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Abstract— Distributed Computing Systems are a viable and
less expensive alternative to parallel computers. However, a
serious difficulty in concurrent programming of a distributed
system is how to deal with scheduling and load balancing of
such a system which may consist of heterogeneous computers.
Loop scheduling schemes for parallel computers and computer
clusters have been proposed in the past. All these schemes
are one-dimensional because they partition only the outermost
loop of a nested loop construct. In this work, we consider
scheduling nested loops with many dimensions. We propose a
new methodology which partitions many levels (or dimensions)
of nested loops. These new schemes show superior performance
over the existing schemes. We implement our new schemes on
a network of computers and make performance comparisons
with other existing schemes. We expect the new schemes to be
particularly useful for multi-core systems because of the fine
granularity of the generated tasks.

I. INTRODUCTION

Loops are one of the largest sources of parallelism in
scientific programs. If the iterations of a loop have no inter-
dependencies, each iteration can be considered as a task and
can be scheduled independently. Such parallel loops are often
called DOALL loops. The loops that have interdependencies
are often called DOACROSS loops. Loop scheduling schemes
for parallel and distributed systems have been proposed and
studied in the past. For example, See ([1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22]) and references therein.

Heterogeneous systems are characterized by heterogeneity
and large number of processors. Some distributed schemes
that take into account the characteristics of the different com-
ponents of the heterogeneous system were devised in the past;
for example: 1) Tree Scheduling and 2) Weighted Factoring
([7], [3]). Distributed loop scheduling schemes, which can
be applied to DOALL and DOACROSS loops and take into
account the available computing powers of the computers,
have also been devised ([4], [23], [24], [13]).

This work was supported in part by the National Science Foundation under grant
CCR-0312323. A.T.Chronopoulos is an IEEE Senior Member, L.M.Ni is an
IEEE Fellow and S.Penmatsa is an IEEE Student Member.

In this article, we review some well known scheduling
schemes for DOALL loops. The ‘simple’ versions of these
schemes are the versions suitable for homogeneous systems
with single-user-job (dedicated) execution mode. The ‘dis-
tributed’ versions are suitable for heterogeneous systems.
A key issue in achieving high (delivered) performance in
concurrent processing lies in scheduling nested program loops
to execute as efficiently as possible. All the dynamic schedul-
ing schemes (previously proposed) partition only the out-
ermost loop of a program loop structure and assign tasks
(chunks) to the processors. This is not efficient for multi-
dimensional nested loops. All the previous ‘multi-dimensional’
loop scheduling schemes for nested loops (e.g. [25]) are static.
Thus, these methods are inefficient when the loop tasks sizes
are unequal. This calls for devising new ‘multi-dimensional’
dynamic loop scheduling methods. To our knowledge this has
not been attempted before.

Here, we propose new dynamic loop scheduling schemes
for computing nested DOALL loops on parallel and distributed
systems. We implemented the new schemes (in C++ and MPI)
on a network of computers. We show that the new schemes
are superior to the previous schemes by simulation results on
nested loops with irregular iterations task sizes.

The following are common notations used throughout the
entire paper:

• PE is a processor in the parallel or heterogeneous
system.

• I is the total number of iterations of a parallel loop.
• p is the number of worker PEs in the parallel or hetero-

geneous system which execute the computational tasks.
• P1, P2,..., Pp represent the p worker PEs in the system.
• N is the number of scheduling steps (= the total number

of chunks).
• A few consecutive iterations are called a chunk. Ci is the

i-th chunk-size (where: i = 1, 2, . . . , N ). The i-th chunk
is assigned to the ki (where: ki ∈ {1, 2, . . . , p}) worker
PE making the i-th request.

• Ri is the remaining number of tasks after scheduling the
i-th chunk.
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• L ≥ 1 is a ‘threshold’ chunk-size chosen by the user
or the system. If the chunk-size in a scheduling scheme
drops below this threshold (i.e. Ci < L) then it is set
equal to it (i.e. Ci = L). If no threshold is set then the
chunk-size can become 1 for several scheduling steps.

• tj , j = 1, .., p, is the execution time of Pj to finish all
the tasks assigned to it by the scheduling scheme.

• Tp = maxj=1,..,p (tj), is the parallel execution time of
the loop on p worker PEs.

In Section II, we present some examples of nested (DOALL)
loops. In Section III, we present simple loop scheduling
schemes for DOALL loops. In Section IV, we present dis-
tributed loop scheduling schemes. In Section V, we present
new multi-dimensional loop scheduling schemes. In Section
VI, we present our implementation and simulation results. In
Section VII, we discuss conclusions and future work.

II. NESTED LOOP EXAMPLES

In this section, we give examples of nested parallel loops
or DOALL loops. We consider the following nested loop
model, which we call m-dimensional (mD) loop.

Do j1 = J1
1 , J2

1

Do j2 = J1
2 , J2

2

..
Do jm = J1

m, J2
m

program statements
ENDO

..
ENDO

ENDO

where J1
n, J2

n are the lower and upper loop bound for the n-th
(n = 1, . . . ,m) loop. For simplicity we assume that the loop is
one-way nested (i.e. each loop contains only one immediately
inner loop). We assume that the upper and lower bounds are
constant. We use the following notation: In = J2

n − J1
n (for

n = 1, . . . , m) to denote the number of loop iterations in each
loop. For the 1D loops we drop the subscript in In and we
simply write I for the number of loop iterations.

We next present examples of DOALL loops, with m =
2 (i.e. 2-dimensional). L(i) represents the execution time
for iteration i (see also [26]). A parallel loop is uniformly
distributed if the execution times of all the iterations are the
same, i.e. the iterations have the same L(i). The following is
an example where the same instruction is executed in each
iteration:

DOALL K = 1 TO I
DOALL L = 1 TO J2

X[K,L] = X[K,L] + A
END DOALL

END DOALL

The following code fragments corresponds to linearly dis-
tributed loops (increasing and decreasing, respectively).

/* increasing */
DOALL K = 1 TO I
DOALL L = 1 TO J2

Serial DO J = 1 TO K
Serial Loop Body
End Serial DO

END DOALL
END DOALL

/* decreasing */
DOALL K = 1 TO I
DOALL L = 1 TO J2

Serial DO J = 1 TO I-K+1
Serial Loop Body
End Serial DO

END DOALL
END DOALL

A conditional loop, which may result from IF statements is
presented below:

DOALL K = 1 TO I
DOALL L = 1 TO J2

IF(Expression1) THEN
Block1

ELSE
Block2

ENDIF
END DOALL

END DOALL

Following is an example of an irregular loop style representing
the loop distribution required by the Mandelbrot set computa-
tion [27].

ALGORITHM
MSetLSM(MSet,nx,ny,xmin,xmax,ymin,ymax,maxiter)

BEGIN
FOR iy = 0 TO ny-1 DO
cy = ymin+iy*(ymax - ymin)/(ny - 1)
FOR ix = 0 TO nx-1 DO

cx = xmin+ix*(xmax - xmin)/(nx - 1)
MSet[ix][iy]=MSetLevel(cx,cy,maxiter)

END FOR
END FOR
END

ALGORITHM MSetLevel(cx,cy,maxiter)

BEGIN
x = y = x2 = y2 = 0.0, iter = 0
WHILE(iter < maxiter)AND(x2 + y2 < 2.0)DO
temp = x2 - y2 + cx
y = 2*x*y + cy
x = temp
x2 = x*x
y2 = y*y
iter = iter + 1
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END WHILE
RETURN(iter)
END

The more information is available about the loop style, the
easier it is to load balance the computation in an efficient
manner. The simplest loops for scheduling are those for which
the required amount of computation for each iteration is known
at compile time. Another class of loops are the predictable
loops for which we cannot determine the iteration sizes, but
they can be ordered. The most difficult class of loops are the
irregular loops that cannot be ordered. This class of loops is
the most severe test for a scheduling scheme.

We use, in our tests, the Mandelbrot fractal computation
algorithm [27] on the domain [-2.0, 2.0] × [-2.0, 2.0], for dif-
ferent window sizes (for example 4000 × 4000, 8000 × 8000,
and so on). The algorithm uses unpredictable irregular loops.
In our tests, the computation of one column is considered the
smallest unit that can be scheduled independently (i.e. a task).
Thus, every iteration corresponds to the computation of the
data associated with one column.

III. SIMPLE DOALL LOOP SCHEDULING SCHEMES

Dynamic or self-scheduling is an automatic loop scheduling
method in which idle PEs request new loop iterations to be
assigned to them. We will also study these methods from
the perspective of both parallel and distributed systems. For
this, we use the Master-Worker architecture model (Fig. 1).
Idle worker PEs communicate a request to the master for
new loop iterations. The number of iterations a PE should
be assigned is an important issue. Due to possible worker
PEs heterogeneity and communication overhead, assigning the
wrong PE a large number of iterations at the wrong time, may
cause load imbalancing. Also, assigning a small number of
iterations may cause too much communication and scheduling
overhead.

MASTER

Worker 1 Worker 2 Worker 3 Worker p

Idle Busy Busy Busy

Request task

Assign task

Fig. 1. Self-Scheduling schemes: the Master-Worker model

In a generic self-scheduling scheme, at the i-th scheduling
step, the master computes the chunk-size Ci, a starting (iter-
ation) index istart, and the remaining number of tasks Ri as
follows.

Initially, we have R0 = I , istart = J1
1 . The Master

computes the chunk-size for the i-th scheduling step:

Ci = f(Ri−1, p), (1)

where f(., .) is a function possibly of more inputs than just
Ri−1 and p. Then the master assigns to a worker PE Ci tasks
and a starting (iteration) index istart. Then the istart and Ri

for the next scheduling step are updated:

istart = istart + Ci, Ri = Ri−1 − Ci. (2)

When the user or the system has chosen a ‘threshold’ last
chunk-size L > 1, then the computation of Ci must be
modified by adding: If (Ci < L) then Ci = L.

Algorithm (Simple Scheme):

Master:

• Receive a new request from a worker for tasks.
• If(Ri > 0) then

– Compute Ci, istart and Ri from eqs. (1) - (2) above.
– Send a new task (starting index istart and size Ci)

to the worker.

Else

– Send ‘terminate’ signal to (requesting) workers.

Worker:

• Send a request to Master.
• Receive new tasks or ‘terminate’ signal.
• Perform tasks or terminate.

The different ways to compute Ci has given rise to differ-
ent scheduling schemes. The most notable examples are the
following (e.g. See ([3], [4], [14], [18], [24]) and references
therein).

Trapezoid Self-Scheduling (TSS): Ci = Ci−1 − D, with
(chunk) decrement: D =

⌊
(F−L)
(N−1)

⌋
, where: the first and last

chunk-sizes (F, L) are user/compiler-input or (by default) F =⌊
I
2p

⌋
, and L = 1. The number of scheduling steps assigned:

N =
⌈

2∗I
(F+L)

⌉
. Note that (i) The chunks sizes are given by

the formula CN = F − (N − 1)D and CN ≥ 1 due to integer
divisions; (ii) The number of scheduling steps are: 2p ≤ N ≤
4p.

Chunk Self-Scheduling (CSS): Ci = l, where l ≥ 1 (known
as chunk size is chosen by the user). For l = 1, CSS is the
so-called (pure) Self-Scheduling (SS) and for l = I/p, CSS
is the so-called Fixed-size (FS) scheme. There is an increased
chance of load imbalance due to difficulty to predict an
optimal l. It is static. It has reduced communication/scheduling
overheads. Note that N = I/l.

Guided Self-Scheduling (GSS): Ci = �Ri−1/p�. This is
a dynamic scheme with a non-linear chunk-size function. It
assigns large chunks initially, which implies reduced commu-
nication/scheduling overheads in the first scheduling steps. A
modified version GSS(l) with minimum assigned chunk-size
l attempts to improve on the weaknesses of GSS. Note that
the number of scheduling steps satisfies p ≤ N ≤ pHn, where
Hn = ln(n) + γ/(2n), γ = 0.5772157 and n = �I/p�.
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TABLE I

SAMPLE CHUNK SIZES FOR I = 1000 AND p = 4

Scheme Chunk size
FS 250 250 250 250
SS 1 1 1 1 1 ...
CSS k k k k k ...
GSS 250 188 141 106 79 59 45 33 25 19 14 11

8 6 4 3 3 2 1 1 1 1
FSS 125 125 125 125 62 62 62 62 32 32 32 32

16 16 16 16 8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1
TSS 125 117 109 101 93 85 77 69 61 53 45 37

28

Factoring Self-Scheduling (FSS): FSS consists of rounds
of p scheduling steps. In each round ir the master distributes
�Rir−1/2� iterations to the p workers. Thus, Cp∗ir+n =
�Rir−1/2p�, for n = 1, . . . , p and the remaining iterations
are Rir

= Rir−1/2. We note that the number of scheduling
steps satisfies p ≤ N ≤ 1.44p ln(I/p).

Since each scheduling step involves master-worker commu-
nication, the number of scheduling steps plays an important
role in the overall communication cost. The load imbalance
depends on the execution time difference between tj , for
j = 1, . . . , p. This difference may be large if the first chunk
is too large. There is a detailed theoretical analysis of these
schemes in [8].

Example 1: We show here the chunk sizes selected by the
self-scheduling schemes discussed above. Table I shows the
different chunk sizes for a problem with I = 1000 and p = 4.
For CSS, k represents the fixed chunk size.

IV. DISTRIBUTED DYNAMIC LOOP SCHEDULING SCHEMES

Load balancing in distributed systems is a very important
factor in achieving near optimal execution time. To offer load
balancing, loop scheduling schemes must take into account
the processing speeds of the computers forming the system.
The PE speeds are not precise, since memory, cache structure
and even the program type will affect the performance of PEs.
However, one must run simulations to obtain estimates of the
throughputs and one must show that these schemes are quite
effective in practice.

One characteristic of the distributed systems is their het-
erogeneity. The load balancing methods adapted to distributed
environments usually take into account the processing speeds
of the computers forming the cluster. The relative computing
powers are used as weights that scale the size of the sub-
problem each processor is assigned to compute. This is shown
to improve sometimes significantly the total execution time
when a heterogeneous computing environment is used.

A. Tree Scheduling (TREES)

TREES ([5], [7]) is a distributed load balancing scheme that
statically arranges the processors in a logical communication
topology based on the computing powers of the processors
involved. When a processor becomes idle, it asks for work

from a single, pre-defined partner (its neighbor on the left).
Half of the work of this processor will then migrate to the
idling processor. Fig. 2 shows the communication topology
created by TREES for a cluster of 4 processors. Note that P0

is needed for the initial task allocation and the final I/O.

P1 P2 P3 P4

Task Migration Network

P0

Fig. 2. The Tree topology

An idle processor will always receive work from the neigh-
bor located on its left side, and a busy processor will always
send work to the processor on its right. The main success
of TREES is the distributed communication, which leads
to good scalability. The main disadvantage of this scheme
is its sensitivity to the variation in computing power. The
communication topology is statically created, and might not
be valid after the algorithm starts executing. For example, if
a workstation which was known to be very powerful becomes
severely overloaded by other applications, its role of taking
over the excess work of the slower processors is impaired. This
means that the excess work has to travel more until reaching
an idle processor or that more work will be done by a slow
processor, producing a large finish time for the problem.

B. Distributed Trapezoid Self-Scheduling (DTSS)

Distributed versions of the self-scheduling schemes have
been derived and studied in ([4], [28], [24]) for (non)dedicated
heterogeneous distributed environments (i.e. the application
shares the system with other users jobs running at the same
time). Here for simplicity we only consider the dedicated (to a
single user job) system case. Also, we consider only the Trape-
zoid scheme. Our study extends easily to the other distributed
self-scheduling schemes. In the dedicated environment case,
DTSS takes into account the processing speeds of the worker
PEs in assigning tasks to them. The virtual power Vj (j =
1, . . . , p) of a worker PE Pj (j = 1, . . . , p) is computed by
the master PE as: Vj = Speed(Pj)/min1≤j≤p{Speed(Pj)},
where Speed(Pj) is the CPU-Speed of Pj . Thus, the total
virtual computing power of the system, V , is given by: V =∑p

j=1 Vj . In our algorithms implementation we only consider
virtual powers which are integers. Thus, Vj = 1, 2, . . .. We
note that for homogeneous systems : Vj = 1 (j = 1, . . . , p).

The chunk sizes (Ci) (for i = 1, . . . ) are calculated using
a chunk decrement. The decrement, D, is given by D =
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⌊
(F−L)
(N−1)

⌋
, where F is the first chunk given by

⌊
I

2V

⌋
, L is

the last chunk which can be set to a threshold and N is a
value given by

⌈
2∗I

(F+L)

⌉
.

We note that, in DTSS, the computation of chunk-size Ci

is derived as follows. Let Vki
be the virtual power of the PE

(Pki
), which will be assigned the chunk of size Ci. We only

consider integer virtual powers. We can think of Pki
as a set of

Vki
virtual homogeneous PEs. Thus, we apply Vki

consecutive
TSS steps to compute the chunk size Ci as follows: Compute
(intermediate chunk-sizes) Ci,1 = Ci−1 − D, Ci,2 = Ci,1 −
D, . . . , Ci,Vki

= Ci,Vki−1−D; Summing up these chunk-sizes
we get the chunk size Ci = Ci,1 + . . . + Ci,Vki

for the i-th
scheduling step (in DTSS). Thus, we obtain for i = 1 :

C1 = Vk1 ∗ F − Vk1 ∗ (Vk1 − 1)/2 ∗ D (3)

and for i = 2, . . . :

Ci = Vki
∗ Ci−1 − Vki

∗ (Vki
− 1)/2 ∗ D (4)

We next use this formula in the DTSS algorithm.

Algorithm (DTSS Scheme):

Master:
1) (a) Receive Speed(Pj) of PEs Pj , j = 1, . . . , p.

(b) Compute all Vj .
(c) Send Vj to PEs Pj , j = 1, . . . , p.

2) Calculate F and D.
3) (a) While there are unassigned iterations (i.e. Ri > 0),

if a request arrives, put it in the queue.
(b) Compute the chunk-size, remaining tasks and
starting index (for i = 1, . . . ) by using eqs. (2), (3),
and (4).
(c) Pick a request from the queue and assign the next
chunk to a worker.

Worker:
1) (a) Send Speed(Pj) to Master.

(b) Receive Vj from Master.
2) Send a request.
3) Wait for a reply.

• If more tasks arrive, compute the new tasks, go to
step 2.

• Else Terminate.

V. MULTI-DIMENSIONAL LOOP SCHEDULING SCHEMES

We consider multi-dimensional (one-way) nested parallel
loop constructs defined in Section II. We consider the self-
scheduling schemes presented above. In this section we will
derive multi-dimensional versions for these schemes. We will
focus our attention on TSS and DTSS. The derivation of other
multi-dimensional schemes is analogous.

At first, we consider the case of the simple schemes (e.g.
TSS). We use the index n (= 1, 2, . . . , m) to denote the
dimension of the loop. Here we restrict our attention (without
loss of generality) to the study of 2-dimensional (2D) schemes

(i.e. m = 2). We will derive the 2-dimensional schemes by
applying the simple scheme in each dimension of the loop.
We denote by in (= 1, . . . , Nn) the index of the scheduling
step and by Nn the number of scheduling steps in dimension
n. We denote by Cn

in
, Rn

in
, the chunk-sizes, the number of

remaining iterations in each dimension. The chunks of the 2D
scheme will be rectangular with sizes C1

i1
xC2

i2
at scheduling

step (i1, i2). We define (istart1, istart2) as the origin of the
rectangular chunk at scheduling step (i1, i2).

We assume that the number of iterations in each dimension
are much greater than the number of workers: i.e. I1 >> p
and I2 >> p. In order to derive the 2D scheme, we will
apply the simple (1D) scheme with p PEs in each loop and
construct 2D chunks which are the Cartesian products of the
1D chunks. If we do not have I1 >> p and I2 >> p then
we could consider a decomposition of p = p1 × p2 and use
two 1D schemes (one with p1 PEs and another with p2 PEs)
to construct the 2D chunks. Our 2D algorithm derivation also
works for this case.

The computation of the chunk-size and starting index point
(using eqs. (1) - (2)) is performed in 2 dimensions (i.e. loops:
J1 and J2) to compute C1

i1
and C2

i2
(for i1, i2 = 1, 2, . . . ).

Also, we initialize istart1 = J1
1 and istart2 = J1

2 . The
chunks are rectangular regions of the index space (i1, i2) of
N1 × N2 scheduling steps. Thus, each chunk is a rectangle
which has as its origin the index point (istart1, istart2) and
a width and a height: C1

i1
and C2

i2
, respectively. We will often

refer to the 2D (or rectangular) chunk by its width and a height
i.e. C1

i1
× C2

i2
.

We compute the rectangular chunks in order along ‘wave-
front diagonals’ (shown in example in Fig. 3, below). These
diagonals of rectangles in the index space start from the bottom
left (index point (J1

1 , J1
2 )) and end up at the top right of

the region (index point (J2
1 , J2

2 )). We note that we need to
compute the new chunk-size C1

i1
or C2

i2
by eq. (1) only the

first time when needed in a rectangular chunk. After Cn
i1

or Cn
i2

have been computed, they can be stored (by the Master) and
they can be used to assign to workers the upcoming rectangular
chunks along the wavefront diagonals (see Fig. 3, below).

The starting index point is updated as follows: (1) istart1 =
istart1 + C1

i1
or istart1 = istart1 − C1

i1
and (2) istart2 =

istart2+C2
i2

or istart2 = istart2−C2
i2

, because the rectan-
gular chunks are computed along the wavefront diagonals. We
denote by Fn and Dn (n = 1, 2) the first chunk and decrement
of TSS in dimension n.

Taking these considerations into account we formulate the
2-dimensional Simple Scheme as follows.

Algorithm (2-dimensional Simple Scheme e.g. TSS-2D):

Master:
• Receive a new request from a worker for tasks.
• If (there exist still unassigned rectangular chunks) then

– Compute a new task (2D chunk C1
i1

× C2
i2

and
(istart1, istart2)) along the wavefront diagonals
(see Fig. 3).

– Send the new task to the worker.
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Else
– Send a ‘terminate’ signal to (requesting) workers.

Worker:
• Send a request to the Master.
• Receive new tasks or a ‘terminate’ signal.
• Perform tasks or terminate.

Table II shows the chunk-sizes computed by TSS-2D dis-
cussed above. We show the different chunk-sizes (width/height
for the rectangular chunk separated by commas) for a problem
with I1 = I2 = 1000 iterations and p = 4. Fig. 3 shows
the iterations (C1

i1xC2
i2) that will be assigned during each

scheduling step (i1, i2 = 1, 2, . . . ) to the worker PEs using
TSS-2D. It also shows the order of assignment of the chunks
to the requesting worker PEs.

We now show how to derive the 2-dimensional DTSS. In
the standard (i.e. 1D) DTSS algorithm described above, we
derived a formula for computing chunk of size Ci. We used
Vki

, the virtual power of the worker (Pki
) scheduled (by the

Master) at the i-th step. In the 2D DTSS, we must also use the
virtual power of the worker to compute the rectangular chunks
which will be assigned by the master. This computation of the
rectangular chunks is similar to the 2-dimensional TSS (e.g.
shown in Table II). However, the chunk sizes are computed
using Fn =

⌊
I

2V

⌋
instead of Fn =

⌊
I
2p

⌋
in TSS. Since

V > p for heterogeneous systems, we can create a table
for the 2D DTSS which is analogous to Table II. Such a
table for 2D DTSS would contain more rectangular chunks
than the TSS-2D (Table II). Then we assign a number of
rectangular chunks along a wavefront diagonal (see Fig. 3)
equal to the virtual power of the worker. Next, we present the
2-dimensional DTSS algorithm.

Algorithm (DTSS-2D Scheme):

Master:
1) (a) Receive Speed(Pj) of PEs Pj , j = 1, . . . , p.

(b) Compute all Vj .
(c) Send Vj to PEs Pj , j = 1, . . . , p.

2) Calculate Fn and Dn.
3) (a) While there are unassigned iterations (rectangular

chunks), if a request arrives, put it in the queue.
(b) Compute the rectangular chunks as in TSS-2D and
compute (istart1, istart2).
(c) Pick a request from the queue of a worker with
virtual power Vj and assign the next Vj rectangular
chunks along the same or adjacent wavefront diagonals.

Worker:
1) (a) Send Speed(Pj) to the Master.

(b) Receive Vj from the Master.
2) Send a request.
3) Wait for a reply.

• If more tasks arrive, compute the new tasks, go to
step 2.

• Else Terminate.

TABLE II

SAMPLE CHUNK SIZES FOR I1 = I2 = 1000 AND p = 4

Scheme Chunk size (width/height)
TSS − 2D 125/125,117/125,125/117,109/125,117/117,125/109,

101/125,109/117,117/109,125/101,93/125,101/117,
109/109,117/101,125/93,85/125,93/117,101/109,
109/101,117/93,125/85,77/125,85/117,93/109,
101/101,109/93,117/85,125/77,69/125,77/117,85/109,
93/101,101/93,109/85,117/77,125/69,61/125,69/117,
77/109,85/101,93/93,101/85,109/77,117/69,125/61,
53/125,61/117,69/109,77/101,85/93,93/85,101/77,
109/69,117/61,125/53,45/125,53/117,61/109,69/101,
77/93,85/85,93/77,101/69,109/61,117/53,125/45,
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Fig. 3. Chunk allocation with TSS-2D

VI. IMPLEMENTATION AND TEST RESULTS

A. Implementation

The scheduling schemes are implemented using the dis-
tributed programming framework offered by MPI [29] on a
cluster of Sun workstations. The workstations have a CPU
Speed of 502 MHz. The test problem used is the Mandelbrot
computation [27] for a matrix size (problem size) ranging
from 4000 × 4000 to 16000 × 16000. The Mandelbrot
computation is a doubly nested loop without any dependencies.
The computation of one column of the Mandelbrot matrix is
considered the smallest schedulable unit.

We performed experiments with the number of workers (p)
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ranging from 1 to 24. The size of the test problem is such that
it does not cause any memory swaps. So, the virtual powers
(Vi, i = 1, . . . , p) depend only on the processor speeds. To
create a heterogeneous environment, we put an artificial load
(one continuously running matrix multiplication process) in
the background on p/2 workers. The workers with one load
in the background are assumed to have Vi = 1 and the workers
without any load are assumed to have Vi = 2. Thus, we have
p/2 fast and p/2 slow workers. This was verified by timing any
program running on a single machine of the above two types.
The simulations are done when no other user jobs existed on
the workstations.

B. Results

In this section, we present the results of the experiments
performed. Tp denotes the total execution time measured on
the master PE. All timings are in seconds (sec). We denote
TSS and DTSS (one-dimensional schemes) as TSS-1D and
DTSS-1D respectively.

Table III shows the Tp of various schemes with 8 workers
for a problem size of 4000 × 4000. The table also shows the
computation times (Tcomp) and communication times (Tcomm)
of each worker. It can be observed that the 2-dimensional
schemes (2D) show substantial performance improvement
over the one-dimensional (1D) schemes. Also, DTSS-1D and
DTSS-2D, which take into account the processor speeds, show
better performance than TSS-1D and TSS-2D respectively.
It can also be observed that the worker computation times
in the case of 2D schemes are very well load balanced
compared to the 1D schemes. The communication times of the
workers in all the schemes are very small. This low value in
communication time is because the workers does not send the
computed results back to the master. They only send a request
for work and receive a reply. These messages are small in size.

Fig. 4 shows the time Tp of all the schemes with increasing
problem size. The number of worker PEs are fixed to 16. It
can be observed that for all the problem sizes, TSS-2D and
DTSS-2D shows superior performance compared to the other
schemes. The 2D algorithms provide better load balancing and
thus the overall performance is enhanced.

4000*4000 8000*8000 12000*12000 16000*16000
0

50

100

150

200

250

300

350

400

450

500

 Problem Size

 T
p 

(s
ec

)

 

 

 TSS−1D
TSS−2D
DTSS−1D
DTSS−2D
TREES

Fig. 4. Total execution time of various schemes for various problem sizes

TABLE III

COMPUTATION, COMMUNICATION AND TOTAL EXECUTION TIMES OF

VARIOUS SCHEMES FOR 8 WORKERS AND A PROBLEM SIZE OF 4000 ×
4000 (PEi : Tcomp /Tcomm (SEC))

PE TSS − 1D TSS − 2D

1 35.6/0.01 27.3/0.03
2 26.6/0.01 27.3/0.05
3 21.7/0.01 27.3/0.07
4 14.5/0.02 27.3/0.07
5 24.7/0.16 27.1/0.38
6 25.2/0.01 29.1/0.32
7 51.1/0.16 26.9/0.59
8 58.8/0.13 29.6/0.83
Tp 58.9 30.4

PE DTSS − 1D DTSS − 2D TREES

1 45.2/0.01 24.0/0.05 40.9/0.01
2 33.2/0.01 24.0/0.06 45.9/0.01
3 18.6/0.01 24.0/0.05 39.4/0.01
4 17.7/0.02 24.0/0.04 33.4/0.02
5 19.1/0.01 23.5/0.48 37.2/0.01
6 33.0/0.01 23.6/0.37 45.9/0.01
7 36.0/0.17 23.4/0.60 45.4/0.01
8 39.1/0.01 23.3/0.66 43.6/0.01
Tp 45.2 24.0 46.3

In Fig. 5, we present the speedup of all the schemes with
increasing number of worker PEs for a problem size of 4000
× 4000. We computed the speedup (Sp) according to the
equation:

Sp = min{TP1 , TP2 , . . . , TPp
}/Tp

where TPi
is the execution time on one PE and Tp is the

execution time on p PEs.
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Fig. 5. Speedup of various schemes with number of processors

It can be observed that, as the number of worker PEs
increases, the speedup of all the schemes improves which
shows that the schemes are scalable. However, the speedup of
TSS-2D and DTSS-2D is substantially high for large number
of PEs compared to TSS-1D and DTSS-1D respectively. Also,
DTSS-2D shows better speedup than TSS-2D.

Observations: (i) The distributed schemes (e.g. DTSS) take
into consideration the virtual computing power (VCP) of the
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(worker) processors. One could use the raw CPU speeds as
virtual powers. However, it is more realistic to run some
benchmark problems and obtain the actual (or delivered)
VCP. In particular, VCP takes into account other processor
characteristics (e.g. cache, communication network etc).

(ii) Although, our experiments were performed in a dis-
tributed environment of workers with two different VCPs, we
expect that similar performance will be observed for workers
with significantly varying VCPs.

(iii) In both TSS-2D and DTSS-2D, the workers are well-
balanced based on their computation times. However, the
difference in performance between TSS-2D and DTSS-2D is
not very big. This difference possibly depends on the problem
(irregular loop) and also on the the VCPs of the workers.

VII. CONCLUSIONS AND FUTURE WORK

We derived new multi-dimensional loop scheduling schemes
for computing nested DOALL loops on distributed systems.
We implemented the new schemes (in C++ and MPI) on a
network of computers. We showed that the new schemes are
superior to the previous schemes by simulation results. The
nested loop that we tested has irregular iterations task sizes.
We expect the new schemes to be particularly useful for multi-
core systems because of the fine granularity of the generated
tasks.

In the past we have derived scalable loop scheduling
schemes by considering a hierarchical Master-Worker model.
We plan to study the extension of the hierarchical Master-
Worker (1D) schemes to multi-dimensional schemes. We also
plan to test our schemes in distributed environments with
several groups of workers with varying speeds. We plan to
analyze theoretically the properties of the new schemes. We
also plan to derive new multi-dimensional versions of other
existing schemes, study the new schemes for nested loops with
dependences, and to implement and test the new schemes on
multi-core systems.
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