
The Parallelization of a Highway Traffic Flow Simulation

Charles Michael Johnston  Concurrent Computer Corporation
Anthony Theodore Chronopoulos  University of Texas San Antonio

Abstract
This work implements and analyses a highway traffic

flow simulation based on continuum modeling of traffic
dynamics. A traffic-flow simulation was developed and
mapped onto a parallel computer architecture. Two
algorithms (the 1-step and 2-step algorithms) to solve the
simulation equations were developed and implemented.
They were then tested on a Cray T3E, a 3-D torroidal
mesh with very fast inter-processor communication (IPC)
times. Tests with real traffic data collected from the
freeway network in the metropolitan area of Minneapolis,
MN were used to validate the accuracy and computation
rate of the parallel simulation system. The execution time
for a 24-hour traffic-flow simulation over a 15.5-mile
freeway, which takes 65.7 minutes on a typical single
processor computer, took only 2.39 seconds on the Cray
T3E. The 2-step algorithm, whose goal is to trade off
extra computation for fewer IPC’s, was shown to save
more than 5% on computation time. This parallel
implementation has proven potential for real-time traffic
engineering applications.

1: Introduction

A very important component of an Intelligent
Highways’ management System is a traffic simulation
system. Such a system would consist of a traffic flow
simulation that is able to simulate traffic on freeways and
arterial networks on a computer system. This computer
system consists of hardware and software. Input/output
devices provide real-time traffic data measurements from
a network of traffic detectors (loops or cameras) and data
on the road geometry or other traffic characteristics. The
system uses a mathematical traffic flow model to perform
traffic flow simulation and predict the traffic conditions in
real-time. These predictions can be used for real-time
traffic control and drivers’ guidance.

Macroscopic or continuum traffic flow models based
on traffic density, volume and speed have been proposed
and analyzed in the past. See for example [1, 2, 3, 4, 5, 6]
and the references therein. These models involve partial
differential equations defined on appropriate domains
with suitable boundary conditions, which describe various
traffic phenomena and road geometries.

The main objective of this paper is to demonstrate
that the parallelization of the traffic flow simulation
component in a real-time system is feasible for
macroscopic models. Some preliminary results on the

issue of parallelizing Computational Fluid Dynamics
(CFD) methods for transportation problems were
presented in [5]. Such a real-time simulation system can
be designed using a parallel computer as its computational
component. We design such a computational component
by parallelizing a CFD method to solve the momentum
conservation (macroscopic) model [4, 5, 6] and
implementing it on the Cray T3E parallel computer.

Tests with real data from the I-494 freeway in
Minneapolis were conducted. Each processing element
(PE) of the Cray T3E is a 450MHz DEC Alpha 21164.
Tests were run on the Cray T3E at the Pittsburgh
Supercomputing Center. The execution time for a 24-
hour traffic flow simulation of a 15.5-mile freeway, which
takes 65.65 minutes of computer time (on a 133MHz
single-processor Pentium computer), took only 2.39
seconds on the parallel traffic simulation system
implemented on the Cray T3E.

We adopted the Lax-Momentum traffic model [11].
Let ∆t and ∆x be the time and space mesh sizes. We use

the following notation: k j
i is the density

(vehicles/mile/lane) at space node j∆x and at time i∆t, qj
i

is the flow (vehicles/hour/lane) at space node j∆x and at

time i∆t, and uj
i is the speed (mile/hour) at space node

j∆x and at time i∆t. At time (i+1)∆t, the density value

k j
i +1 and volume value q j

i +1 are computed directly from

the density and volume at the preceding time step i:

()&
& & & &

& &
U

U U t

x

E E t
Z Zj

i j
i

j
i

j
i

j
i

j
i

j
i+ + − + −

+ −=
+

−
−

+ +1 1 1 1 1
1 12 2 2

∆
∆

∆

The method is of first order accuracy with respect to ∆t,
i.e. the error is O(∆t). To maintain numerical stability
time and space step-sizes must satisfy the Courant-

Friedrichs-Lewy (CFL) condition ∆∆
x
t > uf , where uf is the

free flow speed (see [4]). Typical choices for the space
and time meshes are ∆x = 100 feet and ∆t = 0.5 sec are
recommended for numerical stability [6, 11].

Let P be the number of processors available in the
system. The parallelization of the discrete model is
obtained by partitioning the space domain (freeway
model) into equal segments Seg0,…, SegP-1 and assigning
each segment to the processors (PE) P Pj j P0 1,..., − . The

choice of indices j0,…,jP-1 defines a mapping of the
segments to the processors [3, 11].

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:13:49 UTC from IEEE Xplore. Restrictions apply.

The computations associated with each segment have
as their goal to compute the density, volume and speed
over that segment. The computation in the time
dimension is not parallelized. At a fixed discrete time,

this essentially means that the quantities k j
i , qj

i , and uj
i

are computed by processor Pjk , iff the space node j∆x

belongs to the segment Segjk . This segment-processor

mapping must be such that the communication delays for
data exchanges, required in the computation, are
minimized.

2: PE Scheduling

All the space nodes in the simulation must be
allocated to PEs. This is also known as PE scheduling.
For a given number of PEs, P, it is desirable to allocate
them in such a way that all PEs are utilized in the most
efficient way possible, while keeping in mind any load-
balancing requirements. Assume that there are n space

nodes. Then ideally, we allocate r n
P= nodes per PE.

Obviously, the closest we can come is an allocation of

 rh
n
P= and/or  rl

n
P= .

Our first approach to this problem we call Method I:
allocate rh space nodes to as many PEs as possible, with
the remainder going to the last utilized PE. This
algorithm has some side effects. Namely, as P gets larger
so does the number of idle PEs. As an example, consider
the case where n = 426 and P is an increasing power of
two. We are faced with the situation in Table 1, where
rem is the number of space nodes that the last PE will
need to process (i.e. the number remaining after the initial
rh distribution):

Total
PEs (P)

Used
PEs

Idle PEs Rh Rem

1 1 0 426 0

2 2 0 213 0

4 4 0 106 2

8 8 0 53 2

16 16 0 27 21

32 31 1 14 6

64 61 3 7 6

128 107 21 4 2

256 213 43 2 0

512 426 86 1 0

Table 1. PE Allocation Using Method I

This scenario is clearly not desirable from a load
balancing perspective. It does, however, free up some
PEs for some other potentially useful work. In a real-time

environment, these PEs could be doing I/O, or applying
algorithms to the simulation results in order to effectively
manage the traffic flow. However, at the largest P values,
where the lowest run-times are obtained, nearly 17% of
the PEs are idle – an unreasonably large number. In order
to obtain better load balancing, a second scheduling
method was developed that was used in our
implementation.

Method II seeks to improve load balancing by
distributing the space nodes as evenly across the PEs as
possible. This will require some combination of rh and rl.
If h and l are the number of PEs allocated rh and rl space
nodes, respectively, then we know:

rh=  n
P (1)

rl=  n
P (2)

h + l = P (3)
rh × h + rl × l = n (4)

Given (1) and (2), we combine (3) and (4) to solve for l
and h and obtain:

l = rh × P - n
h = P – l (from 3)

Therefore, l PEs each allocates rl space nodes, and h PEs
each allocates rh space nodes.

In addition to knowing how many space nodes to
allocate to each PE, we must also devise a mapping of a
subset of space nodes to each PE. Given that each PE
knows its identity via a uniquely valued parameter Pi ,
i=0...P-1, then the mapping is defined via the pseudo-
code:

if Pi < h then
upstream-node = Pi × rh + 1
downstream-node = (Pi + 1) × rh

else
temp = rh × h
offset = Pi - h
upstream-node = offset × rl + 1 + temp
downstream-node = (offset + 1) × rl + temp

end if
We introduce here the concept of upstream and

downstream space nodes. If we think of the traffic as
moving from upstream to downstream, then an upstream
node is the leftmost or lowest index node within a
segment, and the downstream node is the rightmost or
highest index node within a segment.

Note that the first h PEs were chosen to allocate rh

space nodes. It could just as easily have been the first l
PEs allocating rl space nodes. The following example
helps clarify this procedure:

Given P = 3 and n = 16, then

rl =  16
3 = 5 rh =  16

3 = 6

l = 6 × 3 - 16 = 2 h = 3 - 2 = 1
∴ two PEs allocate 5 space nodes, and one PE
allocates 6.
For P0: upstream-node = 0 × 6 + 1 = 1

downstream-node = (0 + 1) × 6 = 6

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:13:49 UTC from IEEE Xplore. Restrictions apply.

 P1: offset = 1 - 1 = 0
temp = 6 × 1 = 6
upstream-node = 0 × 2 + 1 + 6 = 7
downstream-node = (0 + 1) × 5 + 6 = 11

 P2: offset = 2 - 1 = 1
temp = 6 × 1 = 6
upstream-node = 1 × 5 + 1 + 6 = 12
downstream-node = (1 + 1) × 5 + 6 = 16

We should also note at this point that this allocation
method places some constraints upon the simulation.
Clearly there are situations where either rh or rl can be
zero. This is an indication that there are more processors
than are necessary for the given number of space nodes
(i.e. some PEs would be idle). This situation is flagged as
an error, and the program terminated. This allocation
mechanism is used for both the 1-step and 2-step
algorithms. The 2-step algorithm places one additional
constraint on this technique: both rh and rl must be three
or more in order for there to be enough nodes for the
partial second step to be performed (this will become
obvious when the algorithm is more fully explained).

3: The 1- and 2-Step Algorithms

The core of the Lax-Momentum computations, for a
given time step and space node, are quite simple. The
general form of the computations is as follows (expressed
in a C-like pseudo-code). In this notation, the odd and
even references correspond to time. The evenk, evenq and
evenu variables are the previous time steps values for
density, flow and speed, respectively, and the oddk, oddq
and oddu variables are the current time step density, flow
and speed for which a new solution is being sought:

for each segment Segi on processor Pi do
for each space node j within Segi do

oddk[j] = k[j] + (evenk[j+1] +
evenk[j-1] – C*(evenq[j+1] -
evenq[j-1]))/2 (5)

oddq[j] = q[j] + (evenq[j+1] +
evenq[j-1])/2 –
D*(evenu[j+1]*evenu[j+1]*
evenk[j+1] +
V*evenk[j+1] –
evenu[j-1]*evenu[j-1]*evenk[j-1] -
V*evenk[j-1]) + E*((evenk[j+1]*F -
evenq[j+1])/T[j+1] + (evenk[j-1]*F -
evenq[j-1])/T[j-1]) (6)

oddu[j] = oddq[j]/oddk[j] (7)
end for

end for
Here C, D, E, F and V are constants across all processors,
and oddk[j], oddq[j] and oddu[j] are the ki

j, qi

j and ui

j

described in Section 1. In a straightforward
implementation, once the odd values are computed and
distributed to the neighboring segments (on neighboring
PEs), the even variables are loaded with the odd values,
and the computation resumes for the next time step.
Since one time step is computed for each interprocessor

communication (IPC), we call this the 1-Step algorithm.
The major steps of the algorithm are demonstrated in

Figure 1, which depicts a hypothetical situation with three
PEs and 15 space nodes. Each segment can be viewed as
a boundary value problem whose upstream and
downstream nodes contain new boundary values for each
time step. Thus, after partitioning the space nodes into
segments of size k nodes each (five in our example), each
processor will allocate space for k+2 nodes to hold the
boundary value as well.

Figure 1. The 1-Step Algorithm

The flow of the algorithm (time) begins at the bottom
of the figure and proceeds upward ((a) – (c)). We begin
the algorithm at some arbitrary time tn with all even
variables set to some initial value (step (a)). From (5) and
(6) we note that the new (odd) values for node j are
computed from previous (even) values from nodes j-1, j
and j+1 (step (b)). After new values are computed, each
PE exchanges values with its neighbors to update their
boundaries (step (c)). Note that the upstream boundary on
the farthest upstream segment, and the downstream
boundary on the farthest downstream segment, will be
determined by other means (marked by a box in step (b)).
These data are either prerecorded roadway data (our
case), or could be obtained, in real-time, from sensors
strategically placed upon an actual roadway. Once the
new (odd) values have been moved into the old (even)
variables the algorithm is ready to proceed with step tn+1.

As mentioned previously, in any system with high
IPC latency, the algorithm designer must structure the
algorithm so that large amounts of computation are
performed between communication steps. The only
possible way to reduce the number of IPCs between
processing elements here is to see if more than one
computation can be done before an IPC is necessary.
Whether this can be done or not depends upon the
functional form of the computation. If we rewrite (5) and
(6) and reorder the terms, we can see more clearly the
data interdependencies between the current node and its
neighbors:
 oddk[j] = evenk[j-1]/2 - C/2*evenq[j-1]

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:13:49 UTC from IEEE Xplore. Restrictions apply.

 + k[j]
 + C/2*evenq[j+1] + evenk[j+1]/2
 oddq[j] = E*evenk[j-1]*F/T[j-1]
 + E*evenq[j-1]/T[j-1] + evenq[j-1]/2
 + D*evenu[j-1]*evenu[j-1]*evenk[j-1]
 + D*V*evenk[j-1]
 + q[j]
 + evenq[j+1]/2 + E*evenk[j+1]*F/T[j+1]
 + evenq[j+1]/T[j+1]
 + D*evenu[j+1]*evenu[j+1]*evenk[j+1]
 + D*V*evenk[j+1]
We ignore oddu because it is simply a function of oddk
and oddq, and is easily obtained once they are known.
We can see that each new computation has inputs from
only adjacent (both upstream and downstream) and
current nodes from the previous (even) time step. In a
sense, each new (odd) computation is independent for
each node, given that the neighboring nodes’ data are
known. Therefore, it should be possible to do a second
computation on a least part of the nodes within a
segment before incurring the cost of an IPC. The
challenging question now is what to do with the upstream
and downstream boundaries and their neighbors. During
each IPC, we will send both the boundary values from the
first complete time step, plus the inputs necessary for the
neighbor to compute the second time steps boundary
values. When these computations are complete, we will
be ready to begin the next 2-step iteration. This is the 2-
Step algorithm. It incurs a very small overhead in CPU
time, but the IPC time is cut almost in half. The
assumption is that the extra computations in completing
the second time steps boundary are more than made up for
by the saved IPC. We will quantify these savings in
Section 6.

Returning once again to our example, and Figure 2,
we can see the major steps of this algorithm.

Figure 2. The 2-Step Algorithm

Steps (a) and (b) are exactly as they were in the 1-Step
algorithm. In step (c) the “inner” space nodes are
computed for the second time step. Step (d) is the new
IPC. Note that not only is the boundary value from the
first time step sent (step (d), items 2 and 3), but also the
additional data necessary for the neighbor to compute the
“missing” information so it can complete the second time
step (step (d), items 1 and 4). Several computations are
performed in step (e). Once the first time steps boundary
has been loaded (step (d), item 2), the PE can then
complete the second time step for its own upstream node
(step (e), item 5). With the partial information delivered
in step (d), item 1, it can complete the upstream boundary
for the second step (step (e), item 6). Similar processing
is applied to the data from step (d), items 3 and 4 to
compute new downstream node (step (f), item 7) and

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:13:49 UTC from IEEE Xplore. Restrictions apply.

boundary value (step (g), item 8 and step (h), item 9).
The algorithm is now ready to proceed with step tn+2.

4: Implementation on the Cray T3E

The Cray T3E (model 900) is a distributed shared-
memory MIMD architecture with a 3-D torus topology
and bi-directional channels. Each PE consists of a DEC
Alpha 21164 processor, a system control chip, local
memory and a network router. The custom-made control
chip implements the distributed shared memory, which
consists of all the local memories in the PEs. Each
processor is connected to six other processors in a 3D
toroidal mesh, as seen in Figure 3. All PEs in opposite
“faces” of the mesh are connected to each other. The T3E
supports low-latency, high-bandwidth communications
via this mesh, and is capable of delivering a 64-bit word
every system clock in all six directions, for a raw
bandwidth of 600 MB/s, with data bandwidths of 100 to
480 MB/s after protocol overheads.

Figure 3. The Cray T3E Toroidal Mesh

The DEC Alpha 21164 processor is capable of issuing
four instructions per clock period, giving it a theoretical
peak rate of 900 MFLOPS. Each PE supports 128MB of
local memory.

Optimization on the T3E is not a straightforward
process. The user is given fine-grained control over what
aspects of optimization they wish to control. There are no
less than 26 selectable options, most having more than
one level of control. Without in-depth knowledge of the
exact relationships between the compiler, the source code,
and the objectives of the application, it is nearly
impossible to know which combination of optimizations
would be optimal. Most were selected based on their
descriptions, together with some basic benchmarking of
those whose effects could not be predicted beforehand.
Some combinations yielded better performance, others
worse. Here are the options as benchmarked (these
benchmarks were made using the complete simulation
code, but on a smaller data set size for expediency):

Option T1 (sec) T1/B
None B = 5.652 1.00
-h pipeline3 5.178 0.931
-h unroll 5.838 1.033
-h split 7.004 1.239
-h inline3 5.808 1.028
-h vector3 5.765 1.020
-h scalar3 5.647 0.999
-O3 5.714 1.011
-O2 5.721 1.012
-O1 6.083 1.076

Table 2. Compiler Optimization Results

All pairs of options were also tried. The most obvious
being pipeline3 with scalar3, since they both resulted in
improvements. This combination resulted in a run time of
5.211 seconds (a ratio of 0.923). But a better combination
was discovered: pipeline3 with unroll, resulting in a run
time of 5.170 seconds (a ratio of 0.915), and the best
runtime of all the options/combinations tested. Note that
no three-option combinations were tested due to time
constraints. Both of these compiler directives will result
in longer compilation times, but faster execution times.

Because the T3E maps a linear array of PEs into a
mesh, the mapping of highway segments to processors is
a straightforward linear mapping. For performance
reasons, it is important that neighboring segments are
mapped to neighboring processors. The most problematic
implementation issue is the paradigm with which
distributed memory is implemented. The T3E has several
different IPC mechanisms to choose from. At the highest
level are standard message passing interfaces (like the
standard PVM application programming interface) to the
lower level (and faster) interfaces built around shared-
memory operations. It is at this level that an IEEE
POSIX-like shared memory interface is defined which is
much more efficient than PVM . Because of this, the Cray
shmem_get() and shmem_put() shared-memory routines
were selected.

5: Simulation Testing

The final simulation was run on the Cray T3E at the
Pittsburgh Supercomputing Center in Pittsburgh,
Pennsylvania. This Cray T3E is composed of 256
300MHz-clock PEs and 256 450MHz-clock PEs. We
only used the fastest 256 PEs for these tests to insure that
there was not any variation in computation time between
PEs in a given run due to PE clocking.

As a test site, a multiple entry/exit section of the I-
494 highway was chosen in the metropolitan Minneapolis,
Minnesota, area. This section of Eastbound I-494 extends
from I-394 in the West to Nicollet Avenue in the East. It
is 15.5 miles long, with 17 exit and 19 entry ramps. Data
for the simulation were recorded on April 9, 1997, and

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:13:49 UTC from IEEE Xplore. Restrictions apply.

spans a 24-hour period beginning at midnight of that day.
To test the simulation, the time and space mesh sizes were
∆t = 0.5 second and ∆x = 100 feet. The discrete model
contained 814 space nodes. We used the same error
metrics as in [1, 11]. The deviation of our computer
model values for volume and speed were at most 10
percent from the real traffic measurement values, and
agreed with the error range in the 1-PE and [1, 11] runs.

6: Performance Study

In general, the serial (or single PE) computational
performance of a given algorithm implemented on a given
computer architecture is expressed in terms of millions of
floating point operations per second (MFLOPS). In order
to derive this measure, an estimate of the number of
floating point operations (FLOP) is needed for the
algorithm in question. Upon examining equations (5) -
(7), we see there are some 32 floating point operations
contained within the main simulation loop. There are, in
actuality, 34 such operations (this pseudo-code was
somewhat simplified for purposes of clarity). In general,
each space node computation requires 34 FLOP. If we
rewrite the 1-step algorithm pseudo-code in terms of the
number of FLOPS performed, we arrive at the following:

for ns 5-minute time steps do
 for 300 seconds do
 for each space node on this PE do
 <34 FLOP>
 end for
 IPC
 advance time ∆t seconds
 end for
end for

In this testing, recall that ∆t = 0.5 second. If the number
of space nodes operated on by this PE is N, then the 1-
step single PE total number of operations is:

ns N ns N⋅ ⋅ ⋅ = ⋅ ⋅600 34 20400
The 2-step algorithm is somewhat more complicated.

It’s pseudo-code looks like:
for ns 5-minute time steps do

for 300 seconds do
for each space node in 1st step on this PE
do

<34 FLOP>
end for
advance time ∆t seconds
for each space node in 2nd step on this
PE do

<34 FLOP>
end for
IPC
<34 FLOP>♦
<34 FLOP>♦
<34 FLOP>♦♦
<34 FLOP>♦♦
advance time ∆t seconds

end for

end for
Some explanation is in order. The space node loops
certainly make sense in terms of the number of nodes that
are being solved for in both the 1st and 2nd steps of the
algorithm. Plus it makes sense that there would be two
additional nodes solved for (marked ♦) since the 2nd step
does not operate on all the space nodes that the 1st step
does (two less). In actuality, the 2-step algorithm
requires slightly more computation than the 1-step. In
the 1-step case, the segment end-nodes are exchanged
between neighboring PEs during the IPC to be used as
segment boundary values for the next compute cycle.
This can not happen in the 2-step case, since the segment
end-nodes have yet to be calculated for the 2nd step. This
forces neighboring PEs to both compute the boundary
values, but for different purposes: one as the segment end-
node, the other as the boundary value for the next
compute cycle. Thus we must perform two additional
node computations (marked ♦♦) for a total number of
operations of:

()() ()ns N N ns N⋅ + − + ⋅ = ⋅ +300 34 34 2 34 4 20400 1

To derive the desired MFLOPS value, we need only
divide the total number of operations by both the single
PE execution time and 106. For this simulation, ns = 288
and N = 814. Table 5 summarizes the results.

T1 (sec) MFLOPS

1-step 73.676 64.91

2-step 67.040 71.42

Table 5. MFLOPS Results

One may wonder why the 2-step algorithm outperforms
the 1-step algorithm when the software is run on a single
PE. This is a side effect of the implementation of the 2-
step algorithm. Let us recall from (5) - (7) that the space
nodes currently being solved for have their data stored
into locations prefixed with odd, while the data for the
same space node, but for the previous time step, is
prefixed with even. In the 1-step algorithm, after the odd
data are computed, the data is simply copied into the even
variables for use in the next time step. However, in the 2-
step algorithm the computations are done “in place,” as it
were, so that the 1st step is stored into the odd variables,
and the 2nd time step is stored into the even variables, thus
avoiding the overhead of the copy operation. This has the
benefit of lower computation times, but the disadvantage
of approximately doubling the size of the core
computational section of the code

For the parallel performance analysis, we evaluate
the following measures: the serial execution time (T1), the
parallel execution time (TP), the parallel speedup (SP) and
the parallel efficiency (EP). Additionally, TP can be
broken down further to component measures of input ,
computation and output. The computation time is

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:13:49 UTC from IEEE Xplore. Restrictions apply.

simply the time for the discrete model computations. This
time can be further decomposed into calculation time and
IPC time.

Cray T3E performance data are presented first as
Tables 6 and 7, and then as Figures 4 through 6.

PEs TP

(sec)
SP EP IPC

Time
(sec)

IPC
% of
TP

1 73.68 N/A N/A N/A N/A

2 37.42 1.97 0.98 0.74 1.93

4 19.63 3.75 0.94 1.17 5.94

8 10.98 6.71 0.84 1.13 10.29

16 6.61 11.15 0.70 1.12 16.98

32 4.29 17.16 0.54 1.18 27.43

64 3.42 21.55 0.34 1.12 32.85

128 2.82 26.13 0.20 1.12 39.61

256 2.36 31.18 0.12 1.14 48.16

Table 6. 1-Step Performance

PEs TP

(sec)
SP EP IPC

Time
(sec)

IPC
% of
TP

1 67.04 N/A N/A N/A N/A

2 34.75 1.93 0.97 0.55 1.58

4 18.15 3.69 0.92 0.57 3.14

8 10.34 6.48 0.81 1.10 10.64

16 6.26 10.72 0.67 1.10 17.55

32 4.27 15.69 0.49 1.12 26.09

64 3.38 19.84 0.31 1.10 32.49

128 2.63 25.45 0.20 1.12 42.41

256 2.39 28.05 0.11 1.12 46.97

Table 7. 2-Step Performance

Figure 4. Compute Time 1- & 2-Step Algorithms

Figure 5. Speedup 1- & 2-Step Algorithms

Figure 6. Efficiency 1- & 2-Step Algorithms

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:13:49 UTC from IEEE Xplore. Restrictions apply.

PEs
 Gain

1- step

2 - step

TP









IPC Time Gain

1- step

2 - step









1 1.10 N/A

2 1.08 1.35

4 1.09 2.04

8 1.06 1.03

16 1.05 1.02

32 1.00 1.05

64 1.01 1.02

128 1.08 1.00

256 0.99 1.01

Table 8. 2-Step to 1-Step Comparison

We see that the 2-step algorithm is faster than the 1-
step algorithm for P ≤ 32. For P ≥ 64 the 1-step is faster
because (a) the IPC time is very fast on the T3E and even
halving it does not lead to great savings overall, and (b)
there is slightly more computations in the 2-step
algorithm than the 1-step. Thus there is a breakpoint (in
P) for the gain of the 2-step and it occurs at P = 32. This
breakpoint is so small here because the number (N) of
road space nodes assigned to each PE in our simulation is
very small (e.g. 12 or 13 nodes per PE for P = 64). In
realistic simulations we expect this N to be much larger
and thus the 2-step algorithm will be even faster.

7: Conclusions

A very important component of an intelligent
highway management system is a traffic simulation
system. The design of a real-time traffic simulation
system is a challenging problem. The design of a parallel
(macroscopic) traffic simulation system is demonstrated.
This system could be used as a component of a real-time
simulation system. This parallel system was implemented
on the Cray T3E parallel computer. Tests were run with
real traffic data to validate the accuracy and
computational rate of the system. A 24-hour, 15.5-mile
simulation, with real traffic data, took 2.39 seconds on the
Cray T3E versus 65.65 minutes on a typical single
processor system (a 133MHz Pentium). Two algorithms
were implemented offering tradeoffs in execution time,
IPC time and memory size. The 2-step algorithm, when
compared to the 1-step, reduced computation time an
average of 5.4% on the Cray T3E.

Acknowledgments

We would like to acknowledge partial funding by a
Cray/SGI grant, by NSF ASC-9634775, and access to the

Cray T3E provided by the Pittsburgh Supercomputing
Center, Pittsburgh, PA (1996-1997) and the San Diego
Supercomputing Center, San Diego, CA (1998).

References

[1] A.T. Chronopoulos et. al., “Traffic Flow Simulation
Through High Order Traffic modeling”, Mathematical
Computing Modeling, Vol. 17, No. 8, pp. 11-22, 1993.

[2] A.T. Chronopoulos et. al., “Efficient Traffic Flow
Simulation Computations”, Mathematical and
Computer Modeling, Vol. 16, No.5, pp. 107-120,
1992.

[3] A. Chronopoulos and G. Wang, “Traffic Flow
Simulation through Parallel Processing”, Parallel
Comput., vol. 22, pp. 1965-1983, 1997.

[4] C. Hirsch, “Numerical Computation of Internal and
External Flows”, Vol.2, John Wiley and Sons, 1988.

[5] A.S. Lyrintzis et al., “Continuum Modeling of Traffic
Dynamics”, Proc. of the 2nd Int. Conf. on Appl. of
Advanced Tech. in Transportation Eng., Aug. 18-21,
Minneapolis, Minnesota, pp. 36-40, 1991.

[6] P. Yi et al., “Development of an Improved High Order
Continuum Traffic Flow Model”, Transp. Res. Rec.,
1365, pp. 125-132, 1993.

[7] B. Dixon and J Sallow, “High-Performance Sorting
Algorithms for the Cray T3D Parallel Computer”, The
Journal of Supercomputing, Vol. 10, pp. 371-396,
1997.

[8] E. Anderson et al., “Performance of the CRAY T3E
Multiprocessor”,
http://www.cray.com/products/systems/crayt3e/1200/p
erformance.html, 1997.

[9] G. Cameron and G. Duncan, “PARAMICS – Parallel
Microscopic Simulation of Road Traffic”, The Journal
of Supercomputing, Vol. 10, pp. 25-53, 1996.

[10] I. Angus et al., “Solving Problems On Concurrent
Processors Volume II”, Prentice Hall, pp. 104-113,
pp. 126-128.

[11] A. Chronopoulos and C. Johnston, “A Real-Time
Traffic Simulation System”, IEEE Transactions on
Vehicular Technology, Vol. 47, No. 1, 1998.

[12] E. Anderson et al., “The Benchmarker’s Guide to
Single-processor Optimization for CRAY T3E
Systems”, Cray Research, 1997.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:13:49 UTC from IEEE Xplore. Restrictions apply.

