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Abstract—Loops are the largest source of parallelism in many
scientific applications. Parallelization of irregular loop applica-
tions is a challenging problem to achieve scalable performance
on large-scale multi-core clusters. Previous research proposed an
effective Master-Worker model on clusters for distributed self-
scheduling schemes that apply to parallel loops with independent
iterations. However, this model has not been applied to large-scale
clusters. In this paper, we present an extension of the distributed
self-scheduling schemes implemented in a hierarchical Master-
Worker model. Our experiments with different self-scheduling
schemes demonstrate good scalability when scaling upto 8,192
processors.

Index Terms—Scalable, Master-Worker, Self-Scheduling, Hier-
archical.

I. INTRODUCTION

Loops are the largest source of parallelism in many scientific
applications. There are several loop scheduling schemes for
loops with and without data dependencies on clusters. If the
iterations of a loop have no dependencies, each iteration can
be considered as a task and can be scheduled independently.
Loops can be scheduled statically at compile-time. This type
of scheduling has the advantage of minimizing the scheduling
time overhead, but it may cause load imbalancing when the
loop style is not uniformly distributed. Dynamic schedul-
ing adapts the assigned number of iterations whenever it is
unknown in advance how large the loop tasks are. A self-
scheduling algorithm is a dynamic algorithm for scheduling
loop iterations. An important class of dynamic scheduling are
the self-scheduling schemes [1], [2], [3], [4] and references
therein. In UMA (Uniform Memory Access) parallel system,
these schemes can be implemented using a critical section for
the loop iterations and no need exists for dedicating a (master)
processor to do the scheduling. This is why these schemes
are called self-scheduling schemes. An affinity scheduling
algorithm is proposed and studied to reduce communications
overhead (nonlocal memory accesses) on shared-memory mul-
tiprocessors in [5], [6] and [7]. A feedback guided dynamic
loop scheduling is introduced and studied in [8] and [9].
An adaptive weighted factoring which performs well for
scheduling loops in parallel unstructured grid applications
and N-Body simulations is proposed in [10]. Different self-
scheduling algorithms have been proposed which dynamically

assign chunks of variable sizes to processors. They differ from
each other in the way they calculate the size of the chunk
assigned to each processor. The self-scheduling algorithms
were initially proposed for loops without dependencies for
shared memory parallel systems and later extended to dis-
tributed computing systems [2]. There are also results focusing
on loops with dependencies [11]. Recent research results have
been reported on loop self-scheduling methods for multi-core,
graphics processing units, grids, and cloud systems [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26] and [27].

Many modern high performance computing platforms, such
as clusters, grids and clouds, can be scaled to thousands of
parallel processors, servers and workstations. Thus, scalability
becomes an important issue which should be taken into
consideration. The developers of high performance computing
application programs may over-schedule resources which can
cause load imbalance and low speedup. This is especially
true for some nested loops when executed on large-scale
clusters. Previous research, [17], [18] has developed some
loop scheduling schemes to get good performance and load
balancing for small-scale clusters with multi-core processors.
A scalable two Masters model with small number of workers
on a small size application is proposed in [13]. In this paper,
we design a scalable hierarchical distributed Master-Worker
model for self-scheduling schemes on large-scale clusters.
We implement these schemes on a large-scale cluster of
Texas Advanced Computing Center, University of Texas at
Austin. Our experiments demonstrate the good scalability of
the proposed schemes.

The rest of the paper is organized as follows. In Section
2, we review simple loop self-scheduling schemes. In Section
3, we review distributed self-scheduling schemes. In Section
4, we describe the proposed hierarchical distributed schemes.
In Section 5 and 6, experiments and results are presented. In
Section 7, conclusions are drawn.

II. LOOP SCHEDULING SCHEMES

Self-scheduling is an automatic loop scheduling method
in which idle processors request new loop iterations to be
assigned to them. We study these methods from the perspective



Fig. 1. Self-Scheduling schemes: the Master-Worker model

of distributed systems. For this, we use the Master-Worker ar-
chitecture model (Figure 1). Idle processors submit a request to
the master for new loop iterations. The master node has three
components: 1) Task Scheduler. It uses scheduling schemes to
divide the whole work into small scheduled chunks; 2) Request
Queue. If one or some workers are idle, they request more
work from the master node. If the master node is busy serving
another worker, the requesting workers are added into Request
Queue and wait to be served; 3) Result Collector. When the
workers finish their work they send a new request and send
the computed results to the Result Collector.

The number of iterations a processor should be assigned is
an important issue. Due to processors’ possible heterogeneity
and communication overhead, assigning the wrong processor
a large number of iterations at the wrong time, may cause load
imbalancing. Also, assigning a small number of iterations may
cause too much communication and scheduling overhead.

A. Notations:

The following are common notations used throughout the
whole paper:

• I is the total number of iterations or tasks of a parallel
loop;

• p is the number of workers (i.e. processors) in the parallel
or distributed system which execute the computational
tasks;

• P1, P2, ..., Pp represent the p workers in the system;
• A few consecutive iterations are called a chunk. Ci is

the chunk-size at the i-th scheduling step (where: i =
1, 2, ...);

• N is the number of scheduling steps;
• tj , j = 1, .., p, is the execution time of Pj to complete

all its tasks assigned to it by the scheduling scheme;
• Tp = maxj=1,..,p (tj), is the parallel execution time of

the loop on all p workers;
In a generic self-scheduling scheme, at the i-th scheduling

step, the master computes the chunk-size Ci and the remaining
number of tasks Ri:

R0 = I, Ci = f(Ri−1, p), Ri = Ri−1 − Ci (1)

where f(., .) is a function possibly of more inputs than just
Ri−1 and p. Then the master assigns to a worker processor Ci

tasks. Imbalance depends on the execution time gap between
tj , for j = 1, . . . , p. This gap may be large if the first chunk is
too large or (more often) if the last chunk (called the critical
chunk) is too small.

The different ways to compute Ci has given rise to differ-
ent scheduling schemes. Some widely used schemes are the
following. These schemes are studied or extended in [1], [2],
[3], [4], [5], [10] and references therein.

Trapezoid Self-Scheduling (TSS) Ci = Ci−1 − D, with
(chunk) decrement : D =

⌊
(F−L)
(N−1)

⌋
, where: the first and last

chunk-sizes (F,L) are user/compiler-input or F =
⌊

I
2p

⌋
, L =

1. The number of scheduling steps assigned: N =
⌈

2∗I
(F+L)

⌉
.

Note that CN = F − (N − 1)D and CN ≥ 1 due to integer
divisions.

Factoring Self-Scheduling (FSS) Ci = dRi−1/(αp)e,
where the parameter α is computed (by a probability distribu-
tion) or is suboptimally chosen α = 2. The chunk-size is kept
the same in each stage or round (in which all processors are
assigned a chunk of the same size) before moving to the next
stage. Thus Ri = Ri−1 − pCi ( where R0 = I) after each
stage.

Guided Self-Scheduling (GSS) Ci = dRi−1/pe. In the
last steps too many small chunks are assigned. It assigns
large chunks initially, which implies reduced communica-
tion/scheduling overheads only in the beginning but small
chunks later. A modified version GSS(k) with minimum
assigned chunk-size k (chosen by the user) attempts to improve
on the weaknesses of GSS.

III. DISTRIBUTED LOOP SCHEDULING SCHEMES FOR
DISTRIBUTED SYSTEMS

Load balancing in distributed systems is a very important
factor in achieving near optimal execution time. To obtain load
balancing, loop scheduling schemes must take into account
the processing speeds of the workers or processors forming
the system. The processors’ speeds are not precise, since
memory, cache structure and even the program type may
affect the performance of processors. However, one could run
experiments to obtain estimates of the throughputs and one
could show that these schemes are quite effective in practice.

We next present the distributed loop scheduling schemes
based on the Master-Worker architecture.

A. Terminology:

• Vj = Speed(Pj)/min1≤i≤p{Speed(Pi)}, j = 1, ..., p,
is the virtual power of Pj (computed by the master),
where Speed(Pj) is the processing speed of Pj . That is
a standardized computing power in the current cluster.

• V =
∑p

j=1 Vj is the total virtual computing power of the
cluster.

• DC is the distributed chunk size for one worker request,
in a single scheduling step of distributed self-scheduling
scheme.

Master:



• (1) Compute Vj for each worker
(a) Receive Speed(Pj);
(b) Compute all Vj ;
(c) Send all Vj ;

• (2) Assign work and get the results
(a) While there are unassigned tasks, if a request

arrives, put it in the Request Queue.
(b) Pick a request from the queue and get its

virtual power Vj . If there are computed results in this
request, Result Collector receives them first. Then
Task Scheduler compute the next chunk size DC to
assign. The followings are the DTSS, DFSS and DGSS
algorithms to compute the next chunk DC:

DTSS:
Current is chunk size in the current step of TSS.
Initialization: F =

⌊
I
2V

⌋
, L = 1, N =

⌈
2∗I

(F+L)

⌉
,

D =
⌊
(F−L)
(N−1)

⌋
, Current = F

Algorithm 1 Calculate DC
DC = 0;
for k = 1→ Vj do
DC = DC + Current;
Current = Current−D;

end for
return DC;

DFSS:
DCsum is the assigned work in the current stage.
Initialization: R = I, α = 2.0, DCsum = 0

Algorithm 2 Calculate DC
DC = dR/(αV )e ∗ Vj ;
DCsum = DCsum +DC;
if (Master has assigned all the work in the current stage)
then
{ Goto next stage and update the remaining work. }
R = R−DCsum;
DCsum = 0;

end if
return DC;

DGSS:
Initialization: R = I

Algorithm 3 Calculate DC
DC = dR/(A)e ∗ Vj ;
R = R−DC;
return DC;

Worker :
• (1) Send Speed(Pj);
• (2) Send a request;

• (3) Wait for a reply;
IF (There is unassigned work)
{

Compute the new work;
Return the results and send another request;
Go back to (2);

}
ELSE

Terminate;

IV. HIERARCHICAL DISTRIBUTED SCHEMES

When considering a scheduling scheme using the Master-
Worker model for concurrent computing, several issues must
be considered: the scalability, the communication and synchro-
nization overhead, and the load balancing.

All the policies, where a single node (the master) is in
charge with the work distribution and collecting the results,
may cause degradation in performance as the problem size
increases. This means that for a large size problem (and for
a large number of processors) the master could become a
bottleneck. There are two major kinds of overhead in simple
Master-Worker architectures. The first one is: if workers send
back the computed results, it may take a long time to gather the
computed results. The communication overhead is expensive
in a distributed memory system such as a cluster, where long
communication latency can be encountered. Another kind of
overhead occurs when many workers send work requests at the
same time and only one worker can be served from the request
queue and the others have to wait. This is time consuming,
especially in the case of a single request queue, when the task
scheduler is slow or the scheduling schemes are complicated.

It is known that distributed policies usually do not perform
as well as the simple Master-Worker policies (i.e. using a
single master), for small problem sizes and small number of
workers. This is because the algorithm and the implementation
of distributed schemes usually add a non-trivial overhead.

We consider a logical hierarchical architecture as a good
model for scalable systems and we propose a new hierarchical
approach for addressing the bottleneck problems in the Master-
Worker schemes.

Instead of making one master process responsible for all the
workload distribution, several master processes are introduced.
Thus, the hierarchical structure contains a lower level, consist-
ing of worker processes, and several superior levels, of master
processes. On top, the hierarchy has an overall supermaster.
The workers’ role is to perform the computations following a
Master-Worker self-scheduling method for the problem that is
to be solved. This scheme is called a Hierarchical Distributed
Scheme.

Figure 2 shows this design for two levels of master pro-
cesses, one supermaster and two master nodes. The task
scheduler resides in the supermaster and it uses distributed
scheduling schemes (DTSS/DFSS/DGSS) to compute small
scheduled chunks for each master node and send to master
nodes’ Task Pools. When the Task Pool of a master node is
empty, it asks for more work (from the supermaster) in order



Fig. 2. Hierarchical Architecture

to fill the Task Pool until there is no more work. The master
node accepts a worker request, places it into the request queue
and gets a scheduled chunk from the Task Pool and serves the
top request from Request Queue. Also, the master node is in
charge of gathering the computed results from workers. There
are multiple Request Queues and Result Collectors distributed
in different master nodes, which can share the responsibilities.

The hierarchical distributed scheduling scheme is described
as follows:
Supermaster:

• (1) Compute Vj for each Worker
(a) Receive Workers’ Speed(Pj) from Masters;
(b) Compute all Vj ;

• (2) Assign work to Masters
(a) While there are unassigned tasks, if a Master

request arrives, put it in the queue;
(b) Pick a request from the queue and get the Workers

virtual power Vj under the requesting Master. Using
distributed self-scheduling schemes (i.e. DTSS, DFSS
and DGSS) to compute small scheduled chunks for each
Worker under the requesting Master. Then Master may
store the chunks into its Task Pool.

Master:
• (1) Compute Vj for each Worker

(a) Receive Speed(Pj) from its Workers;
(b) Send these Speed(Pj) to Super Master;

• (2) Request work to Super Master to fill Task Pool;
• (3) Assign work to Workers;

(a) If there are unassigned tasks, if a Worker request
arrives, put it into the Request Queue. Pick a request from
the Request Queue, Result Collector receives computing
results first. Then get a chunk from Task Pool and send
this chunk to requesting worker;

(b) If there are not unassigned tasks, request more
work to Supermaster;

(c) If there is no work left, go back to (2);
Worker :

• (1) Send Speed(Pj) to its Master;
• (2) Send a request to its Master.

• (3) Wait for a reply;
IF (There is unassigned work)
{

Compute the new work;
Return the results and send another request;
Go back to (2);

}
ELSE

Terminate;

V. IMPLEMENTATION AND EXPERIMENTS

A. Applications

• Mandelbrot Set [28]
The Mandelbrot Set is a doubly nested loop without
dependencies. The computation of one column of
the Mandelbrot matrix is considered the smallest
schedulable unit. The Mandelbrot Set loop is an irregular
loop in terms of unpredictable iteration task sizes.
Thus this kind of loop causes load imbalance in the
parallel computation. The following loops are used for
computing the Mandelbrot Set.

MSetLSM(MSet,nx,ny,xmin,xmax,ymin,ymax,maxiter)
BEGIN
FOR iy = 0 TO ny-1 DO
cy = ymin+iy*(ymax - ymin)/(ny - 1)
FOR ix = 0 TO nx-1 DO
cx = xmin+ix*(xmax - xmin)/(nx - 1)
MSet[ix][iy]=MSetLevel(cx,cy,maxiter)
END FOR

END FOR
END

MSetLevel(cx,cy,maxiter)
BEGIN
x = y = x2 = y2 = 0.0, iter = 0
WHILE(iter<maxiter)AND(x2+y2<2.0)DO
temp = x2 - y2 + cx
y = 2*x*y + cy
x = temp
x2 = x*x
y2 = y*y
iter = iter + 1

END WHILE
RETURN(iter)

END

• Adjoint Convolution
This application involves computation of decreasing task
sizes. Thus, it can cause load imbalance in the parallel
computation. The ith iteration’s time is O(N2 − i).
BEGIN
FOR I = 1 TO N * N DO
FOR J = I TO N * N DO
A(I) = A(I) + X * B(J) * C(J - I)
END FOR
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Fig. 3. The performance of Mandelbrot Set using hierarchical distributed schemes
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Fig. 4. The performance of Adjoint Convolution using hierarchical distributed schemes

END FOR
END

The outer loops in these applications are partitioned using
scheduling and the tasks are assigned to workers. The output
results are collected by the masters and can be stored in the
file system.

B. Platform

We use the Ranger cluster system as our platform. The
Ranger cluster system is located at TACC (Texas Advanced
Computing Center) in University of Texas at Austin. The
nodes’ Operating System is Linux and the nodes are managed
by Rocks 4.1 cluster toolkit. Each node has four AMD
Opteron Quad-Core 64-bit processors and 16 cores total. The
memory limit is 32 GB per node. The nodes are interconnected
by InfiniBand technology in a full-CLOS topology which
provides a 1GB/sec point to point bandwidth.

VI. RESULTS

In this section, we compare the performance of the various
schemes, non-hierarchical (single master) and hierarchical (2
masters, 4 masters, 8 masters, 16 masters) and with a number
of workers (processors) from 256 to 8,192. The Mandelbrot
Set computation domain is [-2.0, 2.0] × [-2.0, 2.0] and its size
is 200K × 200K. The Adjoint Convolution has a size of 800
× 800 and the arrays are generated randomly.

In order to avoid too many small chunks at the end of
scheduling which may introduce unnecessary synchronization
overhead, we add a threshold to terminate if the chunk size

drops below it. In our experiment, the threshold equals 5,
which means the master can not assign a chunk with size
less than 5, except possibly the last chunk.

We test the HDTSS, HDFSS and HDGSS schemes dis-
cussed in section IV. All workers are treated (by the schemes)
as having the same computing power. The execution time is
measured in seconds.

The performance presented in Figure 3 and Figure 4 is orga-
nized from left to right in doubling numbers of workers using
HDTSS, HDFSS, HDGSS schemes for Mandelbrot Set and
Adjoint Convolution. It can be observed that the hierarchical
distributed scheme with more master nodes can achieve better
performance improvement. The 2-Masters’ model scales well
upto 512 workers, however past this point the execution time
does not decrease as the number of workers increases. The 16-
Masters shows the best scalability because when the number
of workers doubles, the execution time is halved. The load
balancing issue can be solved by the original self-scheduling
schemes (TSS, FSS and GSS), which have been demonstrated
to be effective scheduling schemes in both shared memory
systems and distributed memory systems. In our experiments,
the performance of HDFSS and HDGSS are a little better
than HDTSS because HDFSS and HDGSS may generate more
small chunks at the end to balance the workload across the
computation. These two schemes introduce more synchroniza-
tion problems (i.e. more chunks and more work requests).
However, hierarchical distributed schemes have distributed
queues and these synchronization points take really little time,
which can lead to good load balancing.

In Figure 5 and Figure 6, we show the non-overlapped
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Fig. 5. The non-overlapped communication and synchronization overhead T
′
overhead of Mandelbrot Set

 0

 100

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0

 100

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

 0

 100

 200

 300

 400

 500

 600

 700

 800

256 512 1024 2048 4096 8192

tim
e 

(s
ec

on
ds

)

processors

non hirerachical
2 Masters
4 Masters
8 Masters

16 Masters

a. HDTSS b. HDFSS c. HDGSS

Fig. 6. The non-overlapped communication and synchronization overhead T
′
overhead of Adjoint Convolution
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Fig. 7. The speedup of Mandelbrot Set using hierarchical distributed schemes
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Fig. 8. The speedup of Adjoint Convolution using hierarchical distributed schemes



communication and synchronization overhead (T
′

overhead)
with increasing number of workers, T

′

overhead = Ttotal −
Tcomputation. In our experiments, there are some overlap-
ping between computation and communication for efficient
computing. The computation time can be measured exactly
but the total communication overhead is difficult to capture.
So we use T

′

overhead to represent the sum of non-overlapped
communication and synchronization overhead. In our results,
when more masters are used, T

′

overhead are smaller. The 16-
masters’ model has the best performance for our results,
because it has more result collectors and distributed task
queues residing on master nodes. This helps to reduce the
synchronization overhead and especially the communication
overhead, which may be the most slowest part for large
problems in distributed memory systems.

Figure 7 and Figure 8 shows the speedup of the three hier-
archical distributed schemes for Mandelbrot Set and Adjoint
Convolution. The x-axis represents log2(p). The speedup is
computed by Sp = T̂1

Tp
, T̂1 is the execution time for the non

hierarchical distributed scheme with 256 workers, where Tp is
the execution time with p workers. It can be observed that as
the number of workers increases, the 16-masters’ hierarchical
distributed scheme scales well upto 8,192 workers. The non
hierarchical distributed scheme’s scalability is the worst.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied and implemented (in MPI) hi-
erarchical distributed loop scheduling schemes. We showed
that non hierarchical loop scheduling algorithms with Master-
Worker model does not scale well when there are hundreds
of workers in the system. We proposed and implemented a
hierarchical distributed model for self-scheduling schemes on
large-scale clusters that maintains the load balancing properties
of some well known loop scheduling schemes, and also shows
better scalability on large-scale clusters. There are past results
on thread based and work-stealing based implementation of
loop parallelization [29] [30]. In the future, we plan to study
these approaches in our method.
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