
Two-Dimensional Dynamic Loop Scheduling Schemes for Computer Clusters

Anthony T. Chronopoulos∗, Satish Penmatsa†

∗Department of Computer Science
University of Texas at San Antonio

San Antonio, TX, USA
atc@cs.utsa.edu, njayakumar5986@gmail.com

Naveen Jayakumar∗, Eric Ogharandukun†

†Department of Mathematics & Computer Science
University of Maryland Eastern Shore

Princess Anne, MD, USA
{spenmatsa, eeogharandukun}@umes.edu

Abstract—Efficient scheduling of parallel loops in a network
of computers can significantly reduce the total execution time
of complex scientific applications. In this paper, we compare
the performance of two-dimensional dynamic loop scheduling
schemes for computer clusters with that of one-dimensional
loop scheduling schemes. The loop scheduling schemes are im-
plemented using the Message Passing Interface on a cluster of
processors. Experimental results show that the two-dimensional
scheduling schemes were found to significantly reduce the total
execution time of tasks over the one-dimensional schemes. In
addition, the two-dimensional schemes present a more balanced
load distribution of the workload among the computers in the
cluster.

Keywords-Dynamic scheduling; cluster computing; parallel
loops.

I. INTRODUCTION

A computer cluster consists of a set of computers (re-
sources or processors) connected to each other through
fast local area networks commonly used for executing
computation-intensive scientific applications. In a distributed
processing cluster, the tasks are broken down and allocated
to the available computers for parallel execution in order
to minimize the total execution time of an application.
Appropriate software runs within this network of computing
resources to allow for inter-process communication between
the various resources by use of Message Passing Interface
(MPI).

Scientific applications usually consist of large loops (re-
peated execution of a set of statements) inside them. These
loops are one of the largest sources of parallelism. Instead
of executing an application with large loops on a single
computer, if the loop iterations are divided and allocated
to the available computers (processors) in the cluster, the
total execution time of the application can be significantly
reduced. In the ideal case, the execution time can be reduced
by a factor of the number of available processors in the clus-
ter. Hence, efficient loop scheduling schemes are essential
for executing parallel applications on computer clusters.

If the iterations of a loop have no interdependencies, each
iteration can be considered as a task and can be scheduled
independently. Such parallel loops are often called DOALL
loops. The loops that have interdependencies are often called

DOACROSS loops. Several loop scheduling schemes for
DOALL and DOACROSS loops have been studied in the
past. For example, please see [1][2][3] and references there-
in.

The loop scheduling schemes suitable for homogeneous
systems are called ‘simple’ schemes whereas the schemes
that take the heterogeneity of the system into account are
called ‘distributed’ schemes and are suitable for heteroge-
neous systems. Also, loop scheduling can be categorized into
‘static’ and ‘dynamic’. Static scheduling schemes determine
the task allocation to the processors prior to the execution
of the application. Dynamic scheduling (or self-scheduling)
is an automatic loop scheduling method in which idle
processors request new loop iterations to be assigned to them
during run time (the execution of the application).

Some notable DOALL loop scheduling schemes for ho-
mogeneous and heterogeneous systems have been studied
in [2][3][4]. DOACROSS loop scheduling schemes for ho-
mogeneous and heterogeneous systems have been studied
in [5] and references there-in. Recent research results have
been reported for designing loop self-scheduling methods
for multi-core, graphics processing unit, grid, and cloud
systems. Please see [6][7][8][9][10] [11][12][13].

Most of the previously studied loop scheduling schemes
partition only the outermost loop of a program loop structure
and assign tasks (chunks of iterations) to the processors.
This is not efficient for multi-dimensional nested loops.
All the previous multi-dimensional loop scheduling schemes
for nested loops are static. Thus, these methods are in-
efficient when the loop tasks sizes are unequal. Results
on two-dimensional (2-D) Trapezoid loop scheduling were
presented in [14].

Here, we implement some well-known one-dimensional
(1-D) loop scheduling schemes in 2-D form. We then
compare the performance of the 2-D versus the 1-D schemes.
We implemented the distributed loop scheduling schemes (1-
D and 2-D versions) (with the Master-Worker architecture
[3]) on a parallel cluster in dedicated mode and also with all
processors of the same speed. The loop scheduling schemes
are implemented using the Message Passing Interface on
a cluster of processors. Experimental results show that the

2012 IEEE 11th International Symposium on Network Computing and Applications

978-0-7695-4773-2/12 $26.00 © 2012 IEEE

DOI 10.1109/NCA.2012.36

96

two-dimensional scheduling schemes were found to signif-
icantly reduce the total execution time of tasks over the
one-dimensional schemes. In addition, the two-dimensional
schemes present a more balanced load distribution of the
workload among the computers in the cluster.

The rest of the paper is organized as follows. In Section
II, we present some well known 1-D schemes. In Section III,
we present the methodology for two-dimensional schemes.
In Section IV, we present the implementation details of the
scheduling schemes, present the experimental results, and
compare the performance of the two-dimensional schemes
with that of the one-dimensional schemes. Conclusions are
derived and future work is presented in Section V.

II. ONE-DIMENSIONAL LOOP SCHEDULING SCHEMES

In this section, we review some previously studied simple
one-dimensional (1-D) dynamic loop scheduling schemes.
These loop scheduling schemes were implemented using a
Master-Worker architecture model [3]. In a generic dynamic
(self-scheduling) scheme, at the i-th scheduling step, the
master computes the chunk-size Ci (a few consecutive iter-
ations), a starting (iteration) index istart, and the remaining
number of tasks (iterations) Ri as follows.

Initially, R0 = I (where I denotes the total number of
iterations of a parallel loop), istart = J (where J denotes
the lower bound of the loop). The master computes the
chunk-size for the i-th scheduling step as:

Ci = f(Ri−1, p), (1)

where p is the number of processors. The function f(., .)
can possibly have more inputs than just Ri−1 and p. Then
the master assigns to a worker processor (PE) Ci tasks and
a starting (iteration) index istart. Then the istart and Ri

for the next scheduling step are updated:

istart = istart+ Ci, Ri = Ri−1 − Ci. (2)

When the user or the system has chosen a ‘threshold’ last
chunk-size L, then the computation of Ci must be modified
by adding: If (Ci < L) then Ci = L.

The different ways to compute Ci has given rise to
different scheduling schemes. Below is a description of some
simple one-dimensional loop scheduling schemes. These
schemes have been studied and extended in [1][2][3] and
references therein.

Trapezoid Self-Scheduling (TSS-1-D): Ci = Ci−1 − D,
with (chunk) decrement: D =

⌊
(F−L)
(N−1)

⌋
, where: the first

and last chunk-sizes (F, L) are user/compiler-input or (by
default) F =

⌊
I
2p

⌋
, and L = 1. The number of scheduling

steps assigned: N =
⌈

2∗I
(F+L)

⌉
.

Factoring Self-Scheduling (FSS-1-D): FSS consists of
rounds of p scheduling steps. In each round ir the master
distributes �Rir−1/2� iterations to the p workers. Thus,

Cp∗ir+n = �Rir−1/2p�, for n = 1, . . . , p and the remaining
iterations are Rir = Rir−1/2.

Trapezoid Factoring Self-Scheduling (TFSS-1-D): TFSS-
1-D is a scheme which uses stages (as in FSS-1-D). The
size of the next chunk is the sum of the next p chunks that
would have been computed by the TSS-1-D algorithm. The
chunk is then equally divided among the p processors, as in
FSS-1-D. Thus the TFSS-1-D chunk-size is computed as:

CTFSS−1−D
j =

k+p∑
i=k

CFSS−1−D
i

Guided Self-Scheduling (GSS-1-D): Ci = �Ri−1/p�. This
is a dynamic scheme with a non-linear chunk-size function.
It assigns large chunks initially, which implies reduced
communication/scheduling overheads in the first scheduling
steps. A modified version GSS-1-D(l) with minimum as-
signed chunk-size l attempts to improve on the weaknesses
of GSS-1-D.

The load imbalance depends on the execution time differ-
ence between tj , for j = 1, . . . , p where tj is the execution
time of processor j to finish all the tasks assigned to it by
the scheduling scheme. This difference may be large if the
first chunk is too large.

III. TWO-DIMENSIONAL LOOP SCHEDULING SCHEMES

In this section, we review the methodology for two-
dimensional (2-D) loop scheduling schemes introduced in
[14]. A 2-D scheme is derived by applying a 1-D scheme
in each dimension of the loop.

Let n (= 1, 2) denote the dimension of the loop and let
in denote the index of the scheduling step and Nn denote
the number of scheduling steps in dimension n. Cn

in
and

Rn
in denote the chunk-sizes and the number of remaining

iterations in each dimension respectively. The chunks of
the 2-D scheme will be rectangular with sizes C1

i1
xC2

i2
at

scheduling step (i1, i2). Let (istart1, istart2) denote the
origin of the rectangular chunk at scheduling step (i1, i2).
The 2-D schemes are derived by applying the 1-D schemes
with p PEs in each loop and construct 2-D chunks which
are the Cartesian products of the 1-D chunks.

Let J1 and J2 denote the two loops in a 2-D nested loop
construct and J1

n and J2
n denote the lower and upper loop

bound for the n−th loop. The computation of the chunk-size
and starting index point (using eqs. (1) - (2)) are performed
in 2 dimensions (i.e. loops: J1 and J2) to compute C1

i1
and

C2
i2

(for i1, i2 = 1, 2, . . .). Initially, istart1 = J1
1 and

istart2 = J1
2 . The chunks are rectangular regions of the

index space (i1, i2) of N1 × N2 scheduling steps. Thus,
each chunk is a rectangle which has as its origin the index
point (istart1, istart2) and a width and a height: C1

i1 and
C2

i2
, respectively. A 2-D (or rectangular) chunk is referred

by its width and height i.e. C1
i1 × C2

i2 .

97

The rectangular chunks are computed in order along
‘wavefront diagonals’ (please see Figure 3 in [14]). These
diagonals of rectangles in the index space start from the
bottom left (index point (J1

1 , J
1
2)) and end up at the top

right of the region (index point (J2
1 , J

2
2)). The starting index

point is updated as follows: (1) istart1 = istart1 +C1
i1 or

istart1 = istart1 − C1
i1

and (2) istart2 = istart2 + C2
i2

or istart2 = istart2−C2
i2

, because the rectangular chunks
are computed along the wavefront diagonals. Based on the
above, a generic 2-D loop scheduling algorithm is as follows:

A 2-D Loop Scheduling Algorithm:

Master:
• Receive a new request from a worker for tasks.
• If (there exist unassigned rectangular chunks) then

– Compute a new task (2-D chunk C1
i1
× C2

i2
and

(istart1, istart2)) along the wavefront diagonals.
– Send the new task to the worker.

Else

– Send a ‘terminate’ signal to (requesting) workers.

Worker:
• Send a request to the Master.
• Receive new tasks or a ‘terminate’ signal.
• Perform tasks or terminate.

An algorithm for distributed TSS-2-D, known as DTSS-
2-D is presented in [14]. Here, we also implemented the
DFSS-2-D.

IV. IMPLEMENTATION AND RESULTS

The following simple and distributed loop scheduling
schemes are implemented: TSS-1-D, TSS-2-D, FSS-1-
D, FSS-2-D, TFSS-1-D, TFSS-2-D, GSS-1-D, GSS-2-D,
DFSS-1-D, and DFSS-2-D. The above schemes are imple-
mented in C++ using the distributed programming frame-
work offered by the Message Passing Interface (MPI). The
computer cluster used is the Sun Constellation Linux Cluster,
named Ranger at the Texas Advanced Computing Center
(TACC) at the University of Texas at Austin. Each node
on the Ranger system is comprised of four AMD Opteron
Quad-Core 64-bit processors (16 cores in all). In our runs,
we used a number p of processors/workers (cores) (with
p = 1, . . . , 64). All Ranger nodes are interconnected using
InfiniBand technology in a full-CLOS topology providing a
1GB/sec point-to-point bandwidth.

The test problem used is the Mandelbrot computation [3].
The Mandelbrot computation is a doubly nested loop without
any dependencies. The computation of one column of the
Mandelbrot matrix is considered the smallest schedulable
unit. We use, in our tests, the Mandelbrot fractal computation
algorithm on the domain [-2.0, 2.0] × [-2.0, 2.0], for
different window sizes (problem sizes/matrix sizes) (8000

× 8000 to 32000 × 32000). The algorithm uses irregular
loops with unpredictable computation cost per iteration.

In the following, we present the experimental results.
Tp denotes the total execution time (for a given problem
size) measured on the master PE and Tcomp denotes the
computation time of a worker PE (for executing all the
chunks assigned to it). All timings are in seconds (sec).
The communication times of the workers in all the schemes
are very small. This low value in communication time is
because the workers do not send the computed results back
to the master. They only send a request for work and receive
a reply. These messages are small in size. We note that
Tp ≈ max{Tcomp1, Tcomp2 , . . . , Tcompp}.

Figures 1 and 2 present the maximum difference (which
is a measure of the imbalance of the workers computational
load) in workers computation times for various 1-D and 2-D
schemes with 16 and 32 PEs for a problem size of 16000
× 16000. It can be observed that the differences in the case
of 1-D schemes are quite substantial and hence there is
considerable load imbalance among the worker PEs. The
differences in the case of 2-D schemes are small (less than
1) and hence there is almost perfect load balancing among
the worker PEs.

Figures 3 and 4 present the Tp for various 1-D and 2-D
simple schemes with various number of PEs and 8000 ×
8000 and 16000 × 16000 problem sizes. The figures also
present the results for the distributed schemes (DFSS-1-D
and DFSS-2-D). It can be observed that the 2-D schemes
show substantial performance improvement over the 1-D
schemes. For example: (i) the Tp of FSS-2-D and GSS-2-
D is more than 50% less than that of FSS-1-D and GSS-
1-D for a problem size of 8000 × 8000 with 8 PEs; (ii)
the 2-D schemes show around at least 40% performance
improvement over the 1-D schemes for a problem size of
16000 × 16000 with 8 PEs; (iii) Performance improvements
of around 75% by the DFSS-2-D over DFSS-1-D can be
observed.

Table I presents the times of various 1-D and 2-D schemes
with 64 workers for a problem size of 32000 × 32000.
Substantial performance improvement achieved by the 2-
D schemes can be observed. In the case of TSS-2-D and
GSS-2-D, this is about 50%.

Figure 5 shows the total execution time (Tp) for TSS-1-D,
TSS-2-D, FSS-1-D, and FSS-2-D with increasing problem
size (up to 32000 × 32000). The number of worker PEs is
fixed to 16. It can be observed that for all the problem sizes,
the 2-D schemes show superior performance compared to the
1-D schemes. The performance of the other 2-D schemes is
similar.

Figures 6 and 7 present the speedup of the various 1-D
and 2-D schemes with increasing number of workers for a
problem size of 16000 × 16000. We computed the speedup
(Sp) according to the equation: Sp = t1/tp where t1 is
the execution time using one PE and tp is the execution

98

Figure 1. Maximum difference in workers compute times for various 1-D
schemes with various number of PEs and 16000 × 16000 problem size

Figure 2. Maximum difference in workers compute times for various 2-D
schemes with various number of PEs and 16000 × 16000 problem size

Table I
TOTAL EXECUTION TIMES (IN SECONDS) OF VARIOUS 1-D AND 2-D

SCHEMES FOR 64 WORKERS AND A PROBLEM SIZE OF 32000 × 32000

PE TSS FSS GSS

1-D 40.1 43.9 56.4
2-D 20.9 34.9 21.5

time using p PEs. It can be observed that, as the number
of worker PEs increases, the speedup of all the schemes
improves which shows that the schemes are scalable. It can
also be observed that the speed up of the 2-D schemes is
substantially higher than that of the 1-D schemes.

V. CONCLUSIONS

In this paper, we implemented two-dimensional loop
scheduling schemes and compared their performance with
that of one-dimensional loop scheduling schemes. The loop
scheduling schemes are implemented using the Message
Passing Interface on the Ranger cluster at the Texas Ad-
vanced Computing Center. The Mandelbrot computation is
used as the test problem with size ranging from 8000× 8000
to 32000 × 32000. Experiments were conducted with the
number of processors ranging from 1 to 64. Results showed

Figure 3. Tp for various 1-D schemes with various number of PEs and
problem sizes

Figure 4. Tp for various 2-D schemes with various number of PEs and
problem sizes

that the two-dimensional scheduling schemes perform better
compared to the one-dimensional schemes and also present
a more balanced load distribution of the workload among
the computers in the cluster.

In future, we plan to use more number of processors with
larger problem sizes to test the scalability of the schemes and
also consider problems which have loops with dependencies.

ACKNOWLEDGMENTS

We gratefully recognize the following: (1) TACC of
University of Texas at Austin, for providing access to the
Ranger multiprocessor cluster; (2) support by NSF grant
(HRD-0932339) to the University of Texas at San Antonio;
(3) the reviewers comments that helped improve the quality
of the paper.

REFERENCES

[1] I. Banicescu, V. Velusamy, and J. Devaprasad, “On the
scalability of dynamic scheduling scientific applications with
adaptive weighted factoring,” Cluster Computing, vol. 6, pp.
215–226, 2003.

[2] A. Kejariwal, A. Nicolau, and C. Polychronopoulos, “History-
aware self-scheduling,” in International Conference on Par-
allel Processing, Columbus OH, Aug 2006, pp. 185–192.

99

Figure 5. Total execution time of various schemes for various problem
sizes. Number of PEs = 16.

Figure 6. Speedup of various 1-D schemes with number of processors.
Problem size = 16000 × 16000.

[3] A. T. Chronopoulos, S. Penmatsa, J. Xu, and S. Ali, “Dis-
tributed loop-scheduling schemes for heterogeneous computer
systems,” Concurrency and Computation: Practice and Expe-
rience, vol. 18, no. 7, pp. 771–785, 2006.

[4] A. T. Chronopoulos, S. Penmatsa, N. Yu, and D. Yu, “Scalable
loop self-scheduling schemes for heterogeneous clusters,”
Intl. Jrnl. of Computational Science and Engineering, vol. 1,
no. 2/3/4, pp. 110–117, 2005.

[5] F. M. Ciorba, I. Riakiotakis, T. Andronikos, G. Papakonstanti-
nou, and A. T. Chronopoulos, “Enhancing self-scheduling
algoritms via synchronization and weighting,” Journal of
Parallel and Distributed Computing, vol. 68, no. 2, pp. 246–
264, 2008.

[6] J. Herrera, E. Huedo, R. S. Montero, and I. M. Llorente,
“Loosely-coupled loop scheduling in computational grids,”
in Proc. of the 20th IEEE Intl. Parallel and Distributed
Processing Symp., Rhodes Island, Greece, 2529 April 2006.

[7] S. Penmatsa, A. T. Chronopoulos, N. T. Karonis, and B. Too-
nen, “Implementation of distributed loop scheduling schemes
on the teragrid,” in Proc. of the 21st IEEE Intl. Parallel and
Distributed Processing Symp., Long Beach, California, March
2007.

Figure 7. Speedup of various 2-D schemes with number of processors.
Problem size = 16000 × 16000.

[8] S. Fujita, “Semi-dynamic multiprocessor scheduling with an
asymptotically optimal performance ratio,” IEICE Transac-
tions on Fundamentals of Electronics. Communications and
Computer Sciences, vol. E92.A, no. 8, p. 17641770, 2009.

[9] J. Diaz, S. Reyes, A. Nino, and C. Munoz-Caro, “Derivation
of self-scheduling algorithms for heterogeneous distributed
computer systems: Application to internet-based grids of
computers,” Future Generation Computer Systems, Elsevier
Publishers, vol. 25, no. 6, p. 617626, 2009.

[10] W. C. Shih, S. S. Tseng, and C. T. Yang, “Performance study
of parallel programming on cloud computing environments
using mapreduce.” Information Science and Applications
(ICISA), pp. 1–8, 2010.

[11] C. T. Yang, C. C. Wu, and J. H. Chang, “Performance-
based parallel loop self-scheduling using hybrid openmp and
mpi programming on multicore smp clusters.” Concurrency
and Computation-Practice and Experience, vol. 23, no. 8, p.
721744, 2011.

[12] P. Li, Q. Zhu, Q. Ji, and X. Zhu, “An approach of chunk-based
task runtime prediction for self-scheduling on multi-core desk
grid,” Journal of Computers, vol. 6, no. 7, p. 13391345, 2011.

[13] C. C. Wu, C. T. Yang, K. C. Lai, and P. H. Chiu, “Designing
parallel loop self-scheduling schemes using the hybrid mpi
and openmp programming model for multi-core grid sys-
tems.” The Journal of Supercomputing, vol. 59, pp. 42–60,
2012.

[14] A. T. Chronopoulos, L. M. Ni, and S. Penmatsa, “Multi-
dimensional dynamic loop scheduling algorithms,” in IEEE
International Conference on Cluster Computing, Austin, TX,
17-20 Sept. 2007, pp. 241 – 248.

100

