
A Communication Latency Hiding Parallelization of a Traffic Flow Simulation

Charles Michael Johnston  Concurrent Computer Corporation
Anthony Theodore Chronopoulos  Division of Computer Science, University of Texas San Antonio

Abstract
This work implements and analyses a highway traffic

flow simulation based on continuum modeling of traffic
dynamics. A traffic-flow simulation was developed and
mapped onto a parallel computer architecture. Two
algorithms (the 1-step and 2-step algorithms) to solve the
simulation equations were developed and implemented.
They were then tested on an nCUBE2, a 1024 node
hypercube with very slow inter-processor communication
(IPC) times. Tests with real traffic data collected from the
freeway network in the metropolitan area of Minneapolis,
Minnesota were used to validate the accuracy and
computation rate of the parallel simulation system. The
execution time for a 24-hour traffic-flow simulation over a
15.5-mile freeway, which takes 65.7 minutes on a typical
single processor computer, took only 88.51 seconds on the
nCUBE2. The 2-step algorithm, whose goal is to trade off
extra computation for fewer IPC’s, was shown to save
more than 19% on total execution time.

1: Introduction

A very important component of an Intelligent
Highways’ management System is a traffic simulation
system. Such a system would consist of a traffic flow
simulation that is able to simulate traffic on freeways and
arterial networks on a computer system. This computer
system consists of hardware and software. Input/output
devices provide real-time traffic data measurements from
a network of traffic detectors (loops or cameras) and data
on the road geometry or other traffic characteristics. The
system uses a mathematical traffic flow model to perform
traffic flow simulation and predict the traffic conditions in
real-time. These predictions can be used for real-time
traffic control and drivers’ guidance.

Macroscopic or continuum traffic flow models based
on traffic density, volume and speed have been proposed
and analyzed in the past. See for example [1, 2, 3, 4, 5, 6]
and the references therein. These models involve partial
differential equations defined on appropriate domains with
suitable boundary conditions, which describe various
traffic phenomena and road geometries.

The main objective of this paper is to demonstrate that
the parallelization of the traffic flow simulation
component in a real-time system is feasible for
macroscopic models. Some preliminary results on the

issue of parallelizing Computational Fluid Dynamics
(CFD) methods for transportation problems were
presented in [5]. Such a real-time simulation system can
be designed using a parallel computer as its computational
component. We design such a computational component
by parallelizing a CFD method to solve the momentum
conservation (macroscopic) model [4, 5, 6] and
implementing it on the nCUBE2 parallel computer.

Tests with real data from the I-494 freeway in
Minneapolis were conducted. Each processing element
(PE) of the nCUBE2 is a proprietary processor running at
20MHz. Tests were run on the nCUBE2 at the Massively
Parallel Computing Research Laboratory at the Sandia
National Labs. The execution time for a 24-hour traffic
flow simulation of a 15.5-mile freeway, which takes 65.65
minutes of computer time (on a 133MHz single-processor
Pentium computer), took only 88.51 seconds on the
parallel traffic simulation system implemented on the
nCUBE2.

We adopted the Lax-Momentum traffic model [11].
Let ∆t and ∆x be the time and space mesh sizes. We use

the following notation: k j
i is the density

(vehicles/mile/lane) at space node j∆x and at time i∆t, qj
i

is the flow (vehicles/hour/lane) at space node j∆x and at

time i∆t, and uj
i is the speed (mile/hour) at space node j∆x

and at time i∆t. At time (i+1)∆t, the density value k j
i +1

and volume value q j
i +1 are computed directly from the

density and volume at the preceding time step i:

()&
& & & &

& &
U

U U t

x

E E t
Z Zj

i j
i

j
i

j
i

j
i

j
i

j
i+ + − + −

+ −=
+

−
−

+ +1 1 1 1 1
1 12 2 2

∆
∆

∆

The method is of first order accuracy with respect to ∆t,
i.e. the error is O(∆t). To maintain numerical stability time
and space step-sizes must satisfy the Courant-Friedrichs-

Lewy (CFL) condition ∆∆
x
t > uf , where uf is the free flow

speed (see [4]). Typical choices for the space and time
meshes are ∆x = 100 feet and ∆t = 0.5 sec are
recommended for numerical stability [6, 11].

Let P be the number of processors available in the
system. The parallelization of the discrete model is
obtained by partitioning the space domain (freeway
model) into equal segments Seg0,…, SegP-1 and assigning

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:23:30 UTC from IEEE Xplore. Restrictions apply.

each segment to the processors (PE) P Pj j P0 1,..., − . The

choice of indices j0,…,jP-1 defines a mapping of the
segments to the processors [3, 11].

The computations associated with each segment have
as their goal to compute the density, volume and speed
over that segment. The computation in the time dimension
is not parallelized. At a fixed discrete time, this

essentially means that the quantities k j
i , qj

i , and uj
i are

computed by processor Pjk , iff the space node j∆x

belongs to the segment Segjk . This segment-processor

mapping is chosen according to the Gray code mapping of
a linear array onto a hypercube [8].

2: The 1- and 2-Step Algorithms

The core of the Lax-Momentum computations, for a
given time step and space node, are quite simple. The
general form of the computations is as follows (expressed
in a C-like pseudo-code). In this notation, the odd and
even references correspond to successive time steps. The
evenk, evenq and evenu variables are the previous time
steps values for density, flow and speed, respectively, and
the oddk, oddq and oddu variables are the current time
step density, flow and speed for which a new solution is
being sought:

for each segment Segi on processor Pi do
for each space node j within Segi do

oddk[j] = k[j] + (evenk[j+1] +
evenk[j-1] – C*(evenq[j+1] -
evenq[j-1]))/2 (5)

oddq[j] = q[j] + (evenq[j+1] +
evenq[j-1])/2 –
D*(evenu[j+1]*evenu[j+1]*
evenk[j+1] +
V*evenk[j+1] –
evenu[j-1]*evenu[j-1]*evenk[j-1] -
V*evenk[j-1]) + E*((evenk[j+1]*F -
evenq[j+1])/T[j+1] + (evenk[j-1]*F -
evenq[j-1])/T[j-1]) (6)

oddu[j] = oddq[j]/oddk[j] (7)
end for

end for

Here C, D, E, F and V are constants across all processors,
and oddk[j], oddq[j] and oddu[j] are the ki

j, qi

j and ui

j

described in Section 1. In a straightforward
implementation, once the odd values are computed and
distributed to the neighboring segments (on neighboring
PEs), the even variables are loaded with the odd values,
and the computation resumes for the next time step. Since
one time step is computed for each interprocessor
communication (IPC), we call this the 1-Step algorithm.

The major steps of the algorithm are demonstrated in
Figure 1, which depicts a hypothetical situation with three

PEs and 15 space nodes. Each segment can be viewed as
a boundary value problem whose upstream and
downstream nodes contain new boundary values for each
time step. Thus, after partitioning the space nodes into
segments of size k nodes each (five in our example), each
processor will allocate space for k+2 nodes to hold the
boundary value as well.

Figure 1. The 1-Step Algorithm

The flow of the algorithm (time) begins at the bottom
of the figure and proceeds upward ((a) – (c)). We begin
the algorithm at some arbitrary time tn with all even
variables set to some initial value (step (a)). From (5) and
(6) we note that the new (odd) values for node j are
computed from previous (even) values from nodes j-1, j
and j+1 (step (b)). After new values are computed, each
PE exchanges values with its neighbors to update their
boundaries (step (c)). Note that the upstream boundary on
the farthest upstream segment, and the downstream
boundary on the farthest downstream segment, will be
determined by other means (marked by a box in step (b)).
These data are either prerecorded roadway data (our case),
or could be obtained, in real-time, from sensors
strategically placed upon an actual roadway. Once the
new (odd) values have been moved into the old (even)
variables the algorithm is ready to proceed with step tn+1.

As mentioned previously, in any system with high
IPC latency, the algorithm designer must structure the
algorithm so that large amounts of computation are
performed between communication steps. The only
possible way to reduce the number of IPC’s between
processing elements here is to see if more than one
computation can be done before an IPC is necessary.
Whether this can be done or not depends upon the
functional form of the computation. If we rewrite (5) and
(6) and reorder the terms, we can see more clearly the data
interdependencies between the current node and its
neighbors:

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:23:30 UTC from IEEE Xplore. Restrictions apply.

 oddk[j] = evenk[j-1]/2 - C/2*evenq[j-1]
 + k[j]
 + C/2*evenq[j+1] + evenk[j+1]/2
 oddq[j] = E*evenk[j-1]*F/T[j-1]
 + E*evenq[j-1]/T[j-1] + evenq[j-1]/2
 + D*evenu[j-1]*evenu[j-1]*evenk[j-1]
 + D*V*evenk[j-1]
 + q[j]
 + evenq[j+1]/2 + E*evenk[j+1]*F/T[j+1]
 + evenq[j+1]/T[j+1]
 + D*evenu[j+1]*evenu[j+1]*evenk[j+1]
 + D*V*evenk[j+1]

We ignore oddu because it is simply a function of oddk
and oddq, and is easily obtained once they are known. We
can see that each new computation has inputs from only
adjacent (both upstream and downstream) and current
nodes from the previous (even) time step. In a sense, each
new (odd) computation is independent for each node,
given that the neighboring nodes’ data are known.
Therefore, it should be possible to do a second
computation on a least part of the nodes within a segment
before incurring the cost of an IPC. The challenging
question now is what to do with the upstream and
downstream boundaries and their neighbors. During each
IPC, we will send both the boundary values from the first
complete time step, plus the inputs necessary for the
neighbor to compute the second time steps boundary
values. When these computations are complete, we will
be ready to begin the next 2-step iteration. This is the 2-
Step algorithm. It incurs a very small overhead in CPU
time, but the IPC time is cut almost in half. The
assumption is that the extra computations in completing
the second time steps boundary are more than made up for
by the saved IPC. We will quantify these savings in
Section 6.

Returning once again to our example, and Figure 2,
we can see the major steps of this algorithm.

Figure 2. The 2-Step Algorithm

Steps (a) and (b) are exactly as they were in the 1-Step
algorithm. In step (c) the “inner” space nodes are
computed for the second time step. Step (d) is the new
IPC. Note that not only is the boundary value from the
first time step sent (step (d), items 2 and 3), but also the
additional data necessary for the neighbor to compute the
“missing” information so it can complete the second time
step (step (d), items 1 and 4). Several computations are
performed in step (e). Once the first time steps boundary
has been loaded (step (d), item 2), the PE can then
complete the second time step for its own upstream node
(step (e), item 5). With the partial information delivered
in step (d), item 1, it can complete the upstream boundary
for the second step (step (e), item 6). Similar processing is
applied to the data from step (d), items 3 and 4 to compute
new downstream node (step (f), item 7) and boundary

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:23:30 UTC from IEEE Xplore. Restrictions apply.

value (step (g), item 8 and step (h), item 9). The algorithm
is now ready to proceed with step tn+2.

3: Implementation on the nCUBE2

The nCUBE2 is a multiple-instruction multiple-data
(MIMD) hypercube parallel processing computer. Each
PE contains a proprietary processor with a 20MHz clock,
and 4MB of local memory. Peak theoretical performance
is 4.1 MFLOPS per PE. The hypercube architecture is a
distributed-memory message passing architecture. In a
hypercube of dimension d, there are P=2d processors,
labeled 0, 1,…, P-1. Two processors Pj and Pk are directly
connected (neighbors) iff the binary representation of j and
k differ in exactly one bit. Each edge of a hypercube
graph represents a direct connection between two
processors. Thus, any two processors in a hypercube are
separated by at most d other processors. Figure 3
illustrates a hypercube graph of dimension d=4. The
number of processors to be allocated to a job is chosen by
the user, but must be a power of 2.

Figure 3. Hypercube of Dimension 4 with Gray
Code Mapping of Linear Arrays in its Subcubes

Table 1 summarizes inter-processor communication times
for neighbor processors and basic floating-point operation
times for the nCUBE2 [13]. We see that communications
even between neighboring processors is many times
slower than floating point operations.

Operation Time(µSEC) Comm/Comp

8-byte transfer 111 -

8-byte add 1.23 90

8-byte multiply 1.28 86

Table 1. Computation & Communication Times

In an architecture with high communication latencies
(such as the nCUBE2), the algorithm designer must
structure the algorithm so that as much computation as
possible is done between communication steps.

Two important factors that influence the delivered
performance on this machine are load balancing and
reduction of communication overhead.

4: Simulation Testing

The simulation was implemented on the 1024-node
nCUBE2 computer located at the Massively Parallel
Computer Research Laboratory at Sandia National Labs in
Albuquerque, New Mexico.

As a test site, a multiple entry/exit section of the I-494
highway was chosen in the metropolitan Minneapolis,
Minnesota, area. This section of Eastbound I-494 extends
from I-394 in the West to Nicollet Avenue in the East. It
is 15.5 miles long, with 17 exit and 19 entry ramps. Data
for the simulation were recorded on April 9, 1997, and
spans a 24-hour period beginning at midnight of that day.
To test the simulation, the time and space mesh sizes were
∆t = 0.5 second and ∆x = 100 feet. The discrete model
contained 814 space nodes. Test were analyzed in two
ways: comparison with real data and computational
performance.

Traffic data are collected at the
upstream/downstream boundaries of the freeway
section and at check-station sites (check-nodes) inside the
freeway section. Let N be the number of discrete time
points at which real traffic flow data are collected. We
compare the simulation computed traffic flow volume and
speed data with the check-station sites’ data. There were a
total of 23 check-stations. The following error moduli are
used to measure the effectiveness of the simulation in
comparison with the actual data:

||Error AbsoluteMax 1 jjNj SimulatedObservedMAX −= ≤≤

j

jj
Nj Observed

SimulatedObserved
MAX

||
Error Absolute RelativeMax 1

−
= ≤≤

∑
=

−=
N

j
jj SimulatedObserved

N 1

||
1

Error AbsoluteMean

∑
=

−
=

N

j j

jj

Observed

SimulatedObserved

N 1

||1
Error RelativeMean

∑
∑

=

=
−

= N

j j

N

j jj

Observed

SimulatedObserved

1

2

1

2)(
Norm-2 Error with Relative

∑ =
−

−
= N

j jj SimulatedObserved
N 1

2)(
1

1
Deviation Standard

The error statistics are summarized in Tables 2 and 3. The
relative errors (Rel. 2-Norm) are at a level about 10
percent for the volume but is lower for the speed
measurements. These error levels are consistent with past
simulations carried out by simulation systems based on a
single-processor computer (see [1]).

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:23:30 UTC from IEEE Xplore. Restrictions apply.

Volume Error (vehicles/5-min)

Site Max.
Abs.

Max.
Rel.

Mean
Abs.

Mean
Rel.

Rel. 2-
Norm

Std.
Dev.

1

2

3

4

5

6

7

97.7

84.5

64.1

77.2

72.6

63.4

72.5

0.55

1.30

1.22

0.68

4.97

1.69

3.48

20.2

18.3

11.4

17.3

17.6

12.1

12.0

14.7

14.7

11.8

13.7

21.9

13.2

14.1

0.14

0.13

0.09

0.12

0.15

0.10

0.10

27.2

25.3

16.0

23.5

24.0

17.2

17.4

Table 2. Error Statistics for Traffic Flow Volume

Speed Error (mph)

Site Max.
Abs.

Max.
Rel.

Mean
Abs.

Mean
Rel.

Rel. 2-
Norm

Std.
Dev.

1

2

3

4

5

6

7

7.4

6.4

5.9

6.5

7.4

8.1

9.9

0.19

0.16

0.10

0.15

0.14

0.14

0.17

1.3

1.3

1.4

1.7

1.7

1.6

2.0

2.6

2.5

2.6

3.2

3.0

3.0

3.6

0.03

0.03

0.03

0.04

0.04

0.04

0.05

1.7

1.7

1.8

2.1

2.1

2.1

2.5

Table 3. Error Statistics for Traffic Flow Speed

5: Performance Study

In general, the serial (or single PE) computational
performance of a given algorithm implemented on a given
computer architecture is expressed in terms of millions of
floating point operations per second (MFLOPS). In order
to derive this measure, an estimate of the number of
floating point operations (FLOP) is needed for the
algorithm in question. Upon examining equations (5) -
(7), we see there are some 32 floating point operations
contained within the main simulation loop. There are, in
actuality, 34 such operations (this pseudo-code was
somewhat simplified for purposes of clarity). In general,
each space node computation requires 34 FLOP. If we
rewrite the 1-step algorithm pseudo-code in terms of the
number of FLOPS performed, we arrive at the following:

for ns 5-minute time steps do
 for 300 seconds do
 for each space node on this PE do
 <34 FLOP>
 end for
 IPC
 advance time ∆t seconds
 end for
end for

In this testing, recall that ∆t = 0.5 second. If the number
of space nodes operated on by this PE is N, then the 1-step
single PE total number of operations is:

ns N ns N⋅ ⋅ ⋅ = ⋅ ⋅600 34 20400
The 2-step algorithm is somewhat more complicated.

It’s pseudo-code looks like:

for ns 5-minute time steps do
for 300 seconds do

for each space node in 1st step on this PE
do

<34 FLOP>
end for
advance time ∆t seconds
for each space node in 2nd step on this
PE do

<34 FLOP>
end for
IPC
<34 FLOP>♦
<34 FLOP>♦
<34 FLOP>♦♦
<34 FLOP>♦♦
advance time ∆t seconds

end for
end for

Some explanation is in order. The space node loops
certainly make sense in terms of the number of nodes that
are being solved for in both the 1st and 2nd steps of the
algorithm. Plus it makes sense that there would be two
additional nodes solved for (marked ♦) since the 2nd step
does not operate on all the space nodes that the 1st step
does (two less). In actuality, the 2-step algorithm
requires slightly more computation than the 1-step. In
the 1-step case, the segment end-nodes are exchanged
between neighboring PEs during the IPC to be used as
segment boundary values for the next compute cycle. This
can not happen in the 2-step case, since the segment end-
nodes have yet to be calculated for the 2nd step. This
forces neighboring PEs to both compute the boundary
values, but for different purposes: one as the segment end-
node, the other as the boundary value for the next compute
cycle. Thus we must perform two additional node
computations (marked ♦♦) for a total number of
operations of:

()() ()ns N N ns N⋅ + − + ⋅ = ⋅ +300 34 34 2 34 4 20400 1

To derive the desired MFLOPS value, we need only divide

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:23:30 UTC from IEEE Xplore. Restrictions apply.

the total number of operations by both the single PE
execution time and 106. For this simulation, ns = 288 and
N = 814. Table 4 summarizes the results.

T1 (sec) MFLOPS

1-step 6729.9 0.71

2-step 5739.9 0.83

Table 4. MFLOPS Results

One may wonder why the 2-step algorithm outperforms
the 1-step algorithm when the software is run on a single
PE. This is a side effect of the implementation of the 2-
step algorithm. Let us recall from (5) - (7) that the space
nodes currently being solved for have their data stored into
locations prefixed with odd, while the data for the same
space node, but for the previous time step, is prefixed with
even. In the 1-step algorithm, after the odd data are
computed, the data is simply copied into the even variables
for use in the next time step. However, in the 2-step
algorithm the computations are done “in place,” as it were,
so that the 1st step is stored into the odd variables, and the
2nd time step is stored into the even variables, thus
avoiding the overhead of the copy operation. This has the
benefit of lower computation times, but the disadvantage
of approximately doubling the size of the core
computational section of the code

For the parallel performance analysis, we evaluate the
following measures: the serial execution time (T1), the
parallel execution time (TP), the parallel speedup (SP) and
the parallel efficiency (EP). Additionally, TP can be broken
down further to component measures of computation and
communication (IPC) times.

NCUBE2 performance data are presented first as
Tables 5 and 6, and then as Figures 4 through 6.

#PEs TP (sec) SP EP IPC
Time
(sec)

IPC %
of TP

1 6729.9 N/A N/A N/A N/A

2 3427.2 1.96 0.98 77.26 2.25

4 1757.4 3.83 0.96 78.20 4.45

8 936.1 7.19 0.90 97.62 10.43

16 520.0 12.94 0.81 100.95 19.41

32 304.8 22.08 0.69 100.76 33.06

64 196.3 34.28 0.54 97.49 49.66

128 146.3 46.01 0.36 88.36 59.59

256 120.53 55.84 0.22 96.52 80.08

Table 5. 1-Step Performance

#PEs TP (sec) SP EP IPC
Time
(sec)

IPC %
of TP

1 5739.9 N/A N/A N/A N/A

2 2911.2 1.97 0.99 51.26 1.76

4 1481.4 3.88 0.97 40.91 2.76

8 778.2 7.38 0.92 57.81 7.43

16 425.2 13.50 0.84 59.82 14.07

32 242.7 23.65 0.74 57.61 23.73

64 153.6 37.37 0.58 57.86 37.67

128 109.4 52.47 0.41 55.21 50.46

256 88.5 64.85 0.25 55.09 62.24

Table 6. 2-Step Performance

Figure 4. Compute Time 1- & 2-Step Algorithms

Figure 5. Speedup 1- & 2-Step Algorithms

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:23:30 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Efficiency 1- & 2-Step Algorithms

PEs
 Gain

1- step

2 - step

TP









IPC Time Gain

1- step

2 - step









1 1.18 N/A

2 1.18 1.52

4 1.19 1.92

8 1.20 1.69

16 1.22 1.69

32 1.25 1.75

64 1.28 1.69

128 1.33 1.61

256 1.37 1.75

Table 7. 2-Step to 1-Step Comparison

Based on the single PE timings, the restructuring of
the code, which eliminates the odd and even swapping,
saves a total of 15%. Even assuming that this fraction
remains constant across PE sizes, the 2-step algorithm, by
way of halving the number of IPC’s, still saves an
additional 12% at the 256 PE size, where IPC times are
the highest (as a fraction of total compute time). On
average, the IPC time is reduced by 42% by the 2-step
algorithm. A theoretical expected peak value would be
50%, but in practice, can not be obtained. The data
content of the IPC for the 2-step algorithm is more than
twice that of the 1-step algorithm, which will result in
slightly longer IPC times. Overall, these data show that
the 2-step algorithm is ideally suited to the nCUBE2
architecture, where IPC’s are quite costly compared to
computation.

7: Conclusions

The design and implementation of a parallel
(macroscopic) traffic simulation system is demonstrated.
This parallel system was implemented on the nCUBE2
parallel computer. Tests were run with real traffic data to
validate the accuracy and computational rate of the
system. A 24-hour, 15.5-mile simulation, with real traffic
data, took 88.51 seconds on the nCUBE2 versus 65.65
minutes on a typical single processor system (a 133MHz
Pentium). Two algorithms were implemented offering
tradeoffs in execution time, IPC time and memory size.
The 2-step algorithm, when compared to the 1-step,
reduced computation time an average of 19.4% on the
nCUBE2.

Acknowledgments

We acknowledge Mr. D. Berg, a traffic engineer from
the Minnesota Department of Transportation for providing
us with the real traffic data and the Massively Parallel
Computing Research Laboratory at Sandia National Labs,
Albuquerque, New Mexico, for providing access to the
nCUBE2.

Contacting the Authors

The authors may be contacted at the following
addresses: Mr. Johnston at chasj@ibm.net, and Dr.
Chronopoulos at atc@cs.utsa.edu.

References

[1] A.T. Chronopoulos et. al., “Traffic Flow Simulation
Through High Order Traffic modeling”, Mathematical
Computing Modeling, Vol. 17, No. 8, pp. 11-22, 1993.

[2] A.T. Chronopoulos et. al., “Efficient Traffic Flow
Simulation Computations”, Mathematical and
Computer Modeling, Vol. 16, No.5, pp. 107-120, 1992.

[3] A. Chronopoulos and G. Wang, “Traffic Flow
Simulation through Parallel Processing”, Parallel
Comput., vol. 22, pp. 1965-1983, 1997.

[4] C. Hirsch, “Numerical Computation of Internal and
External Flows”, Vol.2, John Wiley and Sons, 1988.

[5] A.S. Lyrintzis et al., “Continuum Modeling of Traffic
Dynamics”, Proc. of the 2nd Int. Conf. on Appl. of
Advanced Tech. in Transportation Eng., Aug. 18-21,
Minneapolis, Minnesota, pp. 36-40, 1991.

[6] P. Yi et al., “Development of an Improved High Order
Continuum Traffic Flow Model”, Transp. Res. Rec.,
1365, pp. 125-132, 1993.

[7] T. Junchaya and G. Chang, “Exploring real-time traffic
simulation with massively parallel computing
architecture”, Transpn. Res. C, Vol. 1, No. 1, pp. 57-
76, 1993.

[8] V. Kumar et al., “Introduction to Parallel Computing
Design and Analysis of Algorithms”, The
Benjamin/Cummings Publishing Company, Inc., 1994

[9] G.Cameron and G. Duncan, “PARAMICS – Parallel

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:23:30 UTC from IEEE Xplore. Restrictions apply.

Microscopic Simulation of Road Traffic”, The Journal
of Supercomputing, Vol. 10, pp. 25-53, 1996.

[10] I. Angus et al., “Solving Problems On Concurrent
Processors Volume II”, Prentice Hall, pp. 104-113, pp.
126-128.

[11] A. Chronopoulos and C. Johnston, “A Real-Time
Traffic Simulation System”, IEEE Transactions on
Vehicular Technology, Vol. 47, No. 1, 1998.

[12] E. Anderson et al., “The Benchmarker’s Guide to
Single-processor Optimization for CRAY T3E
Systems”, Cray Research, 1997.

[13] S.K. Kim and A. T. Chronopoulos, “A Class of
Lanczos-like Algorithms Implemented on Parallel
Computers”, Parallel Computing, 17, pp. 763-778,
1991.

[14] L. Mikhailov and R. Hanus, “hierarchical control of
congested urban traffic – mathematical modeling and
simulation”, (IMACS) Mathematics and Computers in
Simulation, 37, pp. 183-188, 1994.

[15] A. Bachem et al., “Microscopic Traffic Simulations of
Road Networks using High-Performance Computers”,
HPCN Europe, pp. 306-311, 1996

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:23:30 UTC from IEEE Xplore. Restrictions apply.

