
A Cell Burst Scheduling for ATM Networking Part II: Implementation

C. Tang, A. T. Chronopoulos, Senior Member, IEEE
Computer Science Department

Wayne State University
email:ctang, chronos@cs.wayne.edu

E. Yaprak, Member, IEEE
College of Engineering
Wayne State University

yaprak@et1.eng.wayne.edu

Abstract

The scheduling scheme of a switch affects the delay,
throughput and fairness of a network and thus has a great
impact on the quality of service (QoS). In Part I, we
present a theoretical analysis of a burst scheduling for ATM
switches and proved QoS guarantees on throughput and
fairness of the applications. Here, we use simulation to
demonstrate the superiority of the burst based weighted fair
queueing over the non-burst version. Our simulation study
is based on backbone and access subnetworks, which are
common in the real world.

Key Words : Burst based weighted fair queueing,
Implementation, Simulation.

1 Introduction

As the infrastructure for future digital communication,
ATM networks can accommodate various kinds of appli-
cations, and applications may have different traffic charac-
teristics. The order in which application sessions will be
offered service is very important. An ATM switch needs a
well-designed scheduling algorithm to achieve this instead
of First-Come-First-Served (FIFO) queuing. The schedul-
ing algorithm has a great impact on the delay (especially on
the queuing delay), the delay variation and the throughput
of an application. There are many articles which present
the progress on this topic, i.e. [1], [2], [4], [5], [6] and [?].
In the next sections, we present an efficient implementation
for the algorithms of our article in Part I.

2 An efficient implementation of BBWFQ

In this implementation, we build five procedures for
the main loop: cell enqueue, computestart time, com-
putefinish time, virtual time function, burst departure.
Cell enqueuedetermines the burst boundary upon the cell
arrival and cell interval arrival time. The actual data unit in

the queue is a variable length burst. Thecomputestart time
computes the virtual start time of a burst instead of a cell.
The computefinish time obtains the virtual finish time of
the enqueued bursts. Thevirtual time functionkeeps track
of the virtual time of the server upon the cell arrival and
gives a server-wide consistent virtual time to all other pro-
cedures. Theburst departureis in charge of the scheduling
of the burst.

The scheduling pseudocode is as follows:
init(); /* Initialize the global constants and global

variables*/
loop

if(cell arrival)
cell enqueue();

if(system backlog isn’t empty)
burst scheduling();

Following are the procedures used in the main loop:
cell enqueue()
f
the vci=VCI in the cell header arrived;
the vpi=VPI in the cell header arrived;
queueindex=getqueueindex(thevci, thevpi);
arrival time=getcurrent physicaltime();
if(queue is empty)

previouscell arrival time[queueindex]
=arrival time;

if(system is idle)
burst finish time[queueindex]

=virtual time function(queueindex)+
1.0/bandwidthportion[queueindex];

/* The bandwidthportion is a global array which stores
the preassigned portion of each session and it is initialized
in the procedure init() */

if(arrival time-previouscell arrival time[queueindex]>
BURSTBOUNDARYTHRESHOLD or
burst size[queueindex]�
burst maxsize[queueindex] or
system backlog is empty)

/* The BURSTBOUNDARYTHRESHOLD is a global

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:26:29 UTC from IEEE Xplore. Restrictions apply.

constant */
f
the start time=computestart time(queueindex,

burst arrival time[queueindex],
burst finish time[queueindex]);

the finish time=computefinish time(queueindex,
burst size[queueindex], thestart time);

burst finish time[queueindex]=the finish time;
#ifdef PREEMPTIVE
if(the finish time<

get burst finish time(currentservedsession))
burst departure();

#endif
setburst finish time(queueindex, thefinish time);
burst arrival time[queueindex]=arrival time;
g elsef

burst size[queueindex]=burst size[queueindex]+1;
previouscell arrival time[queueindex]=arrival time;
enqueueburst(queueindex);
g

computestart time(queueindex,
arrival time, previousfinish time)

f
the virtual time=virtual time function(queueindex,

arrival time);
if (previousfinish time> the virtual time)

start time=previousfinish time;
else

start time=virtual time;
return start time;
g

compute finish time(queueindex, burstsize,
start time)

f
return start time+burstsize *CELLSLOT/

bandwidthportion[queueindex];
g
/* CELL SLOT is a global constant which equals to

the time spent for processing a cell and it depends on the
out-link capacity and the processor capacity*/

virtual time function(queueindex, burstarrival time)
f
total activeportion=get total bandwidthportion();
the physicaltime=getcurrent physicaltime();
the virtual time=virtual time+

(the physicaltime-burstarrival time)/
total activeportion;

virtual time=thevirtual time; /* virtual time is a global
variable*/

return thevirtual time;

g

burst departure()
f
for(index=0 to activesessionnumber)
f

queueindex=getqueueindex(index);
burst at header[i]=get burst(queueindex);

g
burst index=getleast finish time(burstat header,

activesessionnumber);
current servedsession

=get queueindex from burst(burstindex);
sendburst(burstindex, currentservedsession);
g

3 Simulation Study

In this section, we simulate extensively the algorithms
and test the related parameters. Our simulation model is
based on a two-level ATM network environment consisting
of backbone switches and access switches. Our simulation
package is OPNET modeler 3.0.B from MIL 3, Inc. It has
a prominent advantage over other simulation packages, for
it supplies adequate in-built C functions to support accurate
algorithm implementation using discrete-event mechanism
and it also supplies many flexible analysis tools [3]. To-
wards building a model representing a real-world network,
OPNET allows a model specification, complete with net-
work, node, process and parameter definitions to capture
the characteristics of a modeled system’s behavior at differ-
ent modeling hierarchies. Geographically distributed sites
are referred to as nodes or subnetworks. These nodes are
connected through point-to-point links, bus links, or radio
links, in the OPNET network editor.

A simulation is executed by taking the simulation pro-
gram and a set of data files representing the model’s pa-
rameters to dynamically model the behavior of the actual
system. Pre-defined statistics of interest can be collected
on sample simulation runs by using the Probe Editor to
specify which built-in statistics should be recorded by the
Simulation Kernel. Each simulation run can be viewed as
an experiment on a certain group of parameters of the sys-
tem. It exhibits a repeatable behavior each time without
changing the execution environment. This property is use-
ful for isolating problems and analyzing or demonstrating
interesting behaviour. However, for simulating stochastic
elements (for example, a packet generator module) differ-
ent seed (one of the parameters) values should be used to
produce distinct sequences so that each particular simula-
tion run can be thought of as representing one possible sce-
nario of events for the modeled system. Statistics of inter-
est can be collected as output vector files during the sim-

2

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:26:29 UTC from IEEE Xplore. Restrictions apply.

ulation runs. Our simulation plots are generated this way.
The ATM switch model design is shown in Figure 1, where:
AAL = ATM Adaptation Layer,MGMT = traffic manage-
ment,ATM = ATM Layer, FRM BKB = From Backbone
Switch,To BKB = To Backbone Switch,To LOC = To Lo-
cal Switch,Switch = ATM Switch Fabric,TRANS = ATM
Cell Transmission. ATM layers areSessions(Application
Layer),AAL , MGMT/ATM , TRANS/SWITCH (Physical
Layer). Our scheduling server is part ofAAL .

AAL

ATM

Switch

Session 1 Session 2 Session 8

To BKB

To BKB

To LOC

FRM BKB

FRM BKB

FRM BKB

TRANS

MGMT

Figure 1: Switch Model

The network topology for this simulation is shown in
Figure 2. Table 1 gives the source traffic parameters in our
experiment with eight sessions, Note:p0 = session num-
ber,p1 = bandwidth portion,p2 = packet size,p3 = leaky-
bucket burst size,p4 = leaky-bucket maximum rate,p5 =

leaky-bucket token generation rate,p6 = source interar-
rival time, p7 = source start time andp8 = source end
time.

In the figures (generated by OPNET), the ordinate axis
unit is thenumber of cellsfor throughput, or for bucket-
depth andnumber of cell slotsfor delay. The abscissa axis
unit is thesimulation timemeasured incell slots (not in
seconds), the number after the legend in each figure patch
is the session number.

3.1 Performance comparision of the cell PGPS
and BBWFQ

In this experiment, we compare our burst version BB-
WFQ with the cell version. Through the simulation, we find
that the performances on the queue delay, session through-
put and session backlog are almost the same. This means
that under the new algorithm, the buffer and source traf-
fic Usage Parameter Control (UPC) parameters need not

1 2 3 4 5 6 7 8

0.1 0.1 0.1 0.1 0.2 0.5 0.5 1.0

p2 8988 1581 1581 8988 1240 1240 2400 2400

p3 50 80 100 100 100 200 100 200

p4 2000 2000 2000 2000 4000 4000 5000 5000

p5 50 10 30 20 50 10 10 10

p6 200 200 200 200 100 100 100 100

p7 100 0 200 0 100 100 20 0

p8 2000 1800 1700 1500 2000 2000 1800 1700

Table 1: The source traffic parameter

p0

p1

change and we can still obtain the required performance.
Further work on the detail correlation between these algo-
rithms (such as the cell loss) is needed. Here we only focus
on the performance indices mentioned above.

Now, we test the performance of the two algorithms un-
der the same source traffic pattern. The source traffic ar-
rivals measured in cells are presented in Figure 3. The
curves presenting performance indices using BBWFQ un-
der the prementioned traffic arrival on session backlog, ses-
sion throughput and delay are shown in Figure 4-6. Then,
we present the experiment results for cell PGPS under the
same traffic pattern. The Figures 7-9 show the session back-
log, the session throughput and the cell delay.

Through these comparisons, we find the backlogs vari-
ation in the BBWFQ servers is relatively larger than that
in the cell-PGPS server. It’s reasonable because we sched-
ule the cells in burst (group of cells in one time from one
session and not one cell one time). As for the delay, the
BBWFQ server has an overall smaller maximum delay than
that of the cell-PGPS server. The throughputs of the real-
time sessions are very consistent in a BBWFQ server as we
showed above. In contrast, the throughputs in a cell PGPS
server vary greatly, e.g. this can’t offer a smooth playback
of the multimedia applications.

3.2 Performance comparision between the non-
preemptive and preemptive schemes

There are several advantages of the preemptive scheme.
For example, (a) the average queue delay is shorter; (b)
there is no queue indefinitely waiting for service, i.e. there
is no starvation under the scheme.

We next present the backlog and delay of the preemp-
tive scheme. The traffic arrivals, measured in cells, are in

3

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:26:29 UTC from IEEE Xplore. Restrictions apply.

Figure 10. The session backlogs in the server is given in
Figure 11. In this figure, we find the backlogs in the server
with preemptive scheme have a large variation but the ab-
solute backlog is small. The reason for this is that we set
the packet length of the real-time session less than that of
the nonreal-time session and make the real-time bursts pre-
empt the currently served nonreal-time session once their
packets arrive. The bandwidth for those sessions is greater
than that of nonreal-time sessions, so the computed virtual
finish-time is smaller than that of the packets from nonreal-
time sessions. This is why the preemption occurs.

We present cell delay in Figure 12. We note that in
the figure, the delays on real-time sessions are under con-
trol compared to the delay of nonreal-time sessions varies
widely.

4 Conclusion

In this paper, we implement the BBWFQ, which is
highly efficient in terms of the computation complexity and
the major QoS indices. The simulation study demonstrates
the design advantages of the BBWFQ over the standard
schemes.
Acknowledgement:Some comments of anonymous refer-
ees, which helped improve the presentation of some parts
of the paper are gratefully acknowledged. This work was
supported in part by NSF Grant ASC-9634775.

References

[1] S.J., Golestani, ”Congestion-free transmission of real-
time traffic in packet networks”,proc. IEEE Infocom
90, June 1990.

[2] P. Goyal, H. M. Vin, Haichen Cheng, ”Start-time
Fair Queueing: A scheduling algorithm for integrated
services packet switching networks”,SIGCOMM’96
8/96.

[3] OPNET Modeler: Modeling and Simulation kernel,
Mil 3, Inc. 1996.

[4] A. K. Parekh and R. G. Gallager,”A generalized pro-
cessor sharing approach to flow control in integrated
services networks: The single-node case”,IEEE/ACM
Transactions on Networking, vol. 1, No. 3, June 1993.

[5] D. Saha, S. Makherjec, S.H Tripahi ”Carry-over round
robin: A simple cell scheduling mechanism for ATM
networks”,In Proc. IEEE Infocom’96, 1996.

[6] Hui Zhang et al. ”WF 2Q: Worst-case fair weighed
fair queuing”, In Proc. IEEE Infocom’96, March
1996.

Figure 2. Network topology

Figure 3. Traffic arrival pattern

Figure 4. Session backlog of BBWFQ

4

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:26:29 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Session throughput of BBWFQ

Figure 6. Session delay of BBWFQ

Figure 7. Session backlog of cell PGPS

Figure 8. Session throughput of cell PGPS

Figure 9. Session delay of cell PGPS

Figure 10. Traffic arrival patterns

5

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:26:29 UTC from IEEE Xplore. Restrictions apply.

Figure 11. Session backlog of preemptive
scheme

Figure 12. Session delay of preemptive
scheme

6

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:26:29 UTC from IEEE Xplore. Restrictions apply.

