
Static Load :Balancing for CFD Simulations on a Network of Workstations *

Anthony T. Chronopoulos, Daniel Grosu
Div. of Computer Science, Univ. of Texas at San Antonio,

6900 N Loop 1604 W, San Antonio, TX 78249
{ atc, dgrosu} @cs.utsa.edu

Andrew M. Wissink
Center for Applied Scientific Computing,

Lawrence Livermore National Lab,
P.O. Box 8013, L-661, Livermore, CA 9455 1

Abstract

In distributed simulations, the delivered pelformanee
of networks of heterogeneous computers degrades severely
if the computations arc? not load balanced. In this work
we consider the distributed simulation of TURNS (Tran-
sonic Unsteady Rotor Navier Stokes), a 3 - 0 space CFD
code. We propose a load balancing heuristic for simula-
tions on networks of hcterogeneous workstations. Our al-
gorithm takes into account the CPU speed and memory ea-
pacity of the workstations. Test run comparisons with the
equal task allocation algorithm demonstrated signijicant ef-
ficiency gains.

1 Introduction

Accurate numerical simulation of the aerodynamics
and aeroacoustics of rotary-wing aircraft is a complex
and challenging problem. Three-dimensional unsteady
Eulermavier-Stokes computational fluid dynamics (CFD)
methods are widely used (see [5] the references therein),
but their application to large problems is limited by the
amount of computer time they require. Such an example
of a CFD application, which we will focus on, is the com-
putation of a helicopter aerodynamics. Efficient utilization
of parallel processing is one effective means of speeding
up these calculations ['7]. The baseline numerical method

*This research was supported, in part, by research grants from
(1) NASA NAG 2-1383 (1999-2OOO), (2) Texas Advanced Re-
searcMAdvanced Technology Program ATP 003658-0442- 1999 (3) Air
Force grant F49620-96- 1-0472 (4) NSF cooperative agreement ACI-
9619020 through computing resources provided by NPACI at the Univ. of
California San Diego. The third author was supported by a NASA Gradu-
ate Student Fellowship while the majority of this work was performed.

Manuel Benche
Div. of Computer Science,

Univ. of Texas at San Antonio,
6900 N Loop 1604 W, San Antonio, TX 78249

is the structured-grid Eulermavier-Stokes solver TURNS
(Transonic Unsteady Rotor Navier Stokes) [5] developed in
conjunction with the U.S. Army Aeroflightdynamics Direc-
torate at NASA Ames Research Center. It is used for calcu-
lating the flowfield of a helicopter rotor (without fuselage)
in hover and forward flight conditions. The governing equa-
tions solved by the TURNS code are the three-dimensional
unsteady compressible thin-layer Navier-Stokes equations,
applied in conservative form in a generalized body-fitted
curvilinear coordinate system. The implicit operator used in
TURNS for time-stepping in both steady and unsteady cal-
culations is the Lower-Upper symmetric Gauss-Seidel (LU-
S G S) operator of Yoon and Jameson 181.

We now review the parallel implementation of TURNS
for a parallel system with homogeneous processors [6]. The
time stepping is serial. The three-dimensional flowfield spa-
tial domain is divided in the wraparound and spanwise di-
rections to form a two-dimensional array of processor sub-
domains, as shown in Figure 1. Each processor executes
a version of the code simultaneously for the portion of the
flowfield that it holds. Coordinates are assigned to the pro-
cessors to determine global values of the data each holds.
Border data is communicated between processors, and a
single layer of ghost-cells stores this communicated data.
The Message Passing Interface (MPI) software routes com-
munication between the processor subdomains.

TURNS approximates the solution at each time step
based on two alternatives: (a) the relaxation (DP-LUR or
LU-SGS) methods described in [7], or (b) the Inexact New-
ton Krylov methods. There are essentially four main steps
of the inexact Newton algorithm (OSGCR) 161; (1) explicit
(flux) function evaluation to form the right-hand-side vec-
tor, (2) preconditioning using hybrid LU-SGS [7], (3) im-
plicit solution by the Krylov subspace solver, and (4) ex-

364 0-7695-1432-4101 $10.00 0 2001 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:11:48 UTC from IEEE Xplore. Restrictions apply.

mailto:cs.utsa.edu

plicit application of boundary conditions. Local processor
communication is required in (1)-(4). We also have global
communications in the error computation at each timestep
and in the dotproducts in the Krylov methods.

The parallel implementation of TURNS with hybrid LU-
SGS and OSGCR was performed on the IBM SP. Each pro-
cessor was assigned a grid subdomain with equal number of
grid points [6]. To deal with the heterogeneity of the pro-
cessors we now consider subdividing the space domain into
subdomains with unequal number of grid points.

We propose a load balancing algorithm that finds an op-
timal configuration of workstations minimizing the execu-
tion time. It also takes into consideration the memory size
of each workstation in making the allocation decision.

Using our load balancing algorithm we were able to ob-
tain an improvement in the speedup between 40% and 68%
for LUSGS and 13% and 8 1 % for OSGCR, compared with
the equal allocation method.

The remainder of this paper is organized as follows. In
Section 2 we present a load balancing algorithm for hetero-
geneous systems. In section 3 we present the implementa-
tion and we discuss experimental results.

2 The Load Balancing Algorithm

Assumptions :
I . We parallelize only the problem space domain and leave
the time dimension for serial execution.
2. We assume a 2-D logical PE mesh with p = r x c PES
(r / c = number of PES per row/column of the PE mesh),
(Figure 1) .
3. A loud is measured as a 3-D box of grid points in the
space domain.
4. We assume that the PES of the parallel system are of
different designs and speeds.
5. Our goal is to assign loads to different PES such that the
execution time is minimized.

In mapping the domain of J x K x L grid points to a log-
ical 2-dimensional mesh of PES the following restrictions

(i) Because of the symmetric boundary condition applied
at the airfoil surface in the J direction (data at (j, *, 1) must
equal data at (J - j , *, l)), the same number of grid points
are assigned to processors P*,j and P*,J -~ . For example
this is only possible when J is odd.

(ii) The L dimension is not divided at all. We only par-
tition the J x K mesh and assign YL grid points to each
PE. Each PE has only four adjacent PES.

(iii) No PE can have fewer than 5 grid points assigned in
each direction (J or K). The reason is that each PE has two
shared boundary grid points with each of its four adjacent
PES.

apply:

Figure 1. Partitioning the three-dimensional
domain on a two-dimensional array of pro-
cessors.

In a mapping we may have four types of processor loads:

1) x L and (Jload + 1) x (K l o a d + 1) x L grid points (see
Figure 2), where: = I(J - 2)/c+ 21, Kload = [(K -
2) / r + 21, h a d = L.

We use as an estimate of the total execution time (Test),
the load corresponding to the largest value of these four
loads. The goal is to minimize this value, by finding an
optimal configuration p = r x c of processors. Figure 2 is
an example with p = r x c = 3 x 5 .

Jload X Kload X L, (Jload 1) X KLoad X L, Jload X (Kload$.

Figure 2. The loads for 3 x 5 processors con-
figuration.

Given a number of processors p = r x c, we divide the
J x K sized grid in p rectangular partitions, with the J
dimension divided in c subpartitions and the K dimension
divided in r subpartitions. These subpartitions are possibly
of unequal size.

We sort the PES (P I , P2,. . . , P,) in non-increasing or-
der of their processing powers: speed(P0) > speed(P1) >

365

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:11:48 UTC from IEEE Xplore. Restrictions apply.

... >_ speed(Pp) and assign the subpartition (j , I C) to pro-
cessor Pk j + j .

We expect the processors of a PE row to have approx-
imately the same computing power. Thus, we divide the
J dimension into equal subpartitions. The K direction is
divided according to the: power of each PE row, where the
power of a PE row is defined as the power of the slowest
PE on that row. This might result in slightly under-utilizing
a more powerful processor, but avoids the more important
issue of overloading a weak one.

Every PE is expected to complete execution in time pro-
portional to the ratio of its load over processing power. We
use as Test the maximurn of these ratios. The goal is to find
a configuration (r , c) of PES that minimizes Test.

Our algorithm checks every possible factorization p =
r x c of p PES and proposes an optimal configuration with
minimum Test over all configurations under our assump-
tions. This is a suboptimal solution to the general grid par-
titioning problem (see [I, 41 and references therein).

Note that it is possibll: that a configuration with a smaller
number of processors can produce a smaller estimate value.
The algorithm starts from the number q of available PES
and returns p PES (where p = r x c and p 5 q) such that
(r , c) = argmin Test. Cur heuristic approach checks these
configurations by decrementing q by one at each stage.

Algorithm:
sort PES PO . . . Pp-l in non-increasing order so that

speed(P0) 2 speed(Ji) 2 . . . 2 speed(P,-l)
for p = q downto 1 do

for all (r , c) where p =: r x c do
miq,.,=) Test (7 , c)

returnp = r x c = argmiii Test
Function T e s t (r , c)

a = [(J - 2)/c + 2)J
a, = (J - 2) mod c
if ((J is odd) and (c is even))

else
return error(”syrnmetry violated”)

{Obtain the minimum PE speed for each k-th PE row}
row-speed(k) = minj,o.. .c- 1 speed(P k , j)

{Compute total of all speeds}
total-speed = x;;:: row-speed(k)
{Map the J direction to the c PES of the k-th PE row }
if (a, # 0 and a, is odd)

map Jload = (a + 1) points to a , PES:

map Jload = a points to remaining (c - a,) PES

map Jload = (a + 1) points to a, PES:

map J load = a points to remaining (c - a,) PES

pk,0 ,...,ph,(Llp--l), pk ,c /27Pk ,c - (o ; . - l) i...,pk,c.

else a, is even

Pk,O , . . . , PC,~,Pk~c-arr...,Pk,c-l.

{Map the K direction to the r PES of the j-th PE column }
b (k) - row-speed(k)

rem = K - ~ b (k)]
t o t a l s p e e d

3 Implementation and results

In our experiments, we use a heterogeneous network
of workstations which includes 48 SUN Ultra- 10(440Mhz,
128MB), 12 SUN Ultra-1 (166Mhz, 64MB), one SGI-02
(270Mhz, 128MB) and two SGI-02 (200Mhz, 64MB). The
SUN Ultra-10 and SGI workstations are connected to each
other via a 100Mb/s switched Ethernet. All the other work-
stations are connected to each other via a lOMb/s switched
Ethernet. As a message-passing library we use the MPICH
1.2.0 [2]. For compiling the TURNS code on SUN work-
stations we use the Sun Workshop Compiler FORTRAN
90 SPARC Version 2.0 and for SGI workstations we use the
MIPS Pro FORTRAN 90 compiler.

In order to analyse the performance of our algorithm
we quantify the processing power of the heterogeneous
distributed environment as a number of virtual processors
(VP). One virtual processor is defined as the fastest pro-
cessor in the system. In our case one virtual processor is
equivalent to a SUN Ultra-IO (440Mhz, 128MB) worksta-
tion. For example if we have six SUN Ultra-IO (440Mhz,
128MB) workstations, one SGI-02 (270Mhz, 128MB) and
two SGI-02 (200Mhz, 64MB) workstations the number of
virtual processors is V P = 7.5.

We use the following notations: p - number of worksta-
tions; Tcomp - computation time per integration step; Tco,
- communication time per integration step; Tp - execution
time per integration step, Tp = Tcomp + Tcom.

We run the code for both methods LUSGS and OSGCR,
and different configurations of workstations. The results of
these runs are presented in Table 1. In order to compare
the efficiency of our load balancer we used as a base line
the execution time obtained using an equal allocation. The
speedup [3], using equal and balanced allocation for the OS-
GCR method is presented in Figure 3.

Having a number of different workstations on our system
the load balancer is able to determine the number of work-
stations for which we can obtain maximum performance.
In our experiments the optimal configuration for a total of

366

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:11:48 UTC from IEEE Xplore. Restrictions apply.

p PE
(V p) mesh
l(1) 1x1 . .

9 I 3x3 I equal I 3.215.2 I 11.91 17.2 I

Allocation LUSGS OSGCR
method Tco,lTp(sec) Tco,lTp(sec)

-116.74 -152.02

1.5 13.1 5.09 19.83
2.5 13.5 8.21 11.6

(11.2) balanced 1.5 12.3 3.5 17.4
equal 1.5 12.1 6.1 17.8

(21.7) 3.2 I 4.3
1.7 12.1 4.5 15.9

I

63 - > 60
63 - > 45

(23.6) balanced 1.21 1.5 3.23 I 4.09
0.7 I 1.1 2.13 13.40

(35.0) 1.613.0

(41.0) balanced 1.1 11.3 2.8 14.2
equal 1.6 I 2.0 4.4 15.3

r. ,

into account LUSGS OSGCR
No 0.9 2.7
Yes 0.9 2.5

. .

60 15x4

63 21x3
(52.9)

(54.0)

Table 1. Execution and communication time
per integration step for LUSGS and OSGCR.

equal 1.212.0 3.6 14.4
balanced 0.8 10.9 2.13 12.7

equal 1.25 12.1 3.2 13.9
balanced 0.74 10.9 2.49 I 2.89

63 workstations was determined by the load balancer to be
formed by 60 workstation out of 63. In this case some of the
slowest workstations were eliminated (by the load balancer)
from the configuration (see Table 1) because their inclusion
would lead to worse performance.

An important percentage of the execution time is due to
the communication time. In Table 1 we shown the commu-
nication time for all configurations and allocation methods.

Our load balancer takes into consideration the memory
size of each machine in making the allocation decision.
First the load balancer allocates the grid points according
to our algoritm. We have added a technique in the load bal-

20 , I I I I I (

18 - balanced --Jt
equal +

16 -
14 -

-
-

10 20 30 40 50
VD

Figure 3. Speedup vs. number of virtual pro-
cessors for OSGCR.

I Configuration I Memorv taken I Tdsec.)

Table 2. Execution time for LUSGS and OS-
GCR using balanced allocation.

ancer which checks if the allocation exceeds the memory
size of a machine. Such machines are eliminated from the
distributed system and we get a lower q. Then a new allo-
cation is computed using our algorithm. As an example we
considered the q=63 processors case in which the load bal-
ancer without taking into account the memory size suggests
p=60 processors system as the best configuration. We run
the load balancer considering the memory size and in this
case it excludes 18 processors. By not utilizing 18 work-
stations, the number of workstations becomes p=45 and the
execution time for OSGCR is reduced from 2.7 seconds to
2.5 seconds. These results are shown in Table 2. As the ta-
ble shows, the memory limitation appears only in the case
of OSGCR method.

References

[11 P. E. Crandall and M. J. Quinn. Non-Uniform 2-D Grid Parti-
tioning for Heterogeneous Parallel Architectures. In Proc. of
the 9th Intl. Parallel Proc. Symp., pages 428-435, April 1995.

UserS Guide for mpich, a
Portable Implementation of MPI. Mathematics and Computer
Science Div., Argonne National Laboratory, 1996. ANL-9616.

Some Performance Metrics for Heterogeneous
Distributed Systems. In Proc. of the Intl. Con$ on Parallel
and Distributed Processing Techniques and Applications, vol-
ume 5 , pages 1261-1268, August 1996.

[4] D. M. Nicol. Rectilinear Partitioning of Irregular Data Parallel
Computations. J. of Parallel and Distributed Systems, 23: I 19-
134, 1994.

[SI G. R. Srinivasan and J.D. Baeder. TURNS: A Free-Wake
EulerlNavier-Stokes Numerical Method for Helicopter Ro-
tors. AIAA Journal, 31(5):959-962, May 1993.

[6] A. W. Wissink, A. S. Lyrintzis, and A. T. Chronopoulos.
A Parallel Newton-Krylov Method for Rotary-wing Flow-
field Calculations. AIM Journal, 37(10):1213-1221, October
1999.

[7] A. W. Wissink, A. S. Lyrintzis, and R. C. Strawn. Paralleliza-
tion of a Three-Dimensional Flow Solver for Euler Rotorcraft
Aerodynamics Predictions. A I M Journal, 34(11):2276-2283,
November 1996.

[8] S. Yoon and A. Jameson. A Lower-Upper Symmetric Gauss
Seidel Method for the Euler and Navier Stokes Equations.
AIAA Journal, 26:1025-1026, 1988.

[2] W. D. Gropp and E. Lusk.

[3] D. Grosu.

367

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 13,2010 at 19:11:48 UTC from IEEE Xplore. Restrictions apply.

