
Benchmarking Joyent SmartDataCenter for Hadoop
MapReduce and MPI Operations

Weiliang Luo(valiantluo@gmail.com), Nima Golpavar(nima.golpavar@gmail.com), Carlos Cardenas+

(carlos.cardenas@joyent.com), Anthony T. Chronopoulos(atc@cs.utsa.edu)
Department of Computer Science

University of Texas at San Antonio
1 UTSA Circle, San Antonio, Texas 78249, U.S.A.

and
+Joyent Inc.

1 Embarcadero Center, San Francisco, CA 94111, U.S.A.

Abstract—Cloud Computing is an ever-growing paradigm shift in
computing allowing users commodity access to compute and storage
services. As such cloud computing is an emerging promising
approach for High Performance Computing (HPC) application
development. Automation of resource provision offered by Cloud
computing facilitates the eScience programmer usage of computing
and storage resources. Currently, there are many commercial services
for compute, storage, network and many others from big name
companies. However, these services typically do not have
performance guarantees associated with them. This results in
unexpected performance degradation of user’s applications that can
be somewhat random to the user. In order to overcome this, a user
must be well versed in the tools and technologies that drive Cloud
Computing. One of the state of the art cloud systems, Joyent
SmartDataCenter, is a cloud system that provides virtual machines
(and their processes) the ability to burst CPU capacity automatically
and thus is suitable for HPC applications. To help HPC developers,
we present a set of Hadoop MapReduce and MPI benchmarks for
FlexCloud (a SmartDataCenter installation). Our benchmarks show
that this cloud system offers scalable performance for HPC
environments.

Keywords- Cloud computing, Hadoop MapReduce, MPI,
benchmarks

 INTRODUCTION

Over the last several years, Cloud Computing has taking off in
terms of usage. These systems provide compute and storage
services that offer: scalability, flexibility, reliability, and on-
demand computing.

There are several commercial cloud providers such as:
AmazonEC2, Microsoft Azure, Salesforce Service Cloud and
Google Cloud. Also, there are some open source cloud
projects for research and development: OpenStack,
Eucalyptus, CloudStack and Ganeti (see [1] and references
there in).

We next reviewed some examples of recent research results
for cloud systems. In [2], a provisioning technique that
automatically adapts to workload changes related to
applications with Quality of Services (QoS) in large,
autonomous, and highly dynamic environments is proposed.

[3] extends Grid workflow middleware to compute clouds in
order to speed up executions of scientific applications. We are
observing a trend of Cloud Computing being used to solve
computationally intensive jobs in the HPC domain. They are
becoming an alternative to private clusters and grids. Parallel
production environments on cloud environments may
introduce performance overhead for the demanding scientific
computing workloads due in part to the resource sharing of the
several independent virtual machines. The performance of
Cloud Computing services for scientific computing workloads
is studied in [4]. Cloud systems offer a utilities based model
that facilitates working with large amounts of compute power
without the need to own a parallel distributed system [5].

Scientific computing applications with varying compute and
storage requirements are suitable for the pay-as-you-go model
that Cloud Computing provides since resources can be
provisioned when needed. Some of these advantages have
been published in [5],[6],[7], and [8]. Cloud computing
platforms provide a near infinite resource pool of resources by
means of virtualization technology [9].

For HPC applications, this means using clusters of virtual
machines. These virtual machines can share the same physical
hardware with varying compute loads. Each cloud system
uses their own resource contention algorithm for providing
fairness to the shared resources: CPU, memory, disk, and NIC.
In SmartDataCenter, Joyent uses what is called a fair-share
scheduler which balances compute loads on a system based on
contention and priority [13].

Due to limited resources and to get the full life of a machine,
some Cloud system platforms have heterogeneous compute
environments like AWS EC2 that provides both Intel Xeon
and AMD Opteron while others have varying generations of
CPUs. Even in the case of homogeneous hardware, the
virtualized cluster provisioned to an HPC user shares
resources with other users. This means that the virtualized
cluster may act as a heterogeneous computing environment at
running time.Thus, the heterogeneity should be taken into

account to improve resource utilization and reduce load
imbalance in order to achieve efficient performance.

In order to overcome this, MapReduce, a general concurrent
programming framework for scheduling jobs [10], is a sight
for sore eyes. However, the MPI concurrent programming
model may yield in general higher performance than
MapReduce. Previous research reported that the performance
on virtual machines is lower than physical systems [11] and
[12]. These papers analyzed message passing (MPI) parallel
applications on different cloud systems and reported that
communication overhead is a substantial slowdown factor.
[15] presents a set of benchmarks for storage operations with
the Azure cloud system. We are motivated by [15] in our work
to benchmark Joyent SmartDataCenter for scientific
computations.

We present computational and communication experiments on
Joyent SmartDataCenter (FlexCloud). We use the Apache
Hadoop for MapReduce and OpenMPI's MPI implementation.
Our experiments demonstrate the scalability of this cloud
system.

The rest of the paper is organized as follows. In Section II, we
present Joyent SmartDataCenter cloud. In Section III, we
present our Hadoop MapReduce experiments. In Section IV,
we present our MPI experiments. Section V contains
conclusions and future work.

JOYENT SMARTDATACENTER

We use Joyent SmartDataCenter operated by the of Institute
for Cyber Security (ICS) at the University of Texas at San
Antonio. The ICS FlexCloud is one of the first dedicated
Cloud Computing academicresearch environments. It offers
significant capacity andsimilar design features found in Cloud
Computing providers, including robust compute capability and
elastic infrastructuredesign. FlexCloud highlights currently
include:
_ Racks of Dell R410, R610, R710, and R910s consisting
of 748 processing cores, 3.44TB of RAM, and
144TB of total storage.
_ Redundant 10GB network connectivity provides high
performance access between all nodes.
_ Powered by Joyent SmartDataCenter [13] providing the
highest performance virtualization and analytics. And
Joyent SmartOS provides a combination of hardware
and operating system virtualization to support efficient,
reliable and high performing cloud computing.
– Joyent uses the HPC model of management: one
headnode PXE boots compute nodes.
– SmartOS is a RAM disk based image (nothing
stored on disk) which makes it very easy to upgrade
headnodes/computenodes.
– SmartOS uses the disks on the local nodes to back
TheSmartMachines and Virtual Machines usingZFS.

– SmartOS has DTrace which allows for monitoringall VMs
with little overhead for maximum observability. SmartOS has
the best multitenant defenses to preventone tenant from
affecting others on the box.

For all our experiments, we initialize 32 virtual machine
instances,each with one virtual core instance, 1GB memory
and10GB storage. Each instance is loaded with an Ubuntu
Linux 10.04 image.

HADOOP MAPREDUCE EXPERIMENTS

Hadoop is an open source software platform from Apache
[16].It consists of the following components: Hadoop
Distributed File System (HDFS): A distributed file system that
provides high-throughput access to application data. Hadoop
MapReduce is a YARN-based system for parallel processing
of large data sets [17].

 We installed the Apache Hadoop on the Flexcloud and
implemented two benchmarks:

a. A matrix times matrix multiplication benchmark (a block
matrix algorithm proposed in [18]).

 b. A Data mining benchmark using files of crimes data in
Austin, Texas.

a. The Matrix times matrix multiplication
benchmark

i. Matrix A is divided by row blocks and matrix B is
divided by column blocks (as shown in Fig. 1).

ii. Design in MapReduce: (as shown in Fig. 2), splits
multiplications (keys) amongst mappers (tasks)
which are subsequently summed by the reducers
(tasks).

Fig.1:Matrix multiplication

iii. Performance Evaluation

We ran this experiment with square matrices of size
4096*4096. We used 32, 16, 8, 4, 2 and 1 VMs, with one
mapper/reducer running inside each VM. Our performance
results and speedups are plotted in the following graphs (Fig. 3
and Fig. 4).

b. Data mining benchmark

We use the data base of the city of Austin, Texas, U.S.A.
Police reports. The problem is to answer the question: (i)
Where is most of the crime happening in Austin?To answer
this question, we use 1 MapReduce job to process the data. In
the mapper, we partitioned the crime records based on the
longitude and latitude into 36 partitions (Fig. 5). For each
occurrence of crime, we emit a key and value pair with key
equals 1 to 36 (representing 36 different areas) and value
equals 1. In the reducer, we sum up the values with the same
key. This way, we get the number of crimes happened in each
area. Our approach allows for 32 mappers and 32 reducers.

i. Performance with different node numbers and
input sizes

We measured the performance on question (i), with different
data sizes. Sincethe size of the actual file is fixed, we changed
the input size by duplicating the input data many times. In our
experiment the data wasduplicated 512 times ofthe original
data. These large files were used to run on 1, 2, 4, 8, 16 and 32

nodes. Performance results are shown in Figures 6 and 7.

Fig.2: MapReduce process

Fig.3: Matrix multiplication execution times

Fig.4: Matrix multiplication speedups Fig.6: Data mining execution times

Fig.5: Data mining partition

We can observe that the best speed up is for 32VMs which is
10.39.

MPI EXPERIMENTS

In these experiments we ran the basic MPI communication
operation and also matrix timesmatrix,matrix times vector
multiplication algorithms.

MPI_Bcast

Broadcasts (sends) a message from the process with rank
"root" to all other processes in the group.

MPI_Bcast(&buffer,count,datatype,root,comm)

MPI_Reduce
Applies a reduction operation on all tasks in the group and
places the result in one task.

MPI_Reduce(&sendbuf,&recvbuf,count,datatype,op,root,com
m)

MPI_Allreduce
Applies a reduction operation and places the result in all tasks
in the group. This is equivalent to an MPI_Reduce followed
byanMPI_Bcast.

MPI_Allreduce(&sendbuf,&recvbuf,count,datatype,op,comm)

MPI_Scatter
Distributes distinct messages from a single source task to each
task in the group.

MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,recvcnt,rec
vtype,root,comm)

MPI_Gather
Gathers distinct messages from each task in the group to a
single destination task.This routine is the reverse operation of

MPI_Scatter.
MPI_Gather(&sendbuf,sendcnt,sendtype,&recvbuf,
recvcount,recvtype,root,comm)

MPI_Allgather
Concatenation of data to all tasks in a group.
Each task in the group, in effect, performs a one-to-all
broadcasting operation within the group.

MPI_Allgather(&sendbuf,sendcount,sendtype,&recvbuf,recvc
ount,recvtype,comm)

MPI_Alltoall
Each task in a group performs a scatter operation, sending a
distinct message to all the tasks in the group in ordered by the
index. [14]

MPI_Alltoall(&sendbuf,sendcount,sendtype,&recvbuf,recvcnt
,recvtype,comm)

Timing results for all of the functions (program size is
128*1024) (shown in Table 1).

We have also implemented the following master-worker
matrix times matrix product algorithm. The master creates
matrices A and B and sends rows of A and columns of B to
workers who multiply them and return the sub matrices of
matrix C.

Table 1: times for MPI collective communications
function functions

Fig.7: Data mining speedups

https://computing.llnl.gov/tutorials/mpi/man/MPI_Alltoall.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Allreduce.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Bcast.txt

We also implemented and ran a similar (master-worker)
algorithm for matrix*vector product computation. In our
experimentwe choose the configuration of VMs with the total
number of 32, 16, 8, 4 and 2, sothat half of the VMs for both
programs are from each of the twoseparate physical machines.

We next present performance results with varying number of
VMs, shown in Figures 8,9,10,11.

Fig.8: Execution Times

Fig.10: Execution Times

Fig.9: Speedups

We observe here good scalability with speed up for 32 VMs
over 2 VMs. For Matrix* Matrix the speed up is 16.01 and for
Matrix*Vector is 7.64.

CONCLUSIONS AND FUTURE WORK

In this paper we presented a set of computation and
communication benchmarks based on Hadoop MapReduce
and MPI for Joyent FlexCloud system. Our results show the
scalability of the cloud system and are useful to scientific
computing applications. In future, we plan to investigate the
performance of storage services combined with computations
for the FlexCloud system.

Acknowledgements
We gratefully acknowledge the following:
(i) support by NSF grant (HRD-0932339) to the University of
Texas at San Antonio; and (ii) time grants to access the
Facilities of the Institute for Cyber Security(ICS) of University
of Texas at San Antonio.

REFERENCES

[1] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and Cloud
Computing: From Parallel Processing to the Internet of Things. Morgan
Kaufmann, 2011.

[2] R. Calheiros, R. Ranjan, and R. Buyya, “Virtual machine provisioning
based on analytical performance and Qos in cloud computing
environments,” 2011 International Conference on Parallel
Processing(ICPP), pp. 295–304, 2011.

[3] S. Ostermann, R. Prodan, and T. Fahringer, “Extending grids with cloud
resource management for scientific computing,” 2009 10th IEEE/ACM
International Conference on Grid Computing, pp. 42–49, 2009.

[4] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer, and D.
Epema, “Performance analysis of cloud computing services for many-
tasks scientific computing,” IEEE Transactions on Parallel and
Distributed Systems, pp. 931–945, 2011.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “Above the clouds: A berkeley view of cloud computing,”
EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-28, Feb 2009. [Online].
Available:http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EE
CS-2009-28.html

[6] C. A. Lee, “A perspective on scientific cloud computing,” in
Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, ser. HPDC ’10. New York, NY,
USA: ACM,2010, pp. 451–459.

[7] G. Turcu, I. Foster, and S. Nestorov, “Reshaping text data for efficient
processing on amazon ec2,” in Proceedings of the 19th
ACMInternational Symposium on High Performance Distributed
Computing, ser. HPDC ’10. New York, NY, USA: ACM, 2010, pp.
435–444. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851540

[8] A. Thakar and A. Szalay, “Migrating a (large) science database to the
cloud,” in Proceedings of the 19th ACM International Symposiumon
High Performance Distributed Computing, ser. HPDC ’10. New York,
NY, USA: ACM, 2010, pp. 430–434. [Online].
Available:http://doi.acm.org/10.1145/1851476.1851539

[9] J. E. Simons and J. Buell, “Virtualizing high performance computing,”
ACM SIGOPS Operating Systems Review, pp. 136–145, 2010.

[10] W.-C. Shih, S.-S. Tseng, and C.-T. Yang, “Performance study of parallel
programming on cloud computing environments using MapReduce,”
2010 International Conference on Information Science and
Applications(ICISA), pp. 1–8, 2010.

[11] J. Ekanayake and G. Fox, “High performance parallel computing with
clouds and cloud technologies,” Proceedings of the first International
Conference on Cloud Computing, pp. 20–38, 2010.

[12] C. Evangelinos and C. N. Hill, “Cloud Computing for parallel Scientific
HPC Applications: Feasibility of Running Coupled Atmosphere-Ocean
Climate Models on Amazon’s EC2,” Computability and Complexity in
Analysis, pp. 159– 168, 2008.

[13] Joyent, http://joyent.com/.

[14] https://computing.llnl.gov/tutorials/mpi/

[15] Dinesh Agarwal and Sushil K. Prasad, “AzureBench: Benchmarking the
Storage Services of the Azure Cloud Platform”2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
& PhD Forum

[16]

[17] Apache Hadoop, http://hadoop.apache.org/

[18] MapReduce: Simplified Data Processing on Large Clusters’, Jeffrey
Dean and Sanjay Ghemawat, OSDI ’04: 6th Symposium on Operating
Systems Design and Implementation, p. 137-149, 2004.

[19] ‘A MapReduce Algorithm for Matrix Multiplication’, John Norstad,
Northwestern University, Academic and Research Technologies,

http://www.norstad.org/matrix-multiply/

Fig.11: Speedups

http://www.norstad.org/matrix-multiply/
http://hadoop.apache.org/
https://computing.llnl.gov/tutorials/mpi/
http://doi.acm.org/10.1145/1851476.1851539
http://doi.acm.org/10.1145/1851476.1851540
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

