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Abstract—Cloud Computing is an ever-growing paradigm shift in 
computing allowing users commodity access to compute and storage 
services. As such cloud computing is an emerging promising 
approach for High Performance Computing (HPC) application 
development. Automation of resource provision offered by Cloud 
computing facilitates the eScience programmer usage of computing 
and storage resources. Currently, there are many commercial services 
for compute, storage, network and many others from big name 
companies.  However, these services typically do not have 
performance guarantees associated with them.  This results in 
unexpected performance degradation of user’s applications that can 
be somewhat random to the user.  In order to overcome this, a user 
must be well versed in the tools and technologies that drive Cloud 
Computing.  One of the state of the art cloud systems, Joyent 
SmartDataCenter, is a cloud system that provides virtual machines 
(and their processes) the ability to burst CPU capacity automatically 
and thus is suitable for HPC applications.  To help HPC developers, 
we present a set of Hadoop MapReduce and MPI benchmarks for 
FlexCloud (a SmartDataCenter installation).  Our benchmarks show 
that this cloud system offers scalable performance for HPC 
environments.
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 INTRODUCTION 

Over the last several years, Cloud Computing has taking off in 
terms of usage.  These systems provide compute and storage 
services that offer: scalability, flexibility, reliability, and on-
demand computing.  

There are several commercial cloud providers such as: 
AmazonEC2, Microsoft Azure, Salesforce Service Cloud and
Google Cloud. Also, there are some open source cloud 
projects for research and development: OpenStack, 
Eucalyptus, CloudStack and Ganeti  (see [1] and references 
there in).

We next reviewed some examples of recent research results 
for cloud systems.  In [2], a provisioning technique that 
automatically adapts to workload changes related to 
applications with Quality of Services (QoS) in large, 
autonomous, and highly dynamic environments is proposed. 

[3] extends Grid workflow middleware to compute clouds in 
order to speed up executions of scientific applications.  We are 
observing a trend of Cloud Computing being used to solve 
computationally intensive jobs in the HPC domain.  They are 
becoming an alternative to private clusters and grids.  Parallel 
production environments on cloud environments may 
introduce performance overhead for the demanding scientific 
computing workloads due in part to the resource sharing of the 
several independent virtual machines.  The performance of 
Cloud Computing services for scientific computing workloads 
is studied in [4].  Cloud systems offer a utilities based model 
that facilitates working with large amounts of compute power 
without the need to own a parallel distributed system [5].

Scientific computing applications with varying compute and 
storage requirements are suitable for the pay-as-you-go model 
that Cloud Computing provides since resources can be 
provisioned when needed.  Some of these advantages have 
been published in [5],[6],[7], and [8].  Cloud computing 
platforms provide a near infinite resource pool of resources  by 
means of virtualization technology [9].

For HPC applications, this means using clusters of virtual 
machines.  These virtual machines can share the same physical 
hardware with varying compute loads.  Each cloud system 
uses their own resource contention algorithm for providing 
fairness to the shared resources: CPU, memory, disk, and NIC. 
In SmartDataCenter, Joyent uses what is called a fair-share 
scheduler which balances compute loads on a system based on 
contention and priority [13].

Due to limited resources and to get the full life of a machine, 
some Cloud system platforms have heterogeneous compute 
environments like AWS EC2 that provides both Intel Xeon 
and AMD Opteron while others have varying generations of 
CPUs.  Even in the case of homogeneous hardware, the 
virtualized cluster provisioned to an HPC user shares 
resources with other users. This means that the virtualized 
cluster may act as a heterogeneous computing environment at 
running time.Thus, the heterogeneity should be taken into 



account to improve resource utilization and reduce load 
imbalance in order to achieve efficient performance.

In order to overcome this, MapReduce, a general concurrent 
programming framework for scheduling jobs [10], is a sight 
for sore eyes.  However, the MPI concurrent programming 
model may yield in general higher performance than 
MapReduce.  Previous research reported that the performance 
on virtual machines is lower than physical systems [11] and 
[12].  These papers analyzed message passing (MPI) parallel 
applications on different cloud systems and reported that 
communication overhead is a substantial slowdown factor. 
[15] presents a set of benchmarks for storage operations with 
the Azure cloud system. We are motivated by [15] in our work 
to benchmark Joyent SmartDataCenter for scientific 
computations.

We present computational and communication experiments on 
Joyent SmartDataCenter (FlexCloud).  We use the Apache 
Hadoop for MapReduce and OpenMPI's MPI implementation. 
Our experiments demonstrate the scalability of this cloud 
system.

The rest of the paper is organized as follows.  In Section II, we 
present  Joyent  SmartDataCenter  cloud.   In  Section  III,  we 
present our Hadoop MapReduce experiments.  In Section IV, 
we  present  our  MPI  experiments.   Section  V  contains 
conclusions and future work.

JOYENT SMARTDATACENTER

We use Joyent SmartDataCenter operated by the of Institute 
for Cyber Security (ICS) at the University of Texas at San 
Antonio. The ICS FlexCloud is one of the first dedicated 
Cloud Computing academicresearch environments. It offers 
significant capacity andsimilar design features found in Cloud 
Computing providers, including robust compute capability and 
elastic infrastructuredesign. FlexCloud highlights currently 
include:
_  Racks of Dell R410, R610, R710, and R910s consisting
of 748 processing cores, 3.44TB of RAM, and
144TB of total storage.
_ Redundant 10GB network connectivity provides high
performance access between all nodes.
_ Powered by Joyent SmartDataCenter [13] providing the
highest performance virtualization and analytics. And
Joyent SmartOS provides a combination of hardware
and operating system virtualization to support efficient,
reliable and high performing cloud computing.
– Joyent uses the HPC model of management: one
headnode PXE boots compute nodes.
– SmartOS is a RAM disk based image (nothing
stored on disk) which makes it very easy to upgrade
headnodes/computenodes.
– SmartOS uses the disks on the local nodes to back
TheSmartMachines and Virtual Machines usingZFS.

– SmartOS has DTrace which allows for monitoringall VMs 
with little overhead for maximum observability. SmartOS has 
the best multitenant defenses to preventone tenant from 
affecting others on the box. 

For all our experiments, we initialize 32 virtual machine
instances,each with one virtual core instance, 1GB memory 
and10GB storage. Each instance is loaded with an Ubuntu 
Linux 10.04 image.

HADOOP MAPREDUCE EXPERIMENTS

Hadoop is an open source software platform from Apache 
[16].It consists of the following components: Hadoop 
Distributed File System (HDFS): A distributed file system that 
provides high-throughput access to application data. Hadoop 
MapReduce is a YARN-based system for parallel processing 
of large data sets [17].

 We  installed  the  Apache  Hadoop  on  the  Flexcloud  and 
implemented two benchmarks: 

a.  A matrix times matrix multiplication benchmark (a block 
matrix algorithm proposed in [18]).

 b.  A Data mining benchmark using files  of crimes data in 
Austin, Texas.

a. The Matrix times matrix multiplication 
benchmark

i. Matrix A is divided by row blocks and matrix B is 
divided by column blocks (as shown in Fig. 1).

ii. Design in MapReduce:  (as shown in Fig. 2), splits 
multiplications (keys) amongst mappers (tasks) 
which are subsequently summed by the reducers 
(tasks).

Fig.1:Matrix multiplication



iii. Performance Evaluation

We  ran  this  experiment  with  square  matrices  of  size 
4096*4096. We used 32,  16, 8,  4,  2  and 1 VMs,  with one 
mapper/reducer  running inside each  VM.  Our  performance 
results and speedups are plotted in the following graphs (Fig. 3 
and Fig. 4).

b. Data mining benchmark

We use the  data  base  of  the  city  of  Austin,  Texas,  U.S.A. 
Police  reports.   The  problem is  to  answer  the  question:  (i) 
Where is most of the crime happening in Austin?To answer 
this question, we use 1 MapReduce job to process the data. In 
the  mapper,  we  partitioned  the  crime  records  based  on  the 
longitude  and  latitude  into  36  partitions  (Fig.  5).  For  each 
occurrence of crime, we emit a key and value pair with key 
equals  1  to  36  (representing  36  different  areas)  and  value 
equals 1. In the reducer, we sum up the values with the same 
key. This way, we get the number of crimes happened in each 
area. Our approach allows for 32 mappers and 32 reducers. 

i. Performance  with  different  node  numbers  and 
input sizes

We measured the performance on question (i), with different 
data sizes. Sincethe size of the actual file is fixed, we changed 
the input size by duplicating the input data many times. In our 
experiment  the  data  wasduplicated  512  times  ofthe  original 
data. These large files were used to run on 1, 2, 4, 8, 16 and 32 

nodes. Performance results are shown in Figures 6 and 7.  

Fig.2: MapReduce process

Fig.3: Matrix multiplication execution times

Fig.4: Matrix multiplication speedups Fig.6: Data mining execution times

Fig.5: Data mining partition 



We can observe that the best speed up is for 32VMs which is 
10.39.

MPI  EXPERIMENTS

In  these  experiments  we ran  the  basic  MPI communication 
operation  and  also  matrix  timesmatrix,matrix  times  vector 
multiplication algorithms.

MPI_Bcast

Broadcasts  (sends)  a  message  from  the  process  with  rank 
"root" to all other processes in the group. 

MPI_Bcast(&buffer,count,datatype,root,comm)

MPI_Reduce
Applies a  reduction operation on all  tasks in the group and 
places the result in one task.

MPI_Reduce(&sendbuf,&recvbuf,count,datatype,op,root,com
m) 

MPI_Allreduce
Applies a reduction operation and places the result in all tasks 
in the group. This is equivalent to an MPI_Reduce followed 
byanMPI_Bcast. 

MPI_Allreduce(&sendbuf,&recvbuf,count,datatype,op,comm) 

MPI_Scatter
Distributes distinct messages from a single source task to each 
task in the group.

MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,recvcnt,rec
vtype,root,comm) 

MPI_Gather
Gathers  distinct  messages  from each  task in  the group to  a 
single destination task.This routine is the reverse operation of 

MPI_Scatter. 
MPI_Gather(&sendbuf,sendcnt,sendtype,&recvbuf, 
recvcount,recvtype,root,comm) 

MPI_Allgather
Concatenation of data to all tasks in a group. 
Each  task  in  the  group,  in  effect,  performs  a  one-to-all 
broadcasting operation within the group. 

MPI_Allgather(&sendbuf,sendcount,sendtype,&recvbuf,recvc
ount,recvtype,comm) 

MPI_Alltoall
Each task in a group performs a scatter operation, sending a 
distinct message to all the tasks in the group in ordered by the 
index. [14]

MPI_Alltoall(&sendbuf,sendcount,sendtype,&recvbuf,recvcnt
,recvtype,comm) 

Timing  results  for  all  of  the  functions  (program  size  is 
128*1024) (shown in Table 1). 

We  have  also  implemented  the  following  master-worker 
matrix  times  matrix  product  algorithm.  The  master  creates 
matrices A and B and sends rows of A and columns of B to 
workers  who multiply  them and return  the  sub  matrices  of 
matrix C.

Table  1:  times  for  MPI  collective  communications 
function functions

Fig.7: Data mining speedups

https://computing.llnl.gov/tutorials/mpi/man/MPI_Alltoall.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Allreduce.txt
https://computing.llnl.gov/tutorials/mpi/man/MPI_Bcast.txt


We  also  implemented  and  ran  a  similar  (master-worker) 
algorithm  for  matrix*vector  product  computation.  In  our 
experimentwe choose the configuration of VMs with the total 
number of 32, 16, 8, 4 and 2, sothat half of the VMs for both 
programs are from each of the twoseparate physical machines.

We next present performance results with varying number of 
VMs, shown in Figures 8,9,10,11. 

Fig.8: Execution Times

Fig.10: Execution Times

Fig.9: Speedups



We observe here good scalability with speed up for 32 VMs 
over 2 VMs. For Matrix* Matrix the speed up is 16.01 and for 
Matrix*Vector is 7.64.

CONCLUSIONS AND FUTURE WORK

In  this  paper  we  presented  a  set  of  computation  and 
communication  benchmarks  based  on  Hadoop  MapReduce 
and MPI for Joyent FlexCloud system. Our results show the 
scalability  of  the  cloud  system  and  are  useful  to  scientific 
computing applications. In future, we plan to investigate the 
performance of storage services combined with computations 
for the FlexCloud system.
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