’s non-
blocking point-to-point messaging functions MPI_Isend and

MPI Irecv. MPIg applications that have used MPI_Isend
and MPI_Irecv to overlap computation and communication,
like the one we present in this paper, have found this to be
an effective latency-hiding technique.

The TeraGrid [7] is one of the largest distributed cyber-
infrastructure for scientific research that provides more than
102 Tflops of computing capability and more than 15 Pbytes
of online and archival data storage connected by high per-
formance networks. TeraGrid currently uses Globus Toolkit
4.0 [17].

Scientific applications may contain large loops inside
them which are one of the largest sources of parallelism. If
the iterations of a loop have no interdependencies, each iter-
ation can be considered as a task and can be scheduled inde-
pendently, which is commonly known as loop scheduling.
Loops can be scheduled statically at compile-time. This
scheduling has the advantage of minimizing the scheduling
time overhead, but it may cause load imbalancing when the
loop style is not uniformly distributed. Dynamic schedul-
ing adapts the assigned number of iterations whenever it is
unknown in advance how large the loop tasks are. On dis-
tributed systems these schemes can be implemented using a
master-slave model. See [12, 16] and references there-in.

Heterogeneous systems are characterized by heterogene-
ity and large number of processors. Such a system can be
part of a computational grid. Some significant distributed
schemes that take into account the characteristics of the dif-
ferent components of the heterogeneous system were stud-
ied in the past [13, 12, 25, 16, 14]. In this paper, we review
three important distributed schemes (DTSS, HDTSS and
TREES) which were the most efficient in previous studies
[12, 13]. We implemented these schemes on the TeraGrid
using MPICH-G2. DTSS is also implemented using MPIg
to study the communication cost for bulk data transfers. We
made performance tests using the Mandelbrot test problem.
As expected, the hierarchical DTSS (HDTSS), which is a
more scalable version of DTSS yields the best performance.

The rest of the paper is organized as follows. In Section
2, we review the distributed dynamic scheduling schemes
that are implemented in this paper. In Section 3, we pro-
vide the implementation details and discuss the simulation
results. Conclusions are drawn in Section 4.

2. Distributed Dynamic Loop Scheduling
Schemes

In this section, we review three distributed loop self-
scheduling schemes [13] that we implement using MPICH-
G2 on the TeraGrid. We use the following notations:

e PFE : Processor in the distributed system

e [: Total number of iterations in a parallel loop

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:40:13 UTC from |IEEE Xplore. Restrictions apply.

p : Number of slave PEs in the distributed system
which execute the computational tasks

Py, Py, ..., P, : pslave PEs in the system

Chunk : A few consecutive iterations

C'; : The chunk size at the 4-th scheduling step (i =
1,2...).

Self-scheduling is an automatic loop scheduling method
in which idle PEs request new loop iterations to be assigned
to them. These self-scheduling schemes are based on the
Master-Slave architecture model. Idle slave PEs send a re-
quest to the master for new loop iterations. The number of
iterations (chunk) a slave PE should be assigned is an im-
portant issue. Due to PEs heterogeneity and communication
overhead, assigning the wrong PE a large number of itera-
tions at the wrong time, may cause load imbalancing. Also,
assigning a small number of iterations may cause too much
communication and scheduling overhead.

2.1. Distributed Trapezoid Self-Scheduling
(DTSS)

The DTSS [13] takes into account the processing
speeds of the slave PEs in assigning tasks to them.
The virtual power V; (¢ = 1,...,p) of a slave PE P,
¢z = 1,...,p) is computed by the master PE as: V;
= Speed(P;) /mini<i<p{Speed(P;)}, where Speed(FP;) is
the CPU-Speed of F;. Thus, the total virtual computing
power of the system, V, is givenby: V = 37 V;.

Let ; denote the number of processes in the run-queue
of P, reflecting the total load of F;. Then the available com-
puting power (ACP), 4, (i = 1,...,p) of a slave PE is

given by: A; = U?/

J . Thus, the total available computing

power of the system, 4, is givenby: A =0 A,
The chunk sizes (C';) are calculated using a chunk decre-

ment. The decrement, D, is given by D = Hg:?; J , where

F'is the first chunk given by L%J , L is the last chunk which

can be set to a threshold and N is a value given by {%-‘ .

DTSS algorithm:
Master:

1. (a) Receive all Speed(P;).
(b) Compute all V;.
(¢) Send all V;.

2. (a) Receive A;; sort A; in decreasing order and store
them in a temporary ACP Status Array (ACPSA). For
each A;, place a request in a queue in the sorted order.
Calculate A.

(b) Calculate F" and D.

3. (a) While there are unassigned iterations, if a request
arrives, put it in the queue and store the newly received
A, if it is different from the ACPSA entry.

(b) Pick a request from the queue, assign the next
chunk CZ = Az * (F — D x (Si—l + (Az — 1)/2)),
where: S; 1 = A1 + ..+ 4; 1.

(c) If more than half of the 4; changed since the last
time, update the ACPSA and go to step 2, with total
number of iterations [set to the number of remaining
iterations.

Slave :

1. (a) Send Speed(P;);
(b) Receive V; .

2. Obtain the number of processes in the run-queue ;
and calculate A;. If (4; < Threshold), repeat step 2.

3. Send a request (containing its A;).
4. Wait for a reply.

e If more tasks arrive, compute the new tasks, go
to step 2.

e Terminate.
2.2. Hierarchical DTSS (HDTSS)

In a centralized scheme (DTSS), where a single node (the
master) is in charge with the load distribution, performance
degradation may occur when the problem size increases.
This means that for a large problem (and a large number
of processors) the master becomes a bottleneck. The access
to the synchronized resources (variables) will take a long
time, during which many processors will idle waiting for
service, instead of doing useful work.

In HDTSS [13], instead of making one master process
responsible for all the workload distribution, new master
processes are introduced. Thus, the hierarchical structure
contains a lower level, consisting of slave processes, and
several superior levels, of master processes. On top, the hi-
erarchy has an overall super-master. The level of slaves use
the DTSS for load balancing.

Figure 1 shows this design for two levels of master pro-
cesses. The slaves are using DTSS when communicating
with their master. The super-master <> master commu-
nication applies the DTSS algorithm with master replaced
by super-master and slaves replaced by masters. The Mas-
ters do not perform any computation. They only assign
tasks to slaves from the pool of tasks that they obtain peri-
odically from the super-master. They communicate with the
super-master only when they run out of tasks for their clus-
ter. The dotted lines surround processes that can be assigned
to the same physical machine, for improved performance.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:40:13 UTC from |IEEE Xplore. Restrictions apply.

Master 3 Master
A AN DTSS
Slave || Slave Slave Slave || Slave Slave

Figure 1. Hierarchical DTSS (two levels of
masters)

HDTSS algorithm:

SuperMaster: Perform the DTSS-Master steps.
Master: Perform the DTSS-Master and DTSS-Slave steps.
Slave: Perform the DTSS-Slave steps.

2.3. Tree Scheduling (TREES)

TREES [14, 25] is a distributed load balancing scheme
that statically arranges the processors in a logical communi-
cation topology based on the computing powers of the pro-
cessors involved. When a processor becomes idle, it asks
for work from a single, pre-defined partner (its neighbor on
the left). Half of the work of this processor will then migrate
to the idling processor. Figure 2 shows the communication
topology created by TREES for a cluster of 4 processors.
Note that Fy is needed for the initial task allocation and the
final I/O.

Figure 2. The Tree topology

An idle processor will always receive work from the
neighbor located on its left side, and a busy processor

will always send work to the processor on its right. The
main success of TREES is the distributed communication,
which leads to good scalability. The main disadvantage of
this scheme is its sensitivity to the variation in computing
power. The communication topology is statically created,
and might not be valid after the algorithm starts execut-
ing. For example, if a workstation which was known to be
very powerful becomes severely overloaded by other appli-
cations, its role of taking over the excess work of the slower
processors is impaired. This means that the excess work has
to travel more until reaching an idle processor or that more
work will be done by slow processor, producing a large fin-
ish time for the problem.

3. Implementation and Test Results
3.1. Implementation

The scheduling schemes are implemented using the dis-
tributed programming framework offered by MPICH-G2
v1.2.6 [24]. In order to study the communication cost for
bulk data transfers, the DTSS scheduling scheme is also im-
plemented using MPIg and compared with its MPICH-G2
implementation. The MPIg version of the DTSS schedul-
ing scheme was modified to replace the calls to the block-
ing MPI functions MPI_Send and MPI_Recv with calls to
the non-blocking functions MPI_Isend and MPI_Irecv. To
evaluate the performance of the scheduling schemes, we
conducted single-site runs and cross-site runs on the Ter-
aGrid. The single-site runs are conducted at the University
of Chicago-Argonne National Laboratory (UC-ANL) site of
the TeraGrid and the cross-site runs are conducted at UC-
ANL and San Diego Supercomputer Center (SDSC) sites
of the TeraGrid. The UC-ANL and SDSC TeraGrid sites
have a cluster of IBM nodes, each with dual 1.5 GHz Intel
Itanium-2 (IA-64) processors with 4 GB of physical mem-
ory, connected by Myrinet Gigabit interconnect network.

The test problem used is the Mandelbrot computation
[27] for a matrix size (problem size) ranging from 8000 x
4000 to 30000 x 15000. The Mandelbrot computation is
a doubly nested loop without any dependencies. The com-
putation of one column of the Mandelbrot matrix is consid-
ered the smallest schedulable unit. In case of the master-
slave schemes (DTSS and HDTSS), the master accepts re-
quests from the slaves PEs and services them in the order of
their arrival. For each request, it replies with a pair of num-
bers representing the number of columns and the interval of
columns the slave PE should work on. In case of TREES,
the master assigns the columns to the slave PEs in the ini-
tial allocation stage. Further requests of the slaves will be
to their pre-defined partners.

We performed simulations with the number of slaves (p)
ranging from 1 to 32. The size of the test problem is such

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:40:13 UTC from |IEEE Xplore. Restrictions apply.

that it does not cause any memory swaps. So, the virtual
powers (V;, + = 1,...,p) depend only on the processor
speeds. To create a heterogeneous environment, we put
an artificial load (one continuously running matrix multipli-
cation process) in the background on p/4 slaves and three
loads on another p/4 slaves. The slaves with three loads in
the background are assumed to have V; = 1, slaves with one
load in the background are assumed to have V; = 2 and the
slaves without any load are assumed to have V; = 4. This
was verified by timing any program running on a single ma-
chine of the above three types.

In case of single-site runs (at UC-ANL) with p slaves,
all the p slave PEs (slow and fast) and the master PEs (for
DTSS, HDTSS and TREES) and the super-master PE (for
HDTSS) are made to run at the same site. In case of cross-
site runs for DTSS and TREES, the master PE is made to
run at UC-ANL and p/2 of the slave PEs are at UC-ANL
and the other p/2 are at SDSC. Among the p/2 slave PEs
that are at different sites, half of them have V, = 4, one-
quarter have V; = 2 and the other one-quarter have V; = 1.

In the case of HDTSS cross-site runs, the slave PE distri-
bution is similar to the slave distribution of cross-site DTSS
and TREES. The super-master PE and one master PE are
made to run at UC-ANL and the other master PE is made to
run at SDSC. By this implementation of HDTSS, all the
slave PEs at SDSC communicate with the master PE at
SDSC which in turn communicates with the super-master
PE at UC-ANL. This implementation of HDTSS reduces
the communication between the sites which may not be pos-
sible in the case of DTSS and TREES.

3.2. Results

In this section, we present the results of the experiments
performed. Texec denotes the total execution time measured
on the master PE (super-master PE in the case of HDTSS)
(Note: seconds is denoted by sec or s, and minutes by m).

Figure 3 shows the Texec of DTSS, HDTSS and TREES
for problem size ranging from 8000 x 4000 to 30000 x
15000 when implemented on a single-site (UC-ANL). It can
be observed that for all problem sizes, HDTSS shows bet-
ter load balance and performance compared to DTSS and
TREES.

In Figure 4, we present the cross-site (UC-ANL and
SDSC) implementation results of DTSS, HDTSS and
TREES. It can be observed that the performance of all the
schemes is similar to the single-site performance. For all
problem sizes, HDTSS shows superior performance com-
pared to DTSS and TREES.

In the single-site and cross-site runs, the total communi-
cation time of the slaves with the master is around 2 and 4
seconds respectively for all the schemes for large problem
sizes. This low value in communication time is because

[Jb1ss

[IHDTSS
I TREES
25| ™

on el HHI]

8000%4000 100005000 150008000 20000%10000 30000%15000
Problem size

Figure 3. Single-site execution times of
DTSS, HDTSS and TREES for various prob-
lem sizes

the slaves does not send the computed results back to the
master. They only send a request for work and receive a re-
ply. These messages are small in size. In case of HDTSS,
the communication time between the super-master and lo-
cal master is around 0.001 sec whereas the communication
time between the super-master and the master on the remote
site is around 0.1 sec. This low communication between the
super-master and the masters is because, the chunk sizes
allocated by the super-master to the masters are very large
when compared to the chunk sizes allocated by the masters
to the slaves. So, the masters make fewer requests to the
super-master and the communication times are low.

Figures 5, 6 and 7 compare the single-site and cross-
site performance of DTSS, HDTSS and TREES respec-
tively. It can be observed that the multi-site Texec of all
the schemes is very much comparable with their single-site
Texec. This is because, cross-site communications are based
on MPICH-G2 library. MPICH-G2 selects the most effi-
cient communication method possible between two PEs. It
automatically selects TCP for intermachine messaging and
vendor-supplied MPI for intramachine messaging. These
results show that the scheduling schemes are adaptable to a
grid environment.

In Figure 8, we present the speedup of all the schemes
with increasing number of slave PEs when implemented
on a single-site (UC-ANL). We computed the speedup ac-
cording to the equation: S, = min{T,,,Tp,,..., Ty, }/T},
where T}, is the execution time on one PE and 7, is the
execution time on p PEs. It can be observed that, as the
number of PEs increase, the speedup of all the schemes im-
proves which shows that the schemes are scalable. How-

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:40:13 UTC from |IEEE Xplore. Restrictions apply.

[Jotss

[IHDTSS
[TREES
251

Texec (sec)
.

W HI

8000#4000 100005000 150008000 20000%10000 30000%15000
Problem size

Figure 4. Cross-site execution times of DTSS,
HDTSS and TREES for various problem sizes

ever, HDTSS is the most scalable.

Figure 9 shows the speedup of all the schemes with in-
creasing number of slave PEs when implemented across
the sites (UC-ANL and SDSC). Again, HDTSS is the most
scalable scheme. The cross-site speedups of the schemes
are comparable to the single-site speedups which shows
their adaptability to a grid environment.

To study the communication cost for bulk data transfers,
we simulated DTSS when computed data is sent back to the
master by the slaves for problem sizes ranging from 50000
% 50000 to 100000 x 100000. The MPIg implementation
of DTSS utilizes threads to perform wide-area communica-
tion while the application proceeds with computation.

In Table 1, we present the total execution time and com-
munication time (Tcomm) of MPICH-G2 and MPIg imple-
mentation of DTSS for 32 slaves. The simulations were
made across sites. From Table 1, it can be observed that
there is a significant decrease in the Tcomm of DTSS MPIg
implementation compared to DTSS MPICH-G2 implemen-
tation for various problem sizes.

On a single core system, where the application must
share the processor core with the communication threads,
the time to perform the computation may increase as the
communication threads interrupt to send or receive more
data. The performance impact depends on several factors;
however, in most cases, the communication threads are not
highly active and thus the performance impact to the com-
putation is typically small. Furthermore, because commu-
nication only requires use of the processor for a small per-
cent of the communication time, the reduction in overall
execution time resulting from the overlap of communica-
tion and computation normally far exceeds the cost of the

=¥~ UC-ANL single site
- UC-ANLISDSC cross site

Texec (sec)

I I I
80004000 100005000 150008000 20000%10000 30000%15000
Problem size

Figure 5. Comparison of single-site and
cross-site execution times of DTSS for vari-
ous problem sizes

Table 1. Execution and communication times
of MPICH-G2 and MPlg implementation of
DTSS

Problem size MPI Impl. | Texec | Tcomm
50000 x 50000 MPICH-G2 | 1m 58s 46s
50000 x 50000 MPIg 1m 28s 14s
75000 x 75000 MPICH-G2 | 3m27s | 1m 14s
75000 x 75000 MPIg 3m 20s 36s
100000 x 100000 | MPICH-G2 | 6m 36s | 2m4s
100000 x 100000 MPIg 6m?27s | 1m l4s

interruptions. It should also be noted that for grid applica-
tions whose computation time exceeds its communication
time, which is the best case scenario, the overlap in compu-
tation and communication will typically result in virtually
no observable time spent in communication. In other words,
the message passing time will be completely masked by the
computation.

On a multi-core system, dedicating one or more cores on
which the communication threads may execute can nearly
eliminate the impact of those threads. Although, reserv-
ing a core for communication may only be useful if suf-
ficient communication exists to keep the core busy; other-
wise, application performance may still peak when all cores
are performing computation, even though the communica-
tion threads will occasionally interrupt that computation.
The exact ratio of cores available for computation and cores
dedicated to communication is an issue for further study.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:40:13 UTC from |IEEE Xplore. Restrictions apply.

—¥~ UC-ANL single site

- UC-ANL/SDSC cross site

Texec (sec)
.

I
150008000
Problem size

I
20000%10000

I
10000*5000

80004000 30000%15000

Figure 6. Comparison of single-site and
cross-site execution times of HDTSS for vari-
ous problem sizes

4. Conclusions and Future Work

In this paper, we have implemented three dynamic loop
scheduling schemes on the TeraGrid using the MPICH-
G2 communication platform. We also implemented the
DTSS scheduling scheme in MPIg and compared it with the
MPICH-G?2 implementation. There we found a significant
improvement in communication time when using MPIg and
its multi-threaded implementation. We performed simula-
tions on two TeraGrid sites and compared them with single-
site simulations. Our results show that the cross-site per-
formance of the schemes is very comparable to their single-
site performance showing the adaptability of these schemes
to a multi-site grid environment. The hierarchical scheme
showed superior performance compared to the other two
schemes.

In future work, we plan to use a multi-thread approach
to have the master’s in DTSS and HDTSS implemented on
one of the slave PEs in order to make efficient use of the
available PEs. We also plan to implement and compare
other proposed scheduling schemes (e.g., factoring) using
MPICH-G2 and MPIg and to involve more sites and more
computers in the simulations.

Acknowledgements

The authors acknowledge the support by the National
Science Foundation under grants CCR-0312323 and OCI-
0330664. Computer time for the TeraGrid was provided
by the University of Chicago-Argonne National Labora-
tory (UC-ANL) and the San Diego Supercomputer Center
(SDSC).

80004000

Texec (sec)

=¥~ UC-ANL single site 3
- UC-ANLISDSC cross site

I
150008000
Problem size

I I
100005000 20000%10000 30000%15000

Figure 7. Comparison of single-site and
cross-site execution times of TREES for vari-
ous problem sizes

References

(1]
(2]

(3]
(4]

(5]
(6]
(7]
(8]

[9

—

(10]

(11]

http://www.mcs.anl.gov/mpi/mpich2.

European commission enabling grids for E-sciencee.
http://public.eu-egee.org.

The Globus alliance. http://www.globus.org.
Japan national research grid
http://www.naregi.org/index-e.html.

United States department of energy earth system grid.
http://www.earthsystemgrid.org.

United States department of energy open science grid.
http://www.opensciencegrid.org.

United States National Science Foundation Teragrid.
http://www.teragrid.org.

Mpi: A message-passing interface standard. Message Pass-
ing Interface Forum, International Journal of Supercom-
puter Applications, 8(3/4):159-416, 1994.

B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke. Secure, efficient data transport and replica man-
agement for high-performance data-intensive computing. In
IEEE Mass Storage Conference, 2001.

W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link. The
Globus extensible Input/Output system (XIO): A protocol
independent 1O system for the grid. In Proceedings of the
Joint Workshop on High-Performance Grid Computing and
High-Level Parallel Programming Models held in conjunc-
tion with International Parallel and Distributed Processing
Symposium (IPDPS 2005), Denver, CO, April 2005.

G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ri-
peanu, E. Seidel, and B. Toonen. Supporting efficient execu-
tion in heterogeneous distributed computing environments
with cactus and globus. In SC’ 2001, Denver, CO. Gor-
don Bell Prize Winner, Special Category, November 10-16,
2001.

initiative.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:40:13 UTC from |IEEE Xplore. Restrictions apply.

Speedup

24

10 12 14 16 18 20 22 24 26 28 30

Number of processors (P)

32

Figure 8. Speedup of DTSS, HDTSS and
TREES with number of processors (Single-
site)

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A. T. Chronopoulos, S. Penmatsa, J. Xu, and S. Ali. Dis-
tributed loop-scheduling schemes for heterogeneous com-
puter systems. Concurrency and Computation: Practice and
Experience, 18(7):771-785, 2006.

A. T. Chronopoulos, S. Penmatsa, N. Yu, and D. Yu. Scal-
able loop self-scheduling schemes for heterogeneous clus-
ters. Intl. Jrnl. of Computational Science and Engineering,
1(2/3/4):110-117, 2005.

S. P. Dandamudi and T. K. Thyagaraj. A hierarchical pro-
cessor scheduling policy for distributed-memory multicom-
puter systems. In Proc. of the 4th International Conference
on High-Performance Computing, pages 218-223, Nagoya,
Japan, 1997.

S. Dong, N. T. Karonis, and G. E. Karniadakis. Grid so-
Iutions for biological and physical cross-site simulations on
the teragrid. In Proc. of IEEE Intl. Parallel and Distributed
Proc. Symp., Rhodes Island, Greece, April 25-29, 2006.

Y. W. Fann, C. T. Yang, S. S. Tseng, and C. J. Tsai. An
intelligent parallel loop scheduling for parallelizing compil-
ers. Journal of Information Science and Engineering, pages
169-200, 2000.

I. Foster. Globus toolkit version 4: Software for service-
oriented systems. In IFIP Intl. Conf. on Network and Par-
allel Computing, pages 2—13, Springer-Verlag LNCS 3779,
2006.

I. Foster and C. Kesselman. The globus project: A status re-
port. In IEEE Proc. of the Heterogenous Computing Work-
shop, pages 4-18, 1998.

I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kauffman, 1999.

Y. Gu and R. L. Grossman. Supporting configurable conges-
tion control in data transport services. In SC 2005 Confer-
ence, Seattle, WA, November 12-18, 2005.

Speedup

12 14 16 18 20 22 24 26 28 30
Number of processors (P)

32

Figure 9. Speedup of DTSS, HDTSS and
TREES with number of processors (Cross-
site)

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

E. He, J. Leigh, O. Yu, and T. DeFanti. Reliable blast udp:
Predictable high performance bulk data transfer. In IEEE
Cluster Computing, 2002.

N. Karonis, B. de Supinski, I. Foster, W. Gropp, W. Lusk,
and J. Bresnahan. Exploiting hierarchy in parallel comput-
ing networks to optimize collective operation performance.
In 14th Intl. Parallel and Distributed Proc. Symp., pages

377-384, Cancun, Mexico, May 2000.

N. Karonis, M. Papka, J. Binns, J. Bresnahan, J. Insley,
D. Jones, and J. Link. High-resolution remote rendering of
large datasets in a collaborative environment. Future Gen-
eration of Computer Systems (FGCS), 19(6):909-917, Aug
2003.

N. T. Karonis, B. Toonen, and I. Foster. Mpich-g2: A grid-
enabled implementation of the message passing interface.
Journal of Parallel and Distributed Computing, 63(5):551—
563, May 2003.

T. H. Kim and J. M. Purtilo. Load balancing for parallel
loops in workstation clusters. In Proc. of Intl. Conference
on Parallel Processing, pages 182-190, Bloomingdale, IL,
USA, 1996.

K. Mahinthakumar, M. Sayeed, and N. T. Karonis. Grid en-
abled solution of groundwater inverse problems on the tera-
grid network. In High Performance Computing Symp. (HPC
2006), Huntsville, AL, April 2-6, 2006.

B. B. Mandelbrot. Fractal Geometry of Nature. W.H. Free-
man & Co, 1988.

B. Y. Mirghani, M. E. Tryby, D. A. Baessler, N. T. Karo-
nis, R. S. Ranhthan, and K. G. Mahinthakumar. Develop-
ment and performance analysis of a simulation-optimization
framework on teragrid linux clusters. In The 6th LCI Inter-
national Conference on Linux Clusters: The HPC Revolu-
tion 2005, Chapel Hill, NC, April 26-28, 2005.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 15:40:13 UTC from |IEEE Xplore. Restrictions apply.

