
Implementation of Dynamic Loop Scheduling in
Reconfigurable Platforms

Ioannis Riakiotakis
Computing Systems Laboratory

National Technical University of Athens
Athens, Greece

Email: iriak@cslab.ece.ntua.gr

George Papakonstantinou
Computing Systems Laboratory

National Technical University of Athens
Athens, Greece

Email: papakon@cslab.ece.ntua.gr

Anthony T. Chronopoulos
Dept. of Computer Science

University of Texas at San Antonio
San Antonio, TX 78249

Senior Member IEEE
Email: atc@cs.utsa.edu

Abstract— Dynamic scheduling algorithms have been success-
fully used for parallel computations of nested loops in traditional
parallel computers and clusters. In this paper we propose a
new architecture, implementing a coarse grain dynamic loop
scheduling, suitable for reconfigurable hardware platforms. We
use an analytical model and a case study to evaluate the
performance of the proposed architecture. This approach makes
efficient memory and processing elements use and thus gives
better results than previous approaches.

I. INTRODUCTION

Platform-based-design is a widely used and effective ap-
proach for the design of embedded systems. In such an
approach the source code is partitioned into hardware and
software units. Then the hardware part is placed on a special
reconfigurable hardware such as FPGAs. Several platform-
based-design approaches have been proposed and implemented
[1], [2], [3], [4], [17],[5],[16],[18].

Nested loops are some of the most computationally intensive
parts of the source programs. Many methodologies have been
proposed to speed up further the execution on embedded
systems by exploiting the parallelism available in nested
loops [6],[7], [8]. All of these methodologies utilize fine-grain
parallelism.

On the other hand in distributed memory computer systems,
it is known that coarse-grain methods such as the ones
presented in [10], [11], [12] offer better data locality and more
efficient use of the memory than the fine-grain approaches.
The use of coarse-grain methods can lead to performance
improvements also in the case of embedded systems. The
above coarse-grain methods are static, in the respect that the
mapping of loop iterations to executing processors is done
prior to the execution. This approach requires a space in
memory for storing the execution map, which leads to poor
memory utilization. In contrast to static scheduling algorithms,
dynamic algorithms create the mapping on the fly during the
execution. Another advantage of the dynamic algorithms is that
they do not require the prior knowledge of the characteristics
of the application and implementation environment in order to
achieve a satisfactory output. This makes their use in practical

†Funded by the European Social Fund (75%) and National Resources (25%)
- Operational Program for Educational and Vocational Training II (EPEAEK
II) and particularly the Program PYTHAGORAS.

applications very attractive. An important class of dynamic
algorithms that has been developed for the parallelization of
nested loops and that can provide coarse grain parallelism,
is that of Self-Scheduling algorithms ([15] and references
therein). These algorithms had been devised initially for loops
without dependencies but their use was extended in loops
with dependencies with the introduction of “Dynamic multi
phase scheduling algorithm” (DMPS) [9]. The problem of par-
allelizing nested loops using dynamic scheduling algorithms
in reconfigurable hardware platforms is still an open research
issue. Given the success of the self-scheduling algorithms in
platforms on parallel computers, it is worthwhile to port these
algorithms to reconfigurable hardware platforms, in order to
create an autonomous small scale parallel environment and
increase the application execution speedup. In this paper the
Hardware Dynamic-Multiphase scheduling (H-DMPS) algo-
rithm is presented. H-DMPS is a new dynamic, self-scheduling
algorithm based on the DMPS algorithm. The H-DMPS is
designed to be used in reconfigurable hardware platforms
and it is implemented with the use of the verilog hardware
description language. With the proposed approach we improve
the results existing so far in the literature by using coarse grain
parallelism. More specifically the performance of H-DMPS
was verified by simulation and it showed satisfactory results
when compared to a recent dynamic scheduling method,
presented in [6], which uses fine grain parallelism. The main
drawback of this method was that the number of processing
elements that could be used efficiently was limited by memory
congestion and this number has been determined analytically
by the authors in [6]. The use of coarse-grain parallelism in our
approach, minimizes memory congestion thus allowing more
processing elements to be used effectively.

The rest of the paper is organized in the following sections:
in section II there is a brief presentation of the nested loops
program model and an introduction to the self-scheduling
algorithms. In sections III and IV the HDMPS algorithm is
presented and analyzed. The experimental results are given in
section V. We conclude and give future directions in section
VI.

978-1-4244-1995-1/08/$25.00 ©2008 IEEE. 11

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:20:21 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

A. Algorithmic model

A nested loop of depth n is modeled as a n-dimensional
cartesian space J (J ⊂ Zn) called index or iteration space. We
assume that, for each point of this space (u1, . . . , un), we have
that Li ≤ ui ≤ Ui, 1 ≤ i ≤ n and Li and Ui are the lower
and upper loop bounds of the i − th dimension of the loop
nest respectively. If all the points of this iteration space can be
executed simultaneously, then we have a parallel loop without
dependencies. If on the other hand, iterations depend on each
other, then we have dependent (parallel) loops. Dependencies
impose an iteration execution order and limit the potential
parallelism of nested loops, since it is not possible for all
iterations to be executed simultaneously. Data dependencies
are modeled with the use of dependence vectors, which
connect dependent iteration points, and which set is given as
DS = {�d1, . . . , �dr}, where r is the number of dependence
vectors. The body of the nested loop includes general program
statements like assignment statements, repetitional statements,
conditional branching, etc. A example of a two-dimensional
iteration space is given in Figure 1. We also assume, without
loss of generality, that a perfectly nested loop is modeled as
follows:

for u1 =L1 to U1 do
for u2= L2 to U2 do. . .

for un= Ln to Un do
Loop Body

end
. . .

end
end

Algorithm 1: Programm model of a Perfectly Nested Loop

B. Self-scheduling for loops with dependencies

Self-scheduling algorithms decompose the iteration space
of parallel loops along one loop dimension, which is called
scheduling dimension (uc = 1,, Uc) into groups of it-
erations of V points, called chunks. This creates a pool
of independent tasks which, are dynamically assigned to
the available processing elements according to the master-
worker model. In [9], the dynamic multi-phase scheduling
algorithm (DMPS) was proposed to extend the use of self-
scheduling algorithms into loops with dependencies. In this
algorithm a second dimension of the loop was considered
along which synchronization points (SPs) were added. The
synchronization points were uniformly distributed at every h
points. This dimension was called synchronization dimension
(us = 1,, Us). This synchronization scheme allowed the
self-scheduling algorithms to be applied to loops with depen-
dencies. The partitioning of the index space of a 2D nested
loop with the scheduling and synchronization dimensions can
been seen in Figure 1. In this figure the terms chunk and

 �

 �

 �

 �

 �

 �

 �

 �

V�1�

V�2�

V�3�

V�4�

V�n�

V�n+1�

V�n+2�

V�n+3�

 � � �

h� h� h�

P�1�

P�2�

P�3�

P�4�

P�1�

P�2�

P�3�

P�4�

S
ch

ed
ul

in
g

di
m

en
si

on
� (

u� c�)
�

Synchronization dimension (u�s�)�

u�c�

u�s�

data dependencies�

first chunk�

first subchunk�
of first chunk�

Fig. 1. decomposition of a 2D iteration space (J (J ⊂ Z2)into chunks and
the scheduling - synchronization dimensions

subchunk are illustrated. The lower bound of a chunk is the
point along uc with the smallest index that belong to the
particular chunk. The upper bound is the point in uc with
the largest index that belong to this chunk. The same basic
notation is used for the description of the H-DMPS in the
Section III of this paper.

In the most basic self-scheduling algorithm (simple self-
scheduling) [13], each worker undertakes the execution of a
single iteration of the loop as soon as he becomes available,
that is when he finishes the execution of the previous iteration
that it had undertaken. This algorithm achieves very good
load balancing since each worker can finish the execution
with maximum difference of just one iteration. However it is
obvious that the time required for the assignment of iterations
to workers (scheduling cost) is very high. In order to decrease
the scheduling cost, the Chunk-scheduling algorithm (CSS)
was devised [14]. In CSS each worker undertakes one chunk
at each scheduling step instead of one iteration, leading
to reduced scheduling overhead. In general the scheduling
overhead decreases as the chunk size increases but at the same
time the load balancing capability of the scheduling algorithm
is reduced, since each worker can finish with maximum
difference of one chunk. In this paper we will focus on the
CSS dynamic scheduling algorithm. Further information on
the self-scheduling algorithms class can be found in [9],[15].

III. THE H-DMPS ALGORITHM, SCHEDULING IN

HARDWARE

The DMPS algorithm is based on the Master-worker model
which is often encountered in distributed memory architec-
tures. In general the Master undertakes the role of the coor-
dinator which accepts and serves requests from the workers.
A request declares that the worker is available to execute a
new task and the master replies to this request by assigning to
this worker a new chunk of iterations. The parallel execution
finishes when no more new tasks exist and all workers have

12

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:20:21 UTC from IEEE Xplore. Restrictions apply.

MEMORY CONTROLLER�

MAIN�
MEMORY�

MEMORY LOGIC�
(MUX/DEMUX)�

partial results�

set memory�
logic�

data read / write�

memory requests 1,...,m�

data read / write�

memory control�

PE1�
PE1�

PE2�
PE2�

PEm�
PEm�

Fig. 2. Block diagram of H-DMPS

completed the execution of the tasks that they have under-
taken. The hardware implementation of the DMPS algorithm
follows roughly the same approach.In Figure 2 we can see the
block diagram of the H-DMPS algorithm. The workers are
implemented as a set of special purpose, processing elements
(PEs) which have access to a common memory. All the
application data are stored in this common memory and only
one PE can access the memory at a given time. A memory
controller undertakes the role of the master which accepts
the requests from the PEs. The memory controller basically
controls the access of the PEs to the common memory with
the help of the memory logic. The memory logic is a set of
multiplexers and de-multiplexers that interface the PEs to the
memory read-write and control buses according to instruction
signals provided by the memory controller. As we can see
from the Figure 2, the PEs are interconnected in a ring
topology. In this ring each PE passes data (partial results) to
the next, implementing the synchronization mechanism that is
required to satisfy the data dependencies. Each PE performs
the following basic steps: it reads the data of one subchunk
from the memory, it receives partial results from the previous
PE, it process the subchunk, it sends partial results to the next
PE and finally it writes the processed data back to the memory.
Previous PE is the one that is found to the left of the current
PE in the ring, while next PE is the one that is found in the
right of the current PE.

The H-DMPS algorithm is described briefly in the Algo-
rithm 2, more details can be found in the subsections III-A,
III-B, III-C.

A. Memory Architecture

The main memory contains the initial data and assembles
the processed results at the end of the parallel execution. Each
PE reads part of the data from the main memory, it processes
them and writes back the processed data at the same memory
locations, updating in this way the contents of the memory.
Thus the memory contains processed data up to the point that
the execution has advanced, and initial data from this point
onward.

The memory architecture of the system is presented in Fig-
ure 3. The main memory can be accessed by all PEs through

From the Memory Controller View:
1) Read Memory requests 1 to m from the input

port, that correspond to the m PEs,
2) Find the request k with the highest priority
3) Grant memory access to PEk.
4) while Request of PEk is true

do configure the Memory Logic to
give exclusive access to PEk

5) Goto step 1

From the Processing Element View:
for each Processing element PEk, where k = 1, . . . , m do

1) Calculate current chunk size parameters (start point,
stop point)

2) for for all subchunks of current chunk do
• Request memory access from Memory

Controller
• Wait for memory access:

– Read Data for the current
subchunk from the Main Memory

– Free memory
• Read previous partial results, i.e.

get data from previous PE, (PEk−1)
• Compute subchunk
• Write next partial results, i.e.,

send data to next PE,
(PEk+1)

• Request memory access from Memory
Controller

• Wait for memory access:
– Write Data of the current

subchunk to the Memory
– Free memory

end
3) if There are more chunks left

then Goto to Step 1 else Finish endif
end

Algorithm 2: Desrciption of the H-DMPS algorithm

the use of a memory bus (shared memory). In conjunction
to the main memory, each PE has its own local memory.
This local memory is just large enough to store the data of
one subchunk. Prior to the processing of a subchunk each
PE transfers the required data from the main-memory to its
local memory reducing in this way the amount of the total
memory accesses i.e., the local memory plays the role of a
cache memory. The advantage of the coarse-grain approach
for the partitioning of the index space is that it provides far
better data locality in comparison to the fine-grain approach.
The data that have to be transferred from the main to the
local memories for each subchunk are stored in successive
memory locations. The clock cycles required to transfer these
data from the main memory is then proportional to the width
of the memory bus. If the memory bus is wide enough, a
whole subchunk can be transferred in a single clock cycle.
Thus, there is a tradeoff between the surface area occupied
by the memory bus and the data transfer cost. For example, a
subchunk of size 100 words can be transferred in one clock

13

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:20:21 UTC from IEEE Xplore. Restrictions apply.

Main Memory�

Local�
Memory�

Local�
Memory�

PE�1�

PE�1�

Local�
Memory�

Local�
Memory�

PE�2�

PE�2�

Local�
Memory�

Local�
Memory�

PE�3�

PE�3�

Local�
Memory�

Local�
Memory�

PE�n�

PE�n�

memory bus�

Fig. 3. The memory architecture

Fig. 4. The memory controller

cycle using a bus that is 100 words wide, in 10 cycles with a
bus of 10 words or in 100 cycles with a bus of one word.

B. The Memory Controller

The memory controller coordinates the access to the main
memory by the PEs. The memory controller has one input and
one output port as can be seen in Figure 4. In the input port
(m req) he receives memory access requests from the PEs.
The controller grants memory access to one PE according
to a simple priority scheme. His decision is then written to
the output port (m use). If just one PE is requesting memory
access, the controller decides that this PE can access the
memory. If there are more than one PEs requesting memory
access, the controller chooses the PE with the smallest rank
(id). The selected PE can then access the memory exclusively
to read or write data. The implementation of the memory
controller is pretty straight forward. The input and output ports
both have widths of m bits, where m is the number of the
available PEs. Each bit corresponds to one PE, with bit one
corresponding to PE with rank one (PE1), bit two to PE2, etc.
The controller perceives a high bit in the input as a memory
request, and the position of the high bit as the rank of the
requesting PE. He then just has to choose the least significant
high bit and set this bit in his output port.

The memory logic is complemented with the series of
multiplexers/demultiplexers of Figure 5. The mem mux is used
to write data form the processing elements to the memory
and the mem demux to read data from memory, the addr mux
is used to write the memory address from the processing
elements to the memory, and the RW mux to select if the
processing elements want to read or write data to the memory.
All multiplexers have a number of inputs equal to the number
of available processing elements and a single output, and the

Fig. 5. Memory access sub-units

Fig. 6. The processing element component

association of the output with one of the inputs is made using
the select input (sel) of the multiplexers, which is driven
by the m use output of the memory controller. The memory
demultiplexer has one input, which is connected to the data
read port of the memory (Dout), and a number of outputs
equal to the number of processing elements. The association
of the input with one of the outputs is made again with the
use of the sel and m use ports. The lengths of the input/output
ports is application/design dependent, and for the current
implementation are given in Figure 5.

C. The processing elements

The most important part of the system is the processing
elements (PEs), special designed to execute the loop body. A
processing element is composed basically of the finite state
machine (fsm) of Figure 7, and the local memory described
in Subsection III-A. Each PE has a rank ranging from 1 to m,
where m is the number of PEs, which in our case is m = 8.
We consider that the PE with rank 1 (PE1) starts processing
first, then activates PE2, which activates PE3 and so on, until
the last processing element PEm is reached. From this point
on, all processing elements work concurrently in a form of
execution pipeline .

At the beginning of the parallel execution, all PEs are in
the state s0. This is the scheduling state in which each PE
calculates the bounds and the size of their next chunk. This
can be seen as a distributed scheduling strategy. Initially PE1,
starts from the point 0 in the scheduling dimension uc and
adds to this the chunk size Vi according to the scheduling
algorithm, which is constant in the case of CSS, to find its
next chunk upper bound. Then PE1 writes its upper bound
to the output port stopx and proceeds to s1. The next PE,

14

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:20:21 UTC from IEEE Xplore. Restrictions apply.

which is PE2 reads this value in its input port lastx and this
is the lower bound of its next chunk in uc. just like PE1

it adds to this lower bound the value V to find the upper
bound of its next chunk. PE2 writes its upper bound to the
stopx output and proceeds to s1. This is done until PEm

is reached. States s1 to s3 are memory related. In s1, PEs
calculate the memory address in which reside the subchunk
data that have to be transferred from the main memory into
their local memory, place this address in the address bus and
proceed to s2. In s2 each PE make a memory access request
by writing 1 in their m req ports and wait in this state until
the memory access is granted. When the memory access is
assured, the PE proceeds to state s3. The transfer of subchunk
data from the main memory to the local memory, as described
in Subsection III-A, is performed in this state (s3). When the
transfer is completed, the PEs writes 0 in the m req port
to free the memory and proceed to state s4. The first phase
of synchronization takes place in this state. The current PE
waits until the signal prev ready is set, which means that the
previous PE has completed the processing of a sub-chunk. The
current PE reads the partial results, i.e., the processed data it
requires form the previous PE from the port prev in and sets
the signal p ack in order to inform the previous PE that it
has completed the reception of data. Now, the PE has all the
necessary data to compute a subchunk, and the computation is
performed in state s5. The second phase of synchronization is
performed in state s6, where the PEs write the partial results
in the output port next out and set the signal n ready, so that
the next PEs can read them. They wait in this state until the
data transfer is acknowledged by checking for the n ack signal.
Then, in the states s7 and s8 the PEs request memory access
to write back the processed data, similarly to the states s2 and
s3. At this point, in state s10, the computation of a subchunk
is completed and the PE has to distinguish among three cases:

• if this is also the end of the current chunk, the next state
has to be s0, to start the processing of a new chunk

• if this is not the end of the current chunk, the next state
has to be s1, to start the processing of the next subchunk

• if this is the end of the chunk, but there are no more
chunks, this is the end of the parallel execution and the
next state has to be s11

IV. ANALYSIS

In this section we analyze briefly the H-DMPS algorithm
in order to provide an estimate of the parallel execution time
and to assess the effects of the use of different memory bus
sizes on the overall performance of the scheduling algorithm.

The following additional notations are required for the
analysis of the H-DMPS algorithm:
• tsr is the send-receive overhead per word related to the
length of dependence vectors (for unitary dependencies
tsr = 1).
• Ts = Tr = tsr ×h, the clock cycles required to send/receive
partial result of one subchunk form a neighboring PE.
• Wbus is the length of the memory bus is words.
• tmr and tmw are the memory read/write overheads (the

number of words that have to be moved from the memory)
for each iteration.
• Tmr = tmr ×V ×h/Wbus and Tmw = tmw ×V ×h/Wbus,
clock cycles for reading or writing a subchunk data from/to
the main memory.
• Tsch is the scheduling cost which is implementation
dependent and in the current implementation is 28 cycles.
• Tp = tp × V × h is the subchunk processing time, where
tp is the processing costs per iteration.

The scheduling of 12 chunks on 4 PEs is illustrated in
Figure 8. Because of the existence of data dependencies it is
not possible for the subchunks to be executed simultaneously,
instead we have a pipelined execution. The numbers inside
the boxes of Figure 8 designates the time step at which
the the corresponding subchunk can be executed. As we can
see, there are 3 pipelines, and the execution is completed
in 27 time steps. At the end of each time step each PE
has to exchange data with its neighboring PEs. The number
of time steps is directly proportional to the number of PEs
and the chunks sizes. Using this number we can provide an
estimate on the parallel execution time. The number of steps
is given by N = (m − 1) + k × Us/h, where m is the
number of PEs, and k = Uc/(V × m) is the number of
pipelines. In each time step one sub-chunk is processed in
time Tsbch = Tmr + Tr + Tp + Ts + Tmw + Tsch. So the
estimated parallel time is Tpar = N × Tsbch. This value is
close to the real parallel execution time as long as there are
no conflicts in the memory access requests, i.e., when there
is no memory congestion. In general, memory congestion is
avoided when Tp ≥ Tmr +Tmw, i.e., when a PE spends more
time computing than using the memory or when the number
of PEs is m ≤ �Tp/(Tmr + Tmw)�. If we replace the values
of Tmr and Tmw, we end up we the following formula.

m ≤ � tp
(tmr + tmw)

×Wbus�

From the above formula we can see that the number
of processing elements that can be used effectively without
causing memory congestion is proportional to the length of
the memory bus.

V. RESULTS

In order to evaluate the performance of the approach de-
scribed in this article, the H-DMPS algorithm is modeled
with the use of the verilog hardware description language
and simulated using the modelsim simulation suite. We give
a set of measurements with 2,4,6 and 8 processing elements.
Two different memory bus sizes were considered. In the first
case the bus is one word wide so that just one word can
be transferred from the memory per clock circle and in the
second case 10 words can be transferred simultaneously from
the main memory per clock cycle. In this way we assess the
tradeoff between larger area utilization which is required to
build larger data buses, versus the computation speedup. The

15

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:20:21 UTC from IEEE Xplore. Restrictions apply.

s0�
Setup chunk�

(start point and�
size)�s1�

Set up memory�
address�

s2�
Request Memory�

s3�
Read Memory�

s4�
Read Previous�

Results�
s5�

Process Data�

s7�
Request Memory�

s8�
Write Memory�

s9�
Send Partial�

Results�

s10�
Check chunk�
completion�

last_x ready�

m
_use=

1�

last_x not ready�

Prev_ready=1�

Prev_ready=0�

Processed=0�

Processed�
=1�

m
_u

se
=

1�

n_ack=1�

s11�
Execution�

Completion�

execution�
completed�

stage completed�

chunk�
completed�

n_ack=0�

m_use=�
0�

m_use = 0�

Fig. 7. The state transition diagram of a processing element

1� 2�

2� 3�

3� 4�

4� 5�

5� 6�

6� 7�

7� 8�

8� 9�

3� 4�

4� 5�

5� 6�

6� 7�

7� 8�

8� 9�

9� 10�

10� 11�

9� 10�

10� 11�

11� 12�

12� 13�

13� 14�

14� 15�

15� 16�

16� 17�

11� 12�

12� 13�

13� 14�

14� 15�

15� 16�

16� 17�

17� 18�

18� 19�

17� 18�

18� 19�

19� 20�

20� 21�

21� 22�

22� 23�

23� 24�

24� 25�

19� 20�

20� 21�

21� 22�

22� 23�

23� 24�

24� 25�

25� 26�

26� 27�

PE�1�

PE�2�

PE�2�

PE�3�

PE�1�

PE�2�

PE�2�

PE�3�

PE�1�

PE�2�

PE�2�

PE�3�

pi
pe

lin
e

1�
pi

pe
lin

e
3�

pi
pe

lin
e

2�

Fig. 8. Scheduling of a dependent loop decomposed in 12 chunks on 4
PEs

synchronization interval in every case is one point (h = 1) and
the chunk size is 10 points along uc, i.e., V = 10. H-DMPS
is the compared to the algorithm described in [6].

The nested loop that is used as a test case is a classic
model of a partial differential equation, solved using iterative
methods. Its pseudocode is given below and it is part of an
application that calculates the pressure exerted in the cells of
a uniform plate when specific pressure is applied to one of its
corners.

In the pseudocode above we choose the external loop (index
i) to be the chunk dimension (uc) and the internal loop (index
j) to be the synchronization dimension (us). Moreover, the
array Pm and the temporary variable P store the values of
the pressure on the plate and the k, a, s and zmax are used
in the computation.

As we see from the bounds of the nested loop, the loop
body will be repeated 160 × 63 = 10080 times.

In order to evaluate the proposed algorithm we make
the following simplifying assumptions. We assume that all
statements are executed in a single clock cycle, apart from

for i = 1 to 160 do
for j= 1 to 63 do

P = 0.5∗Pm[i−1, j−1]+0.5∗Pm[i−2, j−2];
if (s[i, j] < zmax) then

s[i, j]+ = k[i, j] ∗ a[i, j] ∗ P ;
Pm[i, j] = (1 − a[i, j] ∗ P);

else
Pm[i, j] = P ;

end
end

end
LastVertexPressure=Pm[159,62];

Algorithm 3: The application pseudocode

multiplications and divisions that require 5 cycles. These
assumptions may be not accurate in practice but make some
statements more computational expensive that others, so they
assist in the evaluation of the proposed architecture. Also, we
do not employ any optimizations or code transformations such
as loop unrolling for the comparison, since this is outside the
scope of this work.

The above loop is executed in 28 clock cycles, hence in
the best case the serial implementation it would take 10080×
28 = 282240 clock cycles. We use this value to evaluate the
efficiency of our algorithm and to calculate all speedup values
in this section.

In Table I we present the simulation results, collected fol-
lowing the above assumptions using the behavioral simulation
function of the modelsim simulator.

The results present the number of clock cycles required for
the execution of the parallel algorithm on 2,4,6 or 8 PEs for
the cases of simultaneous transfer of one or ten words from
the main memory to the processing elements local memory.
The speedup over the serial execution, which takes 282240

16

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:20:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I

SIMULATION RESULTS. EXECUTION TIME (IN CLOCK CYCLES) FOR 2,4,6

AND 8 PES

PEs 1 word/cycle 10 words/cycles
2 181730 154514
4 92100 78474
6 61015 54211
8 58271 40812

2’ 4’ 6’ 8’

0

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p
 o
ve
r
th
e
 s
e
ri
a
l c
o
d
e

Num ber of PEs

 1 word/cycle
 10 words/cycles

Speedup given by H-DM PS for 2,4,6 and 8 PEs

Fig. 9. Speedup of DMPS (2,4,6,8 PEs)

clock cycles as calculated earlier, is presented in the Graph
9. As we can see, in all cases the proposed algorithm offers
significant speedup over the serial execution. Moreover, in the
case of simultaneous transfer of 10 words per clock cycle from
the memory the performance improvement ranges from 11%
to 29% over the case of 1 word per clock cycle.

The next step is to compare the performance of the proposed
algorithm to previously proposed dynamic algorithms. This
is the first algorithm that combines dynamic scheduling and
coarse grain parallelism, so we will compare the obtained
performance to that of a recent dynamic and fine grain algo-
rithm. The comparison is valid since both algorithms can be
implemented and placed on the same reconfigurable hardware
platforms. Table II summarizes the results obtained by the fine-
grain algorithm presented in [6] for the same test problem.
The optimal number of PEs, as calculated by the formulas
provided in [6] is mopt = 6, and beyond this number no
further improvement can be obtained as stated in [6]. The
speedup of this method over the serial code for up to 6 PEs
is also illustrated in Figure 10.

As we can see in Table II the fine-grain approach achieves
almost ideal speedup, i.e., up to 5.74 on 6 PEs. In the same
number of PEs, the H-DMPS algorithms declines more from
the ideal speedup, as it is 5.20 times faster than the serial
code, in the case of 10 words/cycle. The advantage however
of the coarse grain approach is that there is less congestion
in the memory bus, so that more PEs can be used. The H-
DMPS algorithm when used with two more PEs, i.e., m = 8,

TABLE II

EXECUTION TIME OF THE FINE-GRAIN METHOD

PEs Execution time (clock cycles) speedup
1 323598 0.87
2 158697 1.77
3 103796 2.77
4 76395 3.69
5 59994 4.70
6 49093 5.74

1’ 2’ 3’ 4’ 5’ 6’

0

1

2

3

4

5

6

S
p
e
e
d
u
p
 o
ve
r
th
e
 s
e
ri
a
l c
o
d
e

Num ber of PEs

 Speedup

Speedup of the fine-grain algorithm

Fig. 10. Speedup of the fine-grain algorithm (1 to 6 PEs)

achieves a significant performance improvement of 17%, as
the speedup in this case is 6.91.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a novel dynamic algorithm for
the scheduling of nested loops with dependencies, in re-
configurable hardware. This algorithm offers a coarse-grain
partitioning of the loop nest, which we claim that is more
efficient than the fine-grain partitioning, in terms of execution
time, data locality and memory management. Our claims were
experimentally validated through testing. The results prove that
the proposed algorithm achieves performance improvements
over both the serial code and over a recently presented fine-
grain dynamic scheduling algorithm. In the future, we intend
to integrate other dynamic scheduling algorithms into the
proposed architecture and evaluate their performance with
extensive testing. The ultimate goal is to implement an ef-
ficient and easy to use software/hardware platform based on
automatic software-hardware code partitioning that will utilize
efficiently the proposed hardware architecture.

REFERENCES

[1] A. Sangiovanni-Vincentelli and G. Martin. Platform-Based Design and
Software Design Methodology for Embedded Systems, IEEE Transactions
on CAD of Integrated Circuits and Systems, 2002, December, Vol. 19, No
12, pp. 1523-1533

[2] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood.
Hardware-software co-design of embedded reconfigurable architectures, In
Proc. Design Automation Conf., 2000, pp. 507–512.

17

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:20:21 UTC from IEEE Xplore. Restrictions apply.

[3] X. Wang, S. Ziavras. A configurable multiprocessor and dynamic load
balancing for parallel LU factorization, In Proc. 18th International Parallel
and Distributed Processing Symposium, 2004.

[4] J. Phillips, M. Areno, C. Rogers, A. Dasu, and B. Eames. A Reconfig-
urable Load Balancing Architecture for Molecular Dynamics, In Proc. 14th
Reconfigurable Architectures Workshop, 2007.

[5] I. Panagopoulos. A. Dimopoulos, G.Manis, G. Papakonstantinou. AM-
PLE:Automatic mapping of algorithms for embedded systems, PCI2007,
Patra, Greece, 2007.

[6] I. Panagopoulos, G. Manis and G. Papakonstantinou. Flexible General-
Purpose Parallelizing Architecture for Nested Loops in Reconfigurable
Platforms, PATMOS 2007, Sweeden, 2007.

[7] U. Bondhugula, J. Ramanujam, P. Sadayappan, Automatic mapping of
nested loops to FPGAs, ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’07), San Jose California, USA,
2007.

[8] M. Bednara and J. Teich. Automatic Synthesis of FPGA Processor Arrays
from Loop Algorithms, The Journal of Supercomputing, vol. 26, pp. 149-
165, Kluwer Academic Publishers, 2003

[9] F. M. Ciorba, T. Andronikos, I. Riakiotakis, A. T. Chronopoulos and G.
Papakonstantinou. Dynamic Multi Phase Scheduling for Heterogeneous
Clusters. 20th IEEE International Parallel & Distributed Processing Sym-
posium, April, Rhodes, Greece, 2006.

[10] J. Xue. On Tiling as a Loop Transformation, Parallel Processing Letters,
vol.7, no.4, pp. 409–424, 1997.

[11] G. Goumas, N. Drosinos, M.Athanasaki, N. Koziris. Compiling Tiled
Iteration Spaces for Clusters, IEEE International Conference on Cluster
Computing, p 360, September 2002

[12] J. Ramanujam, P. Sadayappan. Tiling of Iteration Spaces for Multicom-
puters, International Conference on Parallel Processing, Vol. II, pp. 179-
186, 1990

[13] P. Tang, P.C. Yew. Processor Self-Scheduling for Multiple-Nested Par-
allel Loops. Proceedings International Conference on Parallel Processing,
pp. 528-535, 1986

[14] C. Kruskal, A. Weiss. Allocating Independent Subtasks on Parallel
Processors. IEEE Transactions on Software Engineering, SE-11 (10), pp.
1001-1016, 1985

[15] AR Hurson, JT Lim, KK Kavi, B Lee. Parallelization of DOALL and
DOACROSS LoopsAdvances in computers: A Survey. In Advances in
Computer, volume 45, 1997.

[16] Y. Dai, Q. Li, Q. Zhang, J. Kuo. SIMD - efficient loop unrolling design
for embedded multimedia applications, Multimedia and Expo, 2004. ICME
’04. 2004 IEEE International Conference on, pp.1851 - 1854, June 2004.

[17] H. Saito ,A.V. Veidenbaum, X. Tian,M. Girkarmark, A. Nicolau, A.
Kejariwal, Challenges in exploitation of loop parallelism in embedded
applications Hardware/software codesign and system synthesis, 2006.
CODES+ISSS ’06. Proceedings of the 4th international conference, pp
173-180, Oct. 2006.

[18] Ying Chen; Shao, Z.; Zhuge, Q.; Xue, C.; Bin Xiao; Sha, Minimizing
energy via loop scheduling and DVS for multi-core embedded systems,
Proceedings of the 11th International Conference on Parallel and Dis-
tributed Systems 2005,V 2, Page(s):2 - 6, July 2005.

18

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:20:21 UTC from IEEE Xplore. Restrictions apply.

