
Static Load :Balancing for CFD Simulations on a Network of Workstations * 

Anthony T. Chronopoulos, Daniel Grosu 
Div. of Computer Science, Univ. of Texas at San Antonio, 

6900 N Loop 1604 W, San Antonio, TX 78249 
{ atc, dgrosu} @cs.utsa.edu 

Andrew M. Wissink 
Center for Applied Scientific Computing, 

Lawrence Livermore National Lab, 
P.O. Box 8013, L-661, Livermore, CA 9455 1 

Abstract 

In distributed simulations, the delivered pelformanee 
of networks of heterogeneous computers degrades severely 
if the computations arc? not load balanced. In this work 
we consider the distributed simulation of TURNS (Tran- 
sonic Unsteady Rotor Navier Stokes), a 3 - 0  space CFD 
code. We propose a load balancing heuristic for  simula- 
tions on networks of hcterogeneous workstations. Our al- 
gorithm takes into account the CPU speed and memory ea- 
pacity of the workstations. Test run comparisons with the 
equal task allocation algorithm demonstrated signijicant ef- 
ficiency gains. 

1 Introduction 

Accurate numerical simulation of the aerodynamics 
and aeroacoustics of rotary-wing aircraft is a complex 
and challenging problem. Three-dimensional unsteady 
Eulermavier-Stokes computational fluid dynamics (CFD) 
methods are widely used (see [5] the references therein), 
but their application to large problems is limited by the 
amount of computer time they require. Such an example 
of a CFD application, which we will focus on, is the com- 
putation of a helicopter aerodynamics. Efficient utilization 
of parallel processing is one effective means of speeding 
up these calculations ['7]. The baseline numerical method 
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is the structured-grid Eulermavier-Stokes solver TURNS 
(Transonic Unsteady Rotor Navier Stokes) [5] developed in 
conjunction with the U.S. Army Aeroflightdynamics Direc- 
torate at NASA Ames Research Center. It is used for calcu- 
lating the flowfield of a helicopter rotor (without fuselage) 
in hover and forward flight conditions. The governing equa- 
tions solved by the TURNS code are the three-dimensional 
unsteady compressible thin-layer Navier-Stokes equations, 
applied in conservative form in a generalized body-fitted 
curvilinear coordinate system. The implicit operator used in 
TURNS for time-stepping in both steady and unsteady cal- 
culations is the Lower-Upper symmetric Gauss-Seidel (LU- 
S G S )  operator of Yoon and Jameson 181. 

We now review the parallel implementation of TURNS 
for a parallel system with homogeneous processors [6]. The 
time stepping is serial. The three-dimensional flowfield spa- 
tial domain is divided in the wraparound and spanwise di- 
rections to form a two-dimensional array of processor sub- 
domains, as shown in Figure 1. Each processor executes 
a version of the code simultaneously for the portion of the 
flowfield that it holds. Coordinates are assigned to the pro- 
cessors to determine global values of the data each holds. 
Border data is communicated between processors, and a 
single layer of ghost-cells stores this communicated data. 
The Message Passing Interface (MPI) software routes com- 
munication between the processor subdomains. 

TURNS approximates the solution at each time step 
based on two alternatives: (a) the relaxation (DP-LUR or 
LU-SGS) methods described in [7], or (b) the Inexact New- 
ton Krylov methods. There are essentially four main steps 
of the inexact Newton algorithm (OSGCR) 161; (1) explicit 
(flux) function evaluation to form the right-hand-side vec- 
tor, (2) preconditioning using hybrid LU-SGS [7], (3) im- 
plicit solution by the Krylov subspace solver, and (4) ex- 
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plicit application of boundary conditions. Local processor 
communication is required in (1)-(4). We also have global 
communications in the error computation at each timestep 
and in the dotproducts in the Krylov methods. 

The parallel implementation of TURNS with hybrid LU- 
SGS and OSGCR was performed on the IBM SP. Each pro- 
cessor was assigned a grid subdomain with equal number of 
grid points [6]. To deal with the heterogeneity of the pro- 
cessors we now consider subdividing the space domain into 
subdomains with unequal number of grid points. 

We propose a load balancing algorithm that finds an op- 
timal configuration of workstations minimizing the execu- 
tion time. It also takes into consideration the memory size 
of each workstation in making the allocation decision. 

Using our load balancing algorithm we were able to ob- 
tain an improvement in the speedup between 40% and 68% 
for LUSGS and 13% and 8 1 % for OSGCR, compared with 
the equal allocation method. 

The remainder of this paper is organized as follows. In 
Section 2 we present a load balancing algorithm for hetero- 
geneous systems. In section 3 we present the implementa- 
tion and we discuss experimental results. 

2 The Load Balancing Algorithm 

Assumptions : 
I .  We parallelize only the problem space domain and leave 
the time dimension for serial execution. 
2. We assume a 2-D logical PE mesh with p = r x c PES 
( r / c  = number of PES per row/column of the PE mesh), 
(Figure 1) .  
3. A loud is measured as a 3-D box of grid points in the 
space domain. 
4. We assume that the PES of the parallel system are of 
different designs and speeds. 
5. Our goal is to assign loads to different PES such that the 
execution time is minimized. 

In mapping the domain of J x K x L grid points to a log- 
ical 2-dimensional mesh of PES the following restrictions 

(i) Because of the symmetric boundary condition applied 
at the airfoil surface in the J direction (data at (j, *, 1) must 
equal data at ( J  - j ,  *, l)), the same number of grid points 
are assigned to processors P*,j and P*,J -~ .  For example 
this is only possible when J is odd. 

(ii) The L dimension is not divided at all. We only par- 
tition the J x K mesh and assign YL grid points to each 
PE. Each PE has only four adjacent PES. 

(iii) No PE can have fewer than 5 grid points assigned in 
each direction ( J  or K).  The reason is that each PE has two 
shared boundary grid points with each of its four adjacent 
PES. 

apply: 

Figure 1. Partitioning the three-dimensional 
domain on a two-dimensional array of pro- 
cessors. 

In a mapping we may have four types of processor loads: 

1) x L and ( Jload + 1) x ( K l o a d  + 1) x L grid points (see 
Figure 2), where: = I( J - 2)/c+ 21, Kload = [ ( K  - 
2 ) / r  + 21, h a d  = L. 

We use as an estimate of the total execution time (Test), 
the load corresponding to the largest value of these four 
loads. The goal is to minimize this value, by finding an 
optimal configuration p = r x c of processors. Figure 2 is 
an example with p = r x c = 3 x 5 .  

Jload X Kload X L,  (Jload 1) X KLoad X L, Jload X (Kload$.  

Figure 2. The loads for 3 x 5 processors con- 
figuration. 

Given a number of processors p = r x c, we divide the 
J x K sized grid in p rectangular partitions, with the J 
dimension divided in c subpartitions and the K dimension 
divided in r subpartitions. These subpartitions are possibly 
of unequal size. 

We sort the PES ( P I ,  P2,.  . . , P,) in non-increasing or- 
der of their processing powers: speed(P0) > speed(P1) > 
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... >_ speed(Pp) and assign the subpartition ( j ,  I C )  to pro- 
cessor Pk j + j  . 

We expect the processors of a PE row to have approx- 
imately the same computing power. Thus, we divide the 
J dimension into equal subpartitions. The K direction is 
divided according to the: power of each PE row, where the 
power of a PE row is defined as the power of the slowest 
PE on that row. This might result in slightly under-utilizing 
a more powerful processor, but avoids the more important 
issue of overloading a weak one. 

Every PE is expected to complete execution in time pro- 
portional to the ratio of its load over processing power. We 
use as Test the maximurn of these ratios. The goal is to find 
a configuration (r ,  c) of PES that minimizes Test.  

Our algorithm checks every possible factorization p = 
r x c of p PES and proposes an optimal configuration with 
minimum Test over all configurations under our assump- 
tions. This is a suboptimal solution to the general grid par- 
titioning problem (see [I, 41 and references therein). 

Note that it is possibll: that a configuration with a smaller 
number of processors can produce a smaller estimate value. 
The algorithm starts from the number q of available PES 
and returns p PES (where p = r x c and p 5 q)  such that 
(r ,  c) = argmin Test. Cur heuristic approach checks these 
configurations by decrementing q by one at each stage. 

Algorithm: 
sort PES PO . . . Pp-l in non-increasing order so that 

speed(P0) 2 speed(Ji) 2 . . . 2 speed(P,-l) 
for p = q downto 1 do 

for all ( r ,  c )  where p =: r x c do 
miq,.,=) Test ( 7 ,  c )  

returnp = r x c = argmiii Test 
Function T e s t  ( r ,  c) 

a = [ ( J  - 2)/c + 2)J 
a,  = ( J  - 2) mod c 
if ( ( J  is odd) and (c is even)) 

else 
return error(”syrnmetry violated”) 

{Obtain the minimum PE speed for each k-th PE row} 
row-speed(k) = minj,o.. .c- 1 speed( P k , j )  

{Compute total of all speeds} 
total-speed = x;;:: row-speed(k) 
{Map the J direction to the c PES of the k-th PE row } 
if (a, # 0 and a, is odd) 

map Jload = (a  + 1) points to a ,  PES: 

map Jload = a points to remaining (c - a,) PES 

map Jload = ( a  + 1) points to a, PES: 

map J load  = a points to remaining (c  - a,)  PES 

pk,0 ,...,ph,(Llp--l), pk ,c /27Pk ,c - (o ; . - l )  i...,pk,c. 

else a, is even 

Pk,O , . . . ,  PC,~,Pk~c-arr...,Pk,c-l. 

{Map the K direction to the r PES of the j-th PE column } 
b ( k )  - row-speed(k )  

rem = K - ~ b ( k ) ]  
t o t a l s p e e d  

3 Implementation and results 

In our experiments, we use a heterogeneous network 
of workstations which includes 48 SUN Ultra- 10(440Mhz, 
128MB), 12 SUN Ultra-1 (166Mhz, 64MB), one SGI-02 
(270Mhz, 128MB) and two SGI-02 (200Mhz, 64MB). The 
SUN Ultra-10 and SGI workstations are connected to each 
other via a 100Mb/s switched Ethernet. All the other work- 
stations are connected to each other via a lOMb/s switched 
Ethernet. As a message-passing library we use the MPICH 
1.2.0 [2]. For compiling the TURNS code on SUN work- 
stations we use the Sun Workshop Compiler FORTRAN 
90 SPARC Version 2.0 and for SGI workstations we use the 
MIPS Pro FORTRAN 90 compiler. 

In order to analyse the performance of our algorithm 
we quantify the processing power of the heterogeneous 
distributed environment as a number of virtual processors 
(VP).  One virtual processor is defined as the fastest pro- 
cessor in the system. In our case one virtual processor is 
equivalent to a SUN Ultra-IO (440Mhz, 128MB) worksta- 
tion. For example if we have six SUN Ultra-IO (440Mhz, 
128MB) workstations, one SGI-02 (270Mhz, 128MB) and 
two SGI-02 (200Mhz, 64MB) workstations the number of 
virtual processors is V P  = 7.5. 

We use the following notations: p - number of worksta- 
tions; Tcomp - computation time per integration step; Tco, 
- communication time per integration step; Tp - execution 
time per integration step, Tp = Tcomp + Tcom. 

We run the code for both methods LUSGS and OSGCR, 
and different configurations of workstations. The results of 
these runs are presented in Table 1. In order to compare 
the efficiency of our load balancer we used as a base line 
the execution time obtained using an equal allocation. The 
speedup [3], using equal and balanced allocation for the OS- 
GCR method is presented in Figure 3. 

Having a number of different workstations on our system 
the load balancer is able to determine the number of work- 
stations for which we can obtain maximum performance. 
In our experiments the optimal configuration for a total of 
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p PE 
( V p )  mesh 
l(1) 1x1 . .  

9 I 3x3 I equal I 3.215.2 I 11.91 17.2 I 

Allocation LUSGS OSGCR 
method Tco,lTp(sec) Tco,lTp(sec) 

-116.74 -152.02 

1.5 13.1 5.09 19.83 
2.5 13.5 8.21 11.6 

(11.2) balanced 1.5 12.3 3.5 17.4 
equal 1.5 12.1 6.1 17.8 

(21.7) 3.2 I 4.3 
1.7 12.1 4.5 15.9 

I 

63 - > 60 
63 - > 45 

(23.6) balanced 1.21 1.5 3.23 I 4.09 
0.7 I 1.1 2.13 13.40 

(35.0) 1.613.0 

(41.0) balanced 1.1 11.3 2.8 14.2 
equal 1.6 I 2.0 4.4 15.3 

r. , 

into account LUSGS OSGCR 
No 0.9 2.7 
Yes 0.9 2.5 

. .  

60 15x4 

63 21x3 
(52.9) 

(54.0) 

Table 1. Execution and communication time 
per integration step for LUSGS and OSGCR. 

equal 1.212.0 3.6 14.4 
balanced 0.8 10.9 2.13 12.7 

equal 1.25 12.1 3.2 13.9 
balanced 0.74 10.9 2.49 I 2.89 

63 workstations was determined by the load balancer to be 
formed by 60 workstation out of 63. In this case some of the 
slowest workstations were eliminated (by the load balancer) 
from the configuration (see Table 1 )  because their inclusion 
would lead to worse performance. 

An important percentage of the execution time is due to 
the communication time. In Table 1 we shown the commu- 
nication time for all configurations and allocation methods. 

Our load balancer takes into consideration the memory 
size of each machine in making the allocation decision. 
First the load balancer allocates the grid points according 
to our algoritm. We have added a technique in the load bal- 

20 , I I I I I (  

18 - balanced --Jt 
equal + 

16 - 
14 - 

- 
- 

10 20 30 40 50 
VD 

Figure 3. Speedup vs. number of virtual pro- 
cessors for OSGCR. 

I Configuration I Memorv taken I Tdsec.) 

Table 2. Execution time for LUSGS and OS- 
GCR using balanced allocation. 

ancer which checks if the allocation exceeds the memory 
size of a machine. Such machines are eliminated from the 
distributed system and we get a lower q. Then a new allo- 
cation is computed using our algorithm. As an example we 
considered the q=63 processors case in which the load bal- 
ancer without taking into account the memory size suggests 
p=60 processors system as the best configuration. We run 
the load balancer considering the memory size and in this 
case it excludes 18 processors. By not utilizing 18 work- 
stations, the number of workstations becomes p=45 and the 
execution time for OSGCR is reduced from 2.7 seconds to 
2.5 seconds. These results are shown in Table 2. As the ta- 
ble shows, the memory limitation appears only in the case 
of OSGCR method. 
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