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Abstract—Grid computing systems are a cost-effective al-
ternative to traditional high-performance computing systems.
However, the computing resources of a grid are usually far apart
and connected by Wide Area Networks resulting in considerable
communication delays. Hence, efficient allocation of jobs to
computing resources for load balancing is essential in these grid
systems. In this paper, two price-based dynamic job allocation
schemes for computational grids are proposed whose objective
is to minimize the execution cost for the grid users’ jobs. One
scheme tries to provide a system-optimal solution so that the
expected price for the execution of all the jobs in the grid system
is minimized, while the other tries to provide a job-optimal
solution so that all the jobs in the system of the same size will be
charged approximately the same expected price independent of
the computers allocated for their execution to provide fairness.
The performance of the proposed dynamic schemes is compared
with static job allocation schemes using simulations.

Index Terms—job allocation; grid systems; static; dynamic.

I. INTRODUCTION

With the proliferation of computing resources and devel-
opment of high-speed networks, a Computational Grid [1]
becomes an important computing infrastructure for large-scale
high-performance parallel and distributed applications. These
large-scale applications usually require multiple resources
which might be under different administrative domains and
governed by different resource owners. Also, computational
grids often consist of heterogeneous computing resources
(computers or nodes) and are usually far apart connected by
Wide Area Networks resulting in considerable communication
delays. So, a grid system should be able to assign the jobs or
applications from various users to the computing resources
efficiently so that their execution cost (processing cost + com-
munication cost) is minimized. Hence, efficient job allocation
schemes for resource management are pivotal for the operation
of a computational grid.

Since the computing resources of a grid are distributed over
a larger geographical area and since the load on these resources
changes frequently, we here propose job allocation schemes
that take the communication delays into account and that are
distributed and dynamic in nature. Dynamic schemes make job
allocation decisions based on the current state of the system.
So, they can be more efficient than the static schemes which

make job allocation decisions based on the average system
statistics [2].

The owners of the computing resources in a grid system
may charge different prices for executing the grid users’ jobs.
So, before allocating a job to a resource by the grid controller,
an agreement should be made between the grid user and the
computer (resource owner). More specifically, an agreement
should be made between the software agents [3] of the user
and the computer (resource owner). We use a pricing model
based on bargaining game theory proposed in [4] to obtain
the prices (which are of economic nature) charged by the
resource owners. The two players (software agents of the user
and the computer) negotiate until an agreement is reached. We
simulated this pricing model to obtain the prices required for
job allocation.

A. Our Contribution

In this paper, we propose two price-based dynamic job
allocation schemes for single-class job computational grids
by taking the communication costs into account. We review
two static job allocation schemes for conventional distributed
systems and extend them to dynamic job allocation schemes
for computational grids. The first dynamic scheme (DOPTIM)
tries to provide a system-optimal solution so that the expected
(mean or average) price (or cost) for the execution of all the
jobs in the grid system is minimized. However, some jobs may
be charged a higher price than the others even when they are
of the same size.

The second dynamic scheme (DCCOOP) tries to provide
a job-optimal solution so that all the jobs in the system of
approximately the same size will be charged approximately the
same expected price independent of the computers allocated
for their execution. Jobs of different sizes will be charged
relative to their size. Such an allocation is considered fair to
all the jobs. Fairness of allocation is a major issue in modern
utility computing systems such as Amazon Elastic Compute
Cloud [5] and Sun Grid Compute Utility [6]. In such systems,
users pay the price for the compute capacity they actually
consume. Guaranteeing the fairness of allocation to the users in
such fixed price settings is an important and difficult problem.

For simplicity and to emphasize our main ideas, in this paper
we define fairness as follows: If all the jobs of approximately
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the same size are charged approximately the same expected
price independent of the computers allocated for their execu-
tion, then we say that the allocation is fair. However, in real
distributed systems, jobs will rarely be of the same size. We
note that our schemes can be easily extended to consider jobs
of different sizes.

The performance of the static and the dynamic job allocation
schemes is compared using simulations.

B. Past Related Work

Load balancing/job allocation in conventional distributed
systems with the objective of minimizing the expected re-
sponse time (average execution time) of the jobs in the system
has been extensively studied. For example, in [7], [8], [9], [10],
[11], [12], [13], [14] and references there-in. In grid computing
systems, since the computing resources may be managed by
different owners who charge different prices, job allocation
schemes which minimize the expected price (or cost) for the
grid users’ jobs are also essential.

Job allocation for resource management in grid computing
systems based on different economic and system models has
been studied in [15], [16], [17], [4], [18] and references there-
in. However, most of the above schemes for computational
grids considered the optimization of the overall system cost
(did not consider fairness) and the communication costs were
not taken into account. Load balancing in computational grids
based on cooperative and non-cooperative game theory was
studied in [19], [20], [21] and references there-in. However, ei-
ther the communication subsystem was not taken into account
or pricing was not included in the models or the schemes are
static in nature. A static price-based job allocation scheme for
mobile grid systems was studied in [4]. Its objective is to pro-
vide a system-optimal solution and the communication costs
were not taken into account. Price-based job allocation for
computational grids by taking the communication costs into
account was studied in [22]. However, the proposed scheme
is static in nature. Adaptive load balancing in computational
grids based on load estimation was studied in [23]. However,
the proposed scheme does not optimize the cost for the grid
users. A system optimal dynamic job allocation scheme for
multi-class job grid systems has been studied in [24]. However,
it does not provide fairness to the grid users’ jobs.

C. Organization

The rest of the paper is organized as follows: In Section II,
we present the grid system model. In Section III, two static
job allocation schemes for conventional distributed systems
are reviewed. In Section IV, two price-based dynamic job
allocation schemes for computational grids are proposed. The
static and dynamic job allocation schemes are compared using
simulations in Section V. Conclusions are drawn in Section VI.

II. COMPUTATIONAL GRID SYSTEM MODEL

We consider a computational grid system model as shown in
Figure 1. The system has ‘n’ nodes (computers or resources)
(Ci, i = 1, . . . , n) connected by a communication network.

The nodes could be either single computers or clusters (of
several computers). The computers (nodes) and the communi-
cation network are modeled as M/M/1 queuing systems [25].
In these queuing systems, the inter-arrival times and the service
times are exponentially distributed.

Fig. 1. Grid System Model

The terminology and assumptions used are as follows:
• φi : External job arrival rate at node i. A job arriving at

node i may be either processed at node i or transferred to
another node j through the communication network for
remote processing.

• Φ : Total external job arrival rate of the system. So, Φ =∑n
i=1 φi.

• µi : Mean service rate of node i.
• ri : Mean service time of a job at node i (i.e. the average

time to service (process) a job at node i).
• βi : Mean job processing rate (load) at node i (i.e. the

average number of jobs processed at node i per unit
interval of time). This is the load for node i assigned
by the job allocation scheme.

• λ : Total traffic through the network.
• t : Mean communication time for sending or receiving a

job from one node to another.
• ρ : Utilization of the communication network (ρ = tλ).

III. STATIC JOB ALLOCATION

In this section, we review two static job allocation schemes
for conventional distributed systems, OPTIM [7] and CCOOP
[26], based on which two price-based dynamic job allocation
schemes for computational grids will be derived in the next
section.

The response time of a job in a system as above consists
of a node delay (queuing delay + processing delay) at the
processing node and also some possible communication delay
incurred due to a job transfer. Based on our assumptions on
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the node and network models, the mean node delay of a job
at node i is given by:

Fi(βi) =
1

µi − βi
, i = 1, . . . , n. (1)

and the mean communication delay for a job is given by:

G(λ) =
t

1− tλ
, λ <

1
t

(2)

A. Overall Optimal Scheme (OPTIM)

The static overall optimal scheme (OPTIM) [7], [12] de-
termines a load allocation which minimizes the expected re-
sponse time of jobs in the whole system i.e., its objective is to
provide a system-optimal solution. The problem of minimizing
the entire system expected job response time is expressed as:

min D(β) =
1
Φ

[
n∑

i=1

βiFi(βi) + λG(λ)] (3)

subject to the constraints:
n∑

i=1

βi = Φ (4)

βi ≥ 0, i = 1, . . . , n (5)

The above non-linear optimization problem is solved by
using the Kuhn-Tucker theorem and an algorithm to compute
the optimal loads (βi, i = 1, . . . , n) is presented in [7], [12].

The marginal node delay fi(βi) and marginal communica-
tion delay g(λ) which are used in providing a solution to the
problem in eq. (3) are defined as:

fi(βi) =
∂

∂βi
βiFi(βi) =

µi

(µi − βi)2
(6)

g(λ) =
∂

∂λ
λG(λ) =

t

(1− tλ)2
(7)

where βiFi(βi) denotes the mean number of jobs at node i and
λG(λ) denotes the mean number of jobs in the communication
network. The marginal node delays (fi, i = 1, . . . , n) among
the nodes are balanced when the overall optimum is realized.

B. Cooperative Scheme (CCOOP)

The static cooperative scheme (CCOOP) [26] determines
a load allocation that provides fairness to all the jobs in the
system i.e., all the jobs of the same size will experience the
same expected response time independent of the computers
allocated for their execution.

The job allocation problem is formulated as a cooperative
game among the computers and the communication subsystem.
The several decision makers (e.g., computers and the com-
munication subsystem) cooperate in making decisions such
that each of them will operate at its optimum. Based on the
Nash Bargaining Solution (NBS) [26] which provides a Pareto
optimal [26] and fair solution, an algorithm is provided for
computing the NBS for the cooperative job allocation game.

The following definitions are used in providing the solution:

f̃i(βi) =
∂

∂βi
ln Fi(βi) =

1
µi − βi

= Fi(βi) (8)

g̃(λ) =
∂

∂λ
ln G(λ) =

t

(1− tλ)
= G(λ) (9)

The expected node delays (f̃i, i = 1, . . . , n) among the
nodes are balanced when the cooperative solution is realized.

IV. PRICE-BASED DYNAMIC JOB ALLOCATION

In this section, we propose two price-based distributed
dynamic job allocation schemes for computational grids based
on the static schemes presented in the previous section. The
objective of these dynamic schemes is to minimize the cost
for the grid users’ jobs i.e, to minimize the expected price for
the execution of the jobs on the grid resources. We follow an
approach similar to [9], [11].

A distributed dynamic scheme has three components: 1)
an information policy used to disseminate load information
among nodes, 2) a transfer policy that determines whether
job transfer activities are needed by a node, and 3) a location
policy that determines the nodes that are suitable to participate
in load exchanges.

The dynamic schemes which we propose use the number of
jobs waiting in the queue to be processed (queue length) as the
state information. The state information is exchanged between
the nodes periodically. When a job arrives at a node, the
transfer policy component determines whether the job should
be processed locally or should be transferred to another node
for remote processing. If the job is eligible for transfer, the
location policy component determines the destination node for
remote processing. We assume that a job can be transferred
more than once.

Following are some additional notations for dynamic allo-
cation:
• Ni : Mean number of jobs at node i.
• ni : Number of jobs at node i at a given instant.
• ρ

′
: Utilization of the communication network at a given

instant.

A. Price-based Dynamic Overall Optimal Scheme (DOPTIM)

The objective of DOPTIM is to balance the workload among
the nodes dynamically in order to provide a system-optimal
solution i.e., to minimize the expected price for the execution
of all the jobs over the entire grid system. We base the
derivation of DOPTIM on the static OPTIM described in
Section III-A.

In the following, we express the marginal node delay at
node i (fi(βi) in eq. (6)) in terms of the mean service time
at node i (i.e. ri) and the mean number of jobs at node i (i.e.
Ni).

Using the relation µi = 1
ri

[25], eq. (1) can be written as:

Fi(βi) =
1

µi − βi
=

ri

1− riβi
(10)
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Using Little’s Law [25] (i.e. Ni = βiFi(βi)), the above
equation can be written as:

Fi(βi) = ri(Ni + 1) (11)

By taking the partial derivative of βiFi(βi) w.r.t. βi, we
have

fi(βi) =
∂

∂βi
βiFi(βi) =

∂

∂βi

( βiri

1− riβi

)

Thus, we have

fi(βi) =
ri

(1− riβi)2

Applying Little’s law to the above expression gives

fi(βi) =
ri(

1− riNi

Fi(βi)

)2

Using eq. (11),

fi(βi) =
ri(

1− riNi

ri(Ni+1)

)2 = ri(Ni + 1)2.

Therefore,
fi(βi) = ri(Ni + 1)2 (12)

Rewriting eq. (7) in terms of ρ, we have

g(λ) =
t

(1− ρ)2
, ρ < 1 (13)

Let pi denote the price per unit resource at node i, ki

denote a constant which maps the response time to the amount
of resources consumed at node i, pc denote the price for
consuming a unit resource of the communication network, and
kc denote a constant which maps the communication delay to
the amount of resources consumed from the communication
network. We note that pi (i = 1, . . . , n) and pc will be obtained
based on the bargaining game described in [4] played between
the software agents of the grid user and the computer (resource
owner) before the job allocation is made. We now convert the
above marginal node and communication delays into marginal
node and communication costs using pi, ki, pc, and kc.

The marginal node and communication costs can be ex-
pressed as:

fi(βi, pi) = kipiri(Ni + 1)2 (14)

g(λ, pc) =
kcpct

(1− ρ)2
, ρ < 1 (15)

Expressing fi() in eq. (14) and g() in eq. (15) which use
the mean estimates of the system parameters in terms of
instantaneous variables, we have, the marginal virtual node
cost as:

fi = kipiri(ni + 1)2 (16)

and the marginal virtual communication cost as:

g =
kcpct

(1− ρ′)2
, ρ

′
< 1 (17)

where ni is the number of jobs at node i at a given instant
and ρ

′
is the utilization of the communication network at a

given instant.
The above relations (eqs. (16) and (17)) are used as the

estimates of the marginal node and communication costs.
Whereas OPTIM tries to balance the marginal node delays
at all the nodes statically, DOPTIM will be derived to balance
the marginal virtual node costs at all the nodes dynamically.
For a job arriving at node i that is eligible to transfer, each
potential destination node j (j = 1, . . . , n; j 6= i) is compared
with node i.

Definition 4.1: If fi > fj + g, then it is more costly for a
job to be executed at node i than if transferred to node j.

We use the following proposition to determine a less costly
node j relative to node i for a job, in the discussion below.

Proposition 4.1: Let

nij =
[kjpjrj

kipiri
(nj + 1)2 +

g

kipiri

]1/2

− 1. (18)

If ni > nij , then node i is more costly than node j for
executing a job.

Proof: It is more costly for a job to be executed at node i than
if transferred to node j if fi > fj + g. Substituting eq. (16)
for fi and fj , we have:

kipiri(ni + 1)2 > kjpjrj(nj + 1)2 + g

which is equivalent to

(ni + 1)2 >
kjpjrj

kipiri
(nj + 1)2 +

g

kipiri

Thus, we have,

ni >
[kjpjrj

kipiri
(nj + 1)2 +

g

kipiri

]1/2

− 1

Replacing the right-hand side of the above equation by nij ,
we have ni > nij where

nij =
[kjpjrj

kipiri
(nj + 1)2 +

g

kipiri

]1/2

− 1

2

The description of the components of DOPTIM is as follows:

(1) Information policy: Each node i (i = 1, . . . , n) broadcasts
the number of jobs in its queue (i.e., ni) to all the other nodes.
This state information exchange is done periodically, say every
P time units.

(2) Transfer policy: A threshold policy is used to determine
whether an arriving job should be processed locally or should
be transferred to another node. A job arriving at node i will be
eligible to transfer when the number of jobs at node i is greater
than some threshold denoted by Ti. Otherwise the job will be
processed locally. The threshold Ti at a node i (i = 1, . . . , n)
is calculated as follows:
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The threshold of the fastest node h, Th, is chosen as the
basis based on its processing speed. For node i (i = 1, . . . , n,
i 6= h), substituting eq. (16) in the equation fi = fh, we have:

ni =

√
khphrh

kipiri
(nh + 1)− 1

Replacing ni and nh in the above equation by Ti and Th

respectively, the threshold for a node i can be calculated using
the following equation:

Ti =

√
khphrh

kipiri
(Th + 1)− 1 (19)

We note that Ti should be non-negative and an integer.
(3) Location policy: The destination node for a job at node
i that is eligible to transfer is determined based on the state
information that is exchanged from the information policy.
First, a node with the least marginal virtual cost is determined.
Next, it is determined whether the arriving job should be
transferred based on the transfers the job already had.

(i) A least costly (least expensive) node for a job is
determined as follows: From Proposition 4.1, we have that if
ni > nij , then node i is more costly than node j for executing
a job. Else, if ni ≤ nij then node i is less costly than node j.
Let δij = ni − nij and δi = maxj δij . If δi > 0, then node j
is the least costly node for a job. Else, no less costly node is
found and the job will be processed locally.

(ii) Let c denote the number of times that a job has been
transferred. Let ω (0 < ω ≤ 1) be a weighting factor used to
prevent a job from being transferred continuously and let ∆
(∆ > 0) be a bias used to protect the system from instability
by forbidding the job allocation policy to react to small cost
distinctions between the nodes. If (ω)cδi > ∆, then the job
will be transferred to node j. Otherwise, it will be processed
locally.

B. Price-based Dynamic Cooperative Scheme (DCCOOP)

The objective of DCCOOP is to balance the workload
among the nodes dynamically in order to obtain a job-optimal
solution i.e., all the jobs of approximately the same size should
be charged approximately the same expected price independent
of the computers allocated for their execution. We base the
derivation of DCCOOP on the static CCOOP described in
Section III-B.

Expressing f̃i(βi) (node delay) in eq. (8)) in terms of the
mean service time at node i (i.e. ri) and the mean number of
jobs at node i (i.e. Ni), and g̃(λ) (communication delay) in
eq. (9) in terms of ρ, we have:

f̃i(βi) = ri(Ni + 1) (20)

g̃(λ) =
t

(1− ρ)
, ρ < 1 (21)

Converting the above node and communication delays (eqs.
(20) and (21)) into virtual node and communication costs, we
have:

f̃i(βi, pi) = kipiri(Ni + 1) (22)

g̃(λ, pc) =
kcpct

(1− ρ)
, ρ < 1 (23)

Expressing the above node and communication costs (eqs.
(22) and (23)) which use the mean estimates of the system
parameters in terms of instantaneous variables, we have, the
virtual node cost as:

f̃i = kipiri(ni + 1) (24)

and the virtual communication cost as:

g̃ =
kcpct

(1− ρ′)
, ρ

′
< 1 (25)

The above relations (eqs. (24) and (25)) are used as the
estimates of the node and communication costs. Whereas
CCOOP tries to balance the node delays at all the nodes
statically, DCCOOP will be derived to balance the virtual node
costs at all the nodes dynamically. For a job arriving at node
i that is eligible to transfer, each potential destination node j
(j = 1, . . . , n; j 6= i) is compared with node i.

Definition 4.2: If f̃i > f̃j + g̃, then it is more costly for a
job to be executed at node i than if transferred to node j.

We use the following proposition to determine a less costly
node j relative to node i for a job.

Proposition 4.2: Let

nij =
[kjpjrj

kipiri
(nj + 1) +

g̃

kipiri

]
− 1. (26)

If ni > nij , then node i is more costly than node j for
executing a job.
Proof: Similar to Proposition 4.1. 2

The description of the components of DCCOOP (information
policy, transfer policy and location policy) is similar to that of
the components of DOPTIM.
• The threshold Ti at a node i (i = 1, . . . , n) is calculated

as follows:
The threshold of the fastest node h, Th, is chosen as
the basis based on its processing speed. For node i (i =
1, . . . , n, i 6= h), substituting eq. (24) in the equation
f̃i = f̃h, we have:

ni =
khphrh

kipiri
(nh + 1)− 1

Replacing ni and nh in the above equation by Ti and Th

respectively, the threshold for a node i can be calculated
using the following equation:

Ti =
khphrh

kipiri
(Th + 1)− 1 (27)

We note that Ti should be non-negative and an integer.
• A least costly (least expensive) node for a job that

is eligible to transfer is determined as follows: From
Proposition 4.2, we have that if ni > nij , then node i
is more costly than node j for executing a job. Else, if
ni ≤ nij then node i is less costly than node j. Let
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δij = ni − nij and δi = maxj δij . If δi > 0, then node
j is the least costly node for a job. Else, no less costly
node is found and the job will be processed locally.
Similar to DOPTIM, a weighting factor is used to prevent
a job from being transferred continuously and a bias is
used to protect the system from instability by forbidding
the job allocation policy to react to small cost distinctions
between the nodes.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed dynamic
job allocation schemes (DOPTIM and DCCOOP) is evaluated
using a 16 node heterogeneous grid system model. The Sim++
[27] simulation software package is used to obtain the data
and parameters for the experiments. We also implemented the
Overall Optimal scheme (OPTIM) [7], the Cooperative scheme
(CCOOP) [26], the Proportional scheme (PROP) [28], and
Price-based Optimal Allocation scheme (PRIMANGLE) [29]
for comparison. PROP allocates the jobs in proportion to the
processing speeds of the computers. PRIMANGLE is a static
scheme which is an extension of OPTIM to include pricing.
The overhead (OV) for job transfer used in the discussion
below is defined as the percentage of service time that a
computer has to spend to send or receive a job.

The grid system model has computers with four different
service rates. The system configuration is shown in Table I.
The first row contains the relative service rates of each of the
four computer types. The relative service rate for computer Ci

is defined as the ratio of the service rate of Ci to the service
rate of the slowest computer in the system. The second row
contains the number of computers in the system corresponding
to each computer type. The third row shows the service rate
of each computer type in the system. The last row shows the
values for ki, the constant which maps the response time to
the amount of resources consumed at computer i. They are
assigned based on the service rate of the computers as in
[4]. The performance metrics used in our experiments are the
expected response time and the expected price (or expected
cost).

TABLE I
System Configuration

Relative service rate 1 2 5 10
Number of computers 6 5 3 2
Service rate (jobs/sec) 10 20 50 100
ki 1 2 3 4

A. Effect of System Utilization

Figure 2 presents the effect of system utilization (system
load) ranging from 10% to 90% on the performance of the job
allocation schemes when the overhead for job transfer (OV)
is 0. It can be observed that at low system utilization, all the
schemes except PROP show similar performance. The poor
performance of PROP is because the less powerful comput-
ers are significantly overloaded. However, as the utilization

increases, the dynamic schemes, DOPTIM and DCCOOP
show superior performance compared to OPTIM, CCOOP, and
PROP. This is because, current system state information is used
by the dynamic schemes and the jobs are transferred more
effectively to the computers which minimize the response time.
DOPTIM, whose objective is to provide a system-optimal
solution has a lower expected response time than DCCOOP
whose objective is to provide a job-optimal solution.

Fig. 2. Mean Response Time vs System Util. (OV = 0)

Figure 3 shows the expected price (in some monetary unit)
at each computer i (i = 1, . . . , 16) for a system utilization of
80% and when there is no overhead for job transfer. It can
be observed that the expected price in the case of DOPTIM
and DCCOOP is very much lower when compared to that
of PRIMANGLE at all the computers. Also, the expected
price at all the computers is approximately the same in the
case of DCCOOP. However, in the case of PRIMANGLE and
DOPTIM, some computers have a higher expected price than
the others. In the case of DCCOOP, all the jobs are charged
approximately the same expected price independent of the
computers allocated for their execution. Thus, the allocation
provided by DCCOOP can be considered fair. But, in the
case of DOPTIM, some jobs may be charged a higher price
than the others for their execution and so may not be fair.
DOPTIM has the lowest overall expected response time and
the lowest overall expected price and so is beneficial when
the system-optimum is desired. Although the expected prices
at each computer for ρ = 80% are only shown, similar behavior
of the various schemes is observed for any system utilization.

Figure 4 presents the effect of system utilization on the
performance of the job allocation schemes when OV = 5%.
It can be again observed that at low system utilization, all
the schemes except PROP show similar performance. As the
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Fig. 3. Expected Price at Computers (OV = 0)

utilization increases, the expected response time for all the
schemes increases. However, both DOPTIM and DCCOOP
still show superior performance compared to OPTIM, CCOOP,
and PROP. DOPTIM tries to provide a system-optimal solution
and so has a lower expected response time than DCCOOP.

Figure 5 shows the expected price at each computer i
(i = 1, . . . , 16) when the system utilization is 80% and OV
= 5%. It can be again observed that the expected price in
the case of DOPTIM and DCCOOP is very much lower when
compared to PRIMANGLE. Also, the expected price at all the
computers is approximately the same in the case of DCCOOP
but there are large differences in the case of PRIMANGLE
and DOPTIM. Thus, DCCOOP provides fairness to all the
jobs but DOPTIM does not. DOPTIM provides the lowest
expected price for the entire system. Similar behavior of the
various schemes is observed for any system utilization when
the overhead is 5%.

For overheads above 5%, it was observed that DOPTIM
and DCCOOP show superior performance for up to 60% -
70% system utilizations and approach the static schemes for
high utilizations. This is because, as the overheads increase,
the cost for exchanging the system state information by the
dynamic schemes increases which results in a decrease in the
performance.

B. Effect of Bias (∆)

∆ (∆ > 0) is a bias used to protect the system from
instability by forbidding the job allocation scheme to react to
small load distinctions between the nodes. Figure 6 presents
the variation of expected price with system utilization of
DCCOOP for various biases. The overhead for job transfer
is assumed to be 5%. The other parameters are fixed as in
Figure 2. It can be observed that as the bias increases, the

Fig. 4. Mean Response Time vs System Util. (OV = 5%)

Fig. 5. Expected Price at Computers (OV = 5%)

expected price of DCCOOP increases. For a high bias (e.g.
∆ = 1), the expected price of DCCOOP approaches that of
PRIMANGLE. This is because, for a high bias, jobs will be
processed locally without being transferred to lightly loaded
nodes. Thus the expected response time of the jobs increases
which will result in an increase in the expected price to process
the jobs. The effect of bias on DOPTIM is similar.

Simulations were also performed to study the effect of the
exchange period of state information (P) on DCCOOP and
DOPTIM. It was observed that except for large P (e.g. P
> 2 secs), the dynamic schemes show superior performance
compared to the static schemes. Large P will result in ex-
changing outdated state information among the nodes and so
the performance of the dynamic schemes decreases.
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Fig. 6. Effect of Bias

VI. CONCLUSIONS

In this paper, two price-based dynamic job allocation
schemes for computational grids are proposed. DOPTIM tries
to minimize the expected price for the execution of all the
jobs in the grid system while DCCOOP tries to provide a
fair solution. Simulations are made comparing the proposed
dynamic schemes with static job allocation schemes. It was
observed that both DOPTIM and DCCOOP show superior
performance compared to the static schemes. DOPTIM is
advantageous when a system-optimum is desired (e.g. when all
the jobs belong to the same user or social group). DCCOOP
is advantageous when fairness is as important as other perfor-
mance characteristics (e.g. when jobs belong to different users
and each user prefers to pay the same unit price as others).
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