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Abstract

Fair queueing is a useful queueing discipline for packet
switching systems. It was developed in last decade and was
aimed at the general packet switching systems with varying
packet length. However, it is not suitable for use in the ATM
networking, because the ATM cell length is very small and
fixed, and so the scheduling scheme on a per cell basis isn’t
practical. Here we introduce the burst and quality unit con-
cepts in the scheduling algorithm and we make some signif-
icant modification on the fair queueing and adapt it to ATM
networking to meet QoS requirements. Under theWork-
Conservingassumption, we show that the burst based non-
preemptive and preemptive algorithms provide throughput
and fairness guarantees.
Key Words : Fair Queueing, Cell Burst, Quality of
Service (QoS), non-preemptive, preemptive, schedul-
ing.

1 Introduction

In this section, we give a preliminary description of
a packet scheduling algorithm, its requirements, the gen-
eral model, the terminology and notation used in the algo-
rithm. There are several scheduling algorithms proposed
for packet switched networking, e.g. [1], [2], [3], [4], [5],
[6], [7].

Here we present the Burst-Based Weighted Fair Queue-
ing (BBWFQ) for ATM cell scheduling and we investigate
related QoS’s guarantees under this algorithm. We study
the algorithm performance through simulation in Part II.

1.1 Basic Requirements

We next state the basic requirements for a packet
scheduling algorithm:
Liveness Property: Any packet will be scheduled even-
tually. In a switch node, some packets may be discarded

due to buffer limitation and service regulation. As long as
a packet arrives at the switch and gets buffered, it becomes
eligible for scheduling. The scheduler should offer the ser-
vice to the packet.
Ordering Property: All eligible packets will be scheduled
in a proper order, for any sound scheduling algorithm. The
order is well-defined based on the traffic models of the ses-
sions.
Safety Property: A packet will be scheduled based on
the information the switch has so far. Although this infor-
mation can’t contain any future arrival information to the
switch, the decision made to schedule one packet is based
on the scheduling scheme given.
QoS guarantee: an ATM network main advantage over
other networks is the quality of networking characteristics.
It can support different kinds of QoS. From the scheduling
algorithm point of view, the delay, throughput and fairness
are the major concerns here.

1.2 The General Model

To focus our research topic, we simplify the model of
the system as follows: An ATM switch services a lot of
sessions , some of which may come from local applications.
From the scheduler point of view, it is necessary to treat
these sessions and the local sessions in the same manner.
Thus regardless of their origin, the sessions are all termed
incoming sessions to the scheduler. Figure 1 shows this
simplified model. We will design the algorithms based on
this model.

Incoming session No.1 

Outgoing Link

Scheduler

Figure 1: The algorithm based model
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We make some assumptions for our model:
i) All sessions are independent. ii) There is a single sched-
uler for each output link in every switch. iii) Inside each
session, we enforce a FIFO queue. iv) The throughput of
the system bus and I/O bus is greater than the output link.
So it’s possible there are some cells from different sessions
arriving simultaneously, i.e. in same cell slot. v) Our model
uses output queueing.

1.3 Terms and Notations

QoS Measurement Unit: The data unit whose QoS
is interesting to the end-user. For example, an I-frame in
MPEG or one HTTP packet in Internet.
Cell Burst: A group of cells which come from one QoS
measurement unit. These cells usually will cause a cell
burst arrival in the incoming queues corresponding to this
session. We sometimes call itBurst for simplicity.
Burst Scheduling Eligible Time: The time that the burst
arrives at the switch and gets buffered.
Burst Turnaround Time: The time the burst finished its
service in the switching unit, denoted by BTT.
Burst Waiting Time: The burst turnaround time minus the
scheduling eligible time of the burst and the total service
time of the burst, denoted by BWT.
System Busy Period:The time interval in which there is
at least one active session, i.e. All cells are backlogged in a
system period are served before the end of the system busy
period.
Session Busy Period: The time interval in which this
session is continuously backlogged, i.e. All cells are
backlogged in a session busy period are served before
the end of the session busy period. Note that a system
busy period may consist of several session busy periods of
different sessions.
Work-Conserving Scheme:A scheme in which the server
isn’t idle whenever there is cell backlogged in the server.

We will use following notation to explain our algorithm:
(i; j): The j-th burst in session i.c(i; j): The burst

size of (i,j) in terms of cells.a(i; j): The arrival time of

(i,j). f(i; j): The finish-time of (i,j) under GPS.̂f(i; j):
The finish-time of (i,j) under BBWFQ.F (i; j): The vir-
tual finish-time of (i,j) under BBWFQ.S(i; j): The virtual
start-time of (i,j) under BBWFQ.NS(t1; t2): The number
of served cells during time interval(t1; t2) in GPS server.
dNS(t1; t2): The number of served cells during time interval
(t1; t2) in BBWFQ server.�0: One cell slot, a constant that
depends on the link capacity and processor of the switch.

Note that the BTT of (i,j) under GPS is f(i,j), and BTT
of (i,j) under BBWFQ isf̂(i; j).

We use an example to further illustrate some of these
notations and terms. The example is described by giving

the burst size and burst arrival/turnaround/waiting times in
Table 1-4:

SN. 1 2 3 4 5 6 7 8
BN. 1 0 3 0 2 10 20 30 40
BN. 2 10 20 10 8 30 30 60 50
BN. 3 15 30 18 12 40 50 90 60

Table 1: The burst arrival time
SN. 1 2 3 4 5 6 7 8

BN. 1 3 10 5 3 10 5 20 10
BN. 2 2 8 5 2 8 20 20 10
BN. 3 3 8 5 2 8 20 20 10

Table 2: The burst size
SN. 1 2 3 4 5 6 7 8

BN. 1 3 35 11 6 45 55 101 65
BN. 2 13 73 25 15 81 147 177 119
BN. 3 18 109 50 20 127 197 217 157

Table 3: The burst turnaround time(BTT)
SN. 1 2 3 4 5 6 7 8

BN. 1 0 22 6 1 25 30 61 15
BN. 2 1 45 10 5 43 97 97 59
BN. 3 0 71 27 6 79 127 107 87

Table 4: The burst waiting time(BWT)
where, SN stands for Session Number and BN stands for
Burst NUmber.

In this example, all the sessions have the same band-
width portion. Notice that, in this example, the waiting
time from session 1 and session 4 is relative shorter than
the others, because these two sessions have smaller burst
size and larger interarrival interval. So, the interarrival time
distribution is also important for shorter delay besides the
bandwidth portion. Here, BTT is more meaningful for the
application in terms of delay and delay jitter (in video appli-
cations). Usually, a system busy period starts at the begin-
ning of one session busy period. For example, if the source
is a MPEG-2 codec, and there is an I-frame generated and
sent out, that’s the source generates a burst, all the interme-
diate nodes along the path will have a busy period.

For this example, we can see that the longer the BTT in
each node, the longer the end-to-end delay the burst will ex-
perience. The delay jitter will also change. It doesn’t make
much sense to lower the delay of individual cell and the in-
tercell jitter. Also, in packet switching systems other than
ATM, like Frame Relay or SMDS, because of the packet
size being much larger, it will be important to make the QoS
guarantee on the packet level. This is the main difference
between packet switching system and cell switching system
in terms of the QoS analysis. It is also the reason we need
to treat them differently. In order to control the delay and
delay jitter, we need to control the BTT, there are several
factors which affect the time. (i) The backlogged sessions
at the beginning of scheduling cycle. (ii) The burst size
and the total backlogged cells in this session queue. (iii)
The bandwidth ratio available to the session if fair queue is
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used.

2 Burst Based Weighted Fair Queueing

In this section, we will give two BBWFQ cell scheduling
algorithms (nonpreemptive and preemptive). we then prove
a discrepancy bound to the PS server and we also prove
the delay and fairness guarantees. The simulation results
will further demonstrate the advantages over the non-burst
version which will appear in the next sections.

2.1 The Algorithms

Let’s first give the description of the algorithm. LetV (t)
be a virtual time function [5]. Let i, k be the session-index
and burst-number respectively, andc(i; k) be the burst size.
The algorithm steps are as follows:
Starting system busy period(at physical timetstart):

S(i; 0) = F (i; 0) = 0; for arbitrary session index i
and V (tstart) = 0;
Burst arrival:1) Burst-start:

c(i; k) = 0; S(i; k) = maxfF (i; k � 1); V (a(i; k))g:

2) Cell arrival: c(i; k) = c(i; k) + 1: 3) End of a burst
F (i; k) = S(i; k) + c(i; k) � �0

�i
; where�0 is the cell slot

and�i is the bandwidth portion available for session i.
Burst departure(Non preemptive): The scheduler serves the
bursts in sessions according to the ascending order of the
F (i; k) which are backlogged in the server so far.
Burst departure(Preemptive): The scheduler chooses the
burst with smallestF (i; k) among the backlogged sessions
in the server. In case a burst with smaller virtual finish-time
arrives, then the scheduler will preempt the currently served
burst at the closest boundary of a cell and start to schedule
this burst. The following figure gives a direct explana-
tion to the preemptive scheme.

Virtual finish−time line

          
physical time line

[F(i2, k2) and preemption of  Burst  (i1, k1)] F(i1, k1)

a(i1, k1) [a(i2, k2) and Burst (i1, k1) in service]

Figure 2: Illustration of preemption scheme

Note that in the preemptive scheme for burst depar-
ture, starvation won’t happen because the virtual finish-
ing time of a burst is a kind of dynamic priority. For,
the preempted burst will definitely be scheduled at time
tcurrent + C(i; k) � �0=�i, where the burst(i; k) is the
preempted burst from session i. This also implies that the
session’s throughput is guaranteed. Following is an exam-
ple to illustrate the difference between preemptive and non-
preemptive algorithms. Let AT= arrival time, BS= burst

time, ST= virtual start time, FT= virtual finish time and
ST = scheduled time of the burst. In Table 5, we show
the non-preemptive scheme scheduling results for a system
with three sessions.

session-1(14 ) session-2(14 ) session-3(12 )
AT 1 8 17 0 9 20 6 10 15
BS 7 5 4 5 4 5 4 4 4
ST 2 30 50 0 20 36 9 17 33
FT 30 50 66 20 36 56 17 33 49
ST 12 33 42 5 24 38 16 20 28

Table 5:The preemptive scheme example
The sessions portions of the total bandwidth are(14 ), (

1
4 )

and ( 12 ) respectively. We notice that the first burst in the
third session is finished at time slot 16 instead of at time slot
9, because it isn’t eligible to schedule at time 5 even though
it has a smaller virtual finish-time in the this example. But
for the preemptive scheme, the first burst from session-1 is
scheduled at time slot 5, and after it has one slot service,
its service is preempted by the first burst from session-3 be-
cause its virtual finish-time is less than the currently served
burst.

It’s obvious that the preemptive scheme is a better ap-
proximation to GPS and it has better QoS properties than
the non preemptive, but it is hard to give a strict mathemati-
cal proof as pointed out in [5]. So, simulation is a good way
to demonstrate this.

We next give several results about the discrepancy bound
between the algorithm and PS algorithm. Here, we assume
the algorithm is provided with the burst boundary before
it starts. The following two lemmas and two theorems are
useful for these results. We don’t give proofs here. Similar
results are proved for PGPS in [5] and their extentions to
BBWFQ are easy.

Lemma 1 Assume that the scheduling algorithm is work-
conserving, then scheduling orders of different busy periods
are unrelated.2

By using this lemma, we only need to consider the be-
havior of one system busy period in order to study the
scheduling of the system. We consider the burst GPS which
is similar to the GPS defined in [5]. The only difference is
that the server starts to serve one burst once it arrived in-
stead of serving a single cell which arrived as in non-burst
GPS. Furthermore, we assume that the burst boundary is
known to the server. In order to give the main result, we
need the following lemma as follows:

Lemma 2 Assume that under GPS, there are two bursts
(i1; j1), (i2; j2) at time� , and also assume that(i1; j1) fin-
ishes before(i2; j2) when there is no arrival after time� .
Then burst(i1; j1) will always finish before burst(i2; j2)
regardless of arrival patterns after time� . 2

The following two theorems state how good the approxi-
mation is. Notice that the theorems hold for non-preemptive
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scheme. As for the preemptive scheme, there are reasons
the approximation is better, we will present results later.

Theorem 1 If the scheduling scheme is nonpreemptive,
then for all bursts(i; j),

f̂(i; j)� f(i; j) � �0 � (max
(p;k)

c(p; k)): (1)

Proof: We consider a fixed burst(i; j). We prove the result
for it. Since this burst is chosen arbitrarily, this suffices to
prove the theorem. By Lemma 1, we only need to prove
the inequality holds for one system busy period. Without
loss of generality, assume the start-time of the busy period
is zero. Because the BBWFQ and GPS are both work-
conserving disciplines, the system busy periods of these
two are identical. So the start-time of system busy period
under GPS is also zero.

Define a partial order:(i; j) � (~i; ~j) iff a(i; j) �
a(~i; ~j),

wherea(:; :) is the arrival time of burst(:; :). For burst
(i; j), there are two cases:

1. All bursts(p; k) which satisfy(p; k) < (i; j) leave the
GPS server before burst(i; j) does, then

f(i; j) � f̂(i; j)

where equation holds when only session i is continu-
ously backlogged during[a(i; j); f(i; j)]:

2. There exists burst(p; k), such that(p; k) < (i; j) and
f(p; k) > f(i; j).

Therefore the setQ(i; j) = f(p; k)j(p; k) < (i; j) and
f(p; k) > f(i; j)g 6= �:
The set Q is finite because the total number of bursts ar-
rived beforea(i; j) is finite. So, there exists a burst(~i; ~j) 2
Q(i; j), such that

(~i; ~j) � (p; k)

for any burst(p; k) 2 Q.
Burst(~i; ~j) begins transmission at̂f(~i; ~j)� c(~i; ~j)�0 under
BBWFQ. And by Lemma 2,

min
(~i;~j)<(p;k)�(i;j)

fa(p; k)g > f̂(~i; ~j)� c(~i; ~j)�0:

This means that all the bursts inf(p; k)j(~i; ~j) < (p; k) �

(i; j)g arrive after f̂(~i; ~j) � c(~i; ~j)�0 (under GPS) and
depart before burst(i; j) departs(under GPS). So we have

f(i; j) � f̂(~i; ~j)�c(~i; ~j)��0+
X

(~i;~j)<(p;k)�(i;j)

fc(p; k)�0g;

(2)
and

f̂(~i; ~j) +
X

(~i;~j)<(p;k)�(i;j)

fc(p; k)�0g = f̂(i; j): (3)

Because BBWFQ is work-conserving. So by( 2) and ( 3),
f(i; j) � f̂(i; j)� c(~i; ~j)�0.
Therefore,f̂(i; j)� f(i; j) � �0 �max(p;k)c(p; k).
That is the inequality( 1).2
Note that, in a finish-time fair queueing, the two cases may
occur: 1. the finish-time under GPS is greater than the
finish- time under BBWFQ and 2. the finish-time under
GPS is less than the finish time under BBWFQ. In case 1.,
the right-hand side of inequality in 1. is negative, which
means that BBWFQ scheduled burst will finish earlier than
GPS finish-time. So this theorem tells us that either the
finish-time under BBWFQ is earlier than GPS (case 1.) or
the finish-time under BBWFQ is later than GPS finish-time
but their difference is uniformly bounded(case 2.).
Notation: Cmax = max(p;k) c(p; k).

Theorem 2 If the scheduling scheme is nonpreemptive, for
any time� , and session i, we have

NSi(0; �)�dNSi(0; �) � Cmax;

whereNSi(�; t) anddNSi(�; t) are the number of cells of
session i served under GPS and BBWFQ, in the interval
[�; t], respectively.2

The proof of Theorem 2 is similar to an analogous theo-
rem proved in [5]. From the previous theorem, we get the
following throughput guarantee of BBWFQ:

Corollary 1 If the scheduling scheme is nonpreemptive, in
the BBWFQ server, the session i can have a throughput
guarantee as:

dNSi(0; t) � �i �
t

�0
� Cmax;

where the�i is the bandwidth portion in a normalized
bandwidth allocation scheme.

Proof: Notice thatNSi(0; t) � �i �
t
�0

as a minimum ser-
vice guarantee by the definition of GPS [5]. The Corollary
follows by applying Theorem 2.2

Note that the throughput guarantee is the most impor-
tant requirement for multimedia applications. Without this
guarantee, e.g. the smooth playback of the video/audio clip
is hard to obtain.

The following theorem is quite straightforward, and it
demonstrates the advantage of the preemptive scheme over
the non-preemptive scheme. But the bound isn’t as tight as
our next result.

Theorem 3 If the scheduling scheme is preemptive, then
for all bursts(i; j), we have

f̂(i; j)� f(i; j) � Cmax � �0;

Furthermore, the burst service order is same in both GPS
and BBWFQ.
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Proof: We first show that an equivalent non-preemptive pri-
ority queue system can be constructed for the preemptive
queue system by splitting preempted bursts into two parts
with first part being scheduled and second part being pre-
empted.

Throughout this proof, we denote, for the n-th preemp-
tion, the burst in service as(in; jn), and the corresponding
new arrival burst which has smaller virtual finishing time
than burst(in; jn) as( ~in; ~jn), (i.e. F̂ ( ~in; ~jn) < F̂ (in; jn)):
We also denote byt(in; jn) the service-starting time of
burst(in; jn). Forn = 1, the first preemption in the queue
system, we prove there is no preemption after the splitting.
It is easy to see (under our assumption) that the following
inequalities hold:

t(i1; j1) < a( ~i1; ~j1) < f̂(i1; j1);

under our assumption. When the preemption occurs, we
split burst (i1; j1) into two parts(i1; ja1 ), (i1; j

b
1) with

lengths equal toa(
~i1; ~j1)�t(t1;j1)

�0
�B cells and the remaining

cells of the burst(i1; j1), respectively. This new priority
queue system will have no preemption upon and inclusive
a( ~i1; ~j1).

Assume before the k-th preemption, there is no preemp-
tion after our rearrangement of bursts. There are two cases:

1. At timesa( ~ik; ~jk) anda(~ik+1; ~jk+1), the burst in ser-
vice originated from the same burst(ik; jk).

2. The bursts in service at timesa( ~ik; ~jk) and
a(~ik+1; ~jk+1) are from different bursts.

For case 1., the burst(ik; jk) will turn into three

smaller bursts with lengths: a( ~ik; ~jk�t(ik;jk))
�0

� B;
a( ~ik+1; ~jk+1�t(ik;j

b
k)

�0
� B; and the remaining cells, respec-

tively. For case 2., using the same treatment as in the base
step of the induction, we can change the preempted bursts
occured betweena( ~ik; ~jk) and a(~ik+1; ~jk+1) to non pre-
empted bursts. So, after the(k+ 1)� th preemption, there
is still an equivalent non-preemption priority queue. We
proved the claim by induction. By applying to Theorem 2,
we finished the first part of the theorem.

Assume two bursts(n; i), (m; j) and fGPS(n; j) �
fGPS(m; j), we have two cases to consider:

1. a(n; i) < a(m; j): If (n; i) is scheduled in
[a(n; i); a(m; j)]. After its arrival, (m; j) will pre-
empt the(n; i) because the finish-time of(m; j) un-
der GPS is earlier than that of(n; j). If the scheduling
decision is made after arrival of(m; j), the scheduler
will choose(m; j). Here we assume the scheduler will
give preference to the burst which hasn’t received ser-
vice for the longest period of time if a tie exists. Note
that a tie may occur even if there is no tie in the non-
preemptive server.

2. a(n; i) � a(m; j): No preemption occurs between
(n; i) and (m; j) at any time. Thus burst(m; j) al-
ways gets service before burst(n; i) does, because our
assumptionfGPS(n; j) � fGPS(m; j).
Therefore burst(m; j) finishes before(n; i) does un-
der GPS.

So,fBBWFQ(n; i) � fBBWFQ(m; j). 2
From this theorem, we know not only the discrepancy is

bounded between GPS and BBWFQ under the maximum
length of the bursts in the server but also the serving order
is preserved. Obviously, the approximation is much better
than non-preemptive case.

The next theorem gives another discrepancy bound for
the preemptive scheme.

Theorem 4 Assume the scheduling scheme is preemptive
and assume burst A from session i arrives at timea(A) with
sizec(A). If A finishes atfGPS(A) under GPS, and at time
fBBWFQ(A) under BBWFQ, then

fGPS(A)� fBBWFQ(A) � (
c(A)

�i
�4) � �0;

where4 is the summation of lengths of bursts, which arrive
after the arrival of A and depart before the departure of
A under GPS (i.e. all the bursts which preempt A under
BBWFQ) and�i is the bandwidth portion for session i.

Proof: Since BBWFQ is work-conserving and the scheme
is preemptive,

fBBWFQ(A) � a(A) + (4+ c(A))�0; (4)

Let setP = fpi : i = 1; � � � ;m, with bandwidth
proportion�ig be the burst set which arrives before ar-
rival of burst A and departs after arrival of A, and let set
Q = fqi : i = 1; � � � ; n, with bandwidth proportion̂�ig
be the burst set which arrive after the arrival of A and de-
parts after departure of A. Notice that the intersection of
P and Q is empty and the bursts in set P are preempted
bursts, and the bursts in set Q can’t preempt burst A. Since
[ 1
�0
� �i

�i+
P

m

j=1
�j

] is the rate for burst A during time interval

[a(q1); a(A)], and by the definition of GPS,

c(A) = NSi(a(A); fGPS(A)) �
1

�0
� [

�i

�i+
P

m

j=1
�j

(a(q1)� a(A)) +

�i

�i+�̂1+
P

m

j=1
�j

(a(q2)� a(q1)) +

...
�i

�i+
P

n�1

j=1
�̂j+
P

m

j=1
�j

(a(qn)� a(qn�1)) +

�i

�i+
P

n

j=1
�̂j+
P

m

j=1
�j

(fGPS(A)� a(qn))]: (5)

5

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:21:07 UTC from IEEE Xplore.  Restrictions apply. 



By ( 5), we have

fGPS(A) � a(qn) +
(c(A) � 1

�0
� �)

1
�0
� �i

�i+
P

m

j=1
�j+
P

n

j=1
�̂j

; (6)

where� =
Pn

k=1(
�i

�i+
P

m

j=1
�j+
P

k

j=1
�̂j
�

(a(qk)� a(qk�1))):

in the discussion above, we assumeq0 = A. SincePn
k=1

�i+
P

m

j=1
�j+
P

n

j=1
�̂j

�i+
P

m

j=1
�j+
P

k

j=1
�̂j
� (a(qk)� a(qk�1))

�

nX
k=1

(a(qk)� a(qk�1)) � a(qn)� a(A): (7)

we have:

fGPS(A) � �0�(
�i +

Pm
j=1 �i +

Pn
j=1 �̂j

�i
)�c(A)+a(A):

(8)
By ( 4) and ( 8), we have:

fGPS � fBBWFQ � (
c(A)

�i
�4) � �0 ;

because�i +
Pm

i=1 �i +
Pn

j=1 �j � 1 ; if we use a nor-
malized bandwidth portions. However if we don’t use the
normalized bandwidth portion, we need replace the�i by
the bandwidth percentage available to the session i.2

Note that we give another bound under the preemptive
scheme for case 1. as we mentioned in the comments after
Theorem 1. This means that if BBWFQ scheduled burst
finishes earlier than GPS finish-time, the difference of the
two finish-times is bounded. From the theorem above, we
find that all the bursts which contribute to the4 term have
a shorter burst size than the burst A, the total size is hard
to compare with the size of burst A. But by Theorem 2,
we know the service order is kept between BBWFQ and
GPS under preemptive scheme. So the summation length
4 is bounded at least by the maximum size of bursts in this
session.

2.2 Fairness Property

It is easy to see that in GPS, a burst obtains its service
immediately after its arrival, and the service rate depends
on the currently backlogged sessions and on its own avail-
able bandwidth portion�i. This queueing scheme never
overuses/underuses its service. Therefore, GPS is the abso-
lutely fair queueing. As a approximation of GPS, BBWFQ
can’t guarantee the same level of fairness as GPS, because
BBWFQ never take into account the future arrival of bursts.
However, BBWFQ can still provide the guaranteed fairness
under our fairness definition.

Definition 1 LetNSi(t1; t2) be the number of served cells
during interval[t1; t2] when session i is continuously back-
loggedunder a scheduling algorithm, we define the fairness
index of the server as:

� = maxf

����NSi(t1; t2)

ri(t2 � t1)
�
NSj(t1; t2)

rj(t2 � t1)

����g;
where i, j are arbitrary sessions, which are continuously
backlogged in[t1; t2]g

Note that for a very specific case, if there is no overlap on
backlogged periods, it’s meaningless to consider fairness.
In the case, only one session is active during a system busy
period.

This definition is algorithm based not session based.
Therefore the fairness guarantee is also algorithm based.
The following proposition actually shows that this defini-
tion is well-defined.

Proposition 1 For the GPS server,�=0.

Proof: For any two sessions i, j and let[t1; t2] be their com-
mon interval where they both are backlogged. By the def-
inition of a GPS server, for any backlogged session i, the
inequality

NSi(�; t)

NSk(�; t)
�

�i
�k

;

holds fork = 1; 2; � � � ; N .
Since sessions i, j are backlogged in[t1; t2],we have

NSj(t1;t2)
NSi(t1;t2)

�
�j
�i

:

So,NSi(t1;t2)
�i

=
NSj(t1;t2)

�j
: This means:���NSi(t1;t2)

�i
�

NSj(t1;t2)
�j

��� = 0 : So,� = 0. 2

The following theorem gives the fairness guarantee un-
der BBWFQ.

Theorem 5 For the BBWFQ server and both schemes: pre-
emptive and non-preemptive, the following fairness guaran-
tee holds,

� �
1

�0
�

1

mini;j2Nfmax(ri; rj)g
;

where N is the set of sessions in the server, andri is the rate
available to the session i.

Proof: By the definition of the fairness index, for arbitrary
two sessions i, j which are continuously backlogged in in-
terval[t1; t2]. There are four cases:
(i) Only session i receives service in[t1; t2].
(ii) Only session j receives service in[t1; t2].
(iii) Neither session i nor session j receives service in
[t1; t2].
(iv) Both session i, j receive service in interleaved order in
interval[t1; t2].
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In case 1,
����NSi(t1; t2)

ri(t2 � t1)
�
NSj(t1; t2)

rj(t2 � t1)

���� =
����NSi(t1; t2)

ri(t2 � t1)

���� = 1

�0ri
:

In case 2,
����NSi(t1; t2)

ri(t2 � t1)
�
NSj(t1; t2)

rj(t2 � t1)

���� =
����NSj(t1; t2)

rj(t2 � t1)

���� = 1

�0rj
:

In case 3,
���NSi(t1;t2)
ri(t1�t2)

�
NSj(t1;t2)
rj(t2�t1)

��� = 0 :

In case 4,
����NSi(t1; t2)

ri(t2 � t1)
�
NSj(t1; t2)

rj(t2 � t1)

���� � 1

�0
�min(

1

ri
;
1

rj
) ;

because, for k=i or j,
����NSk(t1; t2)

rk(t2 � t1)

���� � 1

rk
�

1

�0
:

Therefore, we proved our claim.2
An analogous but less general result has been presented for
packet switching in [8].

3 Conclusion

The scheduling discipline plays a critical role for QoS.
We demonstrated that BBWFQ is superior to the cell PGPS.
It can offer a better fairness and lower delay for delay sensi-
tive applications. Since ATM switch uses a small fixed-size
cell as a switching unit, it expedites the cell switching pro-
cess and lowers the switching delay and it is also easier for
the communication synchronization. Then, we have to use
a more complex queuing discipline than the FIFO and so
the processing overhead is no longer negligible. Our al-
gorithms use the burst unit to reduce the processing time
for each session, thus the overall performance is better than
other scheduling algorithms.
Acknowledgement:Some comments of anonymous refer-
ees, which helped improve the presentation of some parts
of the paper are gratefully acknowledged. This work was
supported in part by NSF Grant ASC-9634775.
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