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Abstract-Explicit numerical methods for solving macroscopic traflic flow continuum models have 
been studied and efficiently implemented in traffic simulation codes in the past. We studied and 
implemented implicit numerical methods for solving the flow conservation trafllc model. We then 
wrote an experimental code in C simulating a freeway (un)congested pipeline and freeway entry/exit 
traffic flow. Tests with real data collected from the I-35 W freeway in Minneapolis were conducted 
on a workstation computer. The implicit methods gave the same (and in some cases better) accuracy 
as the Lax method. The implicit methods were (more than twice) faster than the Lax method. 

1. INTRODUCTION 

Macroscopic continuum traffic models flow based on traffic density, flow and velocity have been 
proposed and analyzed in the past. Examples include Lighthill and Whitham’s flow conservation 
and Payne’s momentum conservation models [1,2]. These models involve partial differential equa- 
tions (PDEs) defined on appropriate domains with suitable boundary conditions which describe 

various traffic phenomena and road geometries. 
The improvement of computational efficiency in the continuum traffic models has been the 

focal point in the development of traffic simulation programs. It is understood that the computer 
execution time to solve traffic flow problems depends not only on the size of the freeway and the 
complexity of roadway geometries, but also on the model equations and numerical schemes used 
in their discretization. 

Explicit numerical methods (for example Lax, Upwind) have been used by Michalopoulos 
and Lin and Leo and Pretty to compute the solution of traffic flow continuum models [3,4]. 
In these explicit schemes the space and time mesh sizes are restricted both by accuracy and 
numerical stability requirements. In order to reduce the computer execution time and maintain 
good accuracy, the total number of computations must be reduced. This can be achieved by 
using larger values of time and space mesh sizes. Implicit numerical methods provide the same 
accuracy as explicit methods and allow changes in the mesh sizes while maintaining numerical 
stability [5]. 

In this work, we use implicit numerical methods (Backward Euler, Trapezoid) to solve more 
efficiently the flow conservation model. We wrote an experimental code in C simulating a freeway 
(un)congested pipeline and freeway entry/exit traffic flow. Tests with real data collected from 
the I-35 W freeway in Minneapolis were conducted. These data have been collected by the 
Department of Civil Engineering at the University of Minnesota and the Minnesota Department 
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of Transportation. Using these data, we tested (for accuracy and efficiency) the implicit methods 
against the Lax method on a Sun Sparcl workstation computer. The implicit methods yielded 
the same (or better accuracy) as the Lax method and they were (more than twice) faster than 
the Lax method. 

The outline of this article is as follows. In Section 2, we review the flow conservation continuum 
traffic model. In Section 3, we review the Euler implicit, Trapezoidal and Lax methods. In 
Section 4, we describe the various theoretical and empirical curves relating the traffic flow and 
density. In Section 5, we describe the congested/uncongested and entry/exit freeway models. In 
Section 6, we present the numerical results. Section 7 contains concluding remarks. 

2. A CONTINUUM MODEL OF TRAFFIC FLOW 

The following conservation equation has been proposed by Lighthill and Whitham [l] as a 
continuum traffic model: 

(1) 

where k(x,t) and q(x, t) axe the traffic density and flow, respectively, at the space-time point 
(2, t). The traflic flow, density and speed are related by the equation: 

q=ku, (2) 

where the equilibrium speed u(z,t) = u(k) must be provided by a theoretical or empirical u-k 
model. For the Greenshields u-k model 

u(k)= ulf 1-k , 
( ) 

where uf is the free flow speed and k,-, the jam density [S]. The generation term g(z,t) 
the number of cars entering or leaving the traffic flow in a freeway with entries/exits. 

3. NUMERICAL METHODS 

(3) 

represents 

We consider one explicit method (Lax) and two implicit methods (Euler implicit and Trape- 
zoidal) which are used in computational fluid dynamics [5]. For each traffic model the road 
section (the space dimension) is discretized using uniform mesh for all numerical methods; only 
the time stepsizes differ between methods. We use the following notation: 

At = time stepsize. 
Ax = space stepsize. 
ky = density (vehicles/mile/lane) at space node j Ax and at time n At. 

q; = flow (vehicles/hour/lane) at space node j AZ and at time n At. 

3.1. Lax Method 

The Lax method is an explicit method. The new density value ky+’ is computed directly from 

the density and flow at the preceding time step n: 

kn+l = “j;l + kjL1 
j 

At $‘+I - qjLl + At -- 
2 Ax 2 2 (gjn+1 - sjzd. 

The method is of first order accuracy with respect to At, i.e., the error is 0 (At). To maintain 

numerical stability, time and space stepsizes must satisfy the CFL condition g > uj, where 
U! is the free flow speed. For example, in the KRONOS traffic. simulation code (using Lax) 
Ax = 100 feet and At = 1 set are recommended. 
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The Euler implicit method applied to the nonlinear PDE (1) generates a nonlinear recursion 
involving all space nodes at each time step. To solve numerically this recursion, Beam and 

Warming have suggested using one Newton linearization steps [5]. Each Newton step constructs 
a tridiagonal linear system with unknowns Akj = ky+’ - k:. 

This tridiagonal linear system is solved by a variant of the Gaussian elimination called the Thomas 
algorithm. The solution is then advanced to the next time step simultaneously at all space nodes 
by computing ky+’ = k; + Akj. This method is of first order accuracy with respect to At and 
it is unconditionally stable. 

Artificial smoothing is often added to reduce oscillatory behavior in the numerical solution. 
This is achieved by adding a fourth order damping term dj to each term kj 

dj = -i (kj-2 -4kj-~+6kj-4kj+~+kj+~). 

We have tested several damping coefficients from w = 0 (no damping) to w = 1. The choice 

w = 1 gave the best results. 

3.3. Implicit Trapezoidal Method 

The Trapezoidal method is identical to the Euler implicit method except for the constants used 
in the tridiagonal linear system equations. 

n 

Akj+i 
j+l 

It is of second order accuracy with respect to At and unconditionally stable. However, for 
discontinuous problems Euler Implicit may yield more accurate results. As with the Euler method, 
explicit damping is added at each time step. We note that the Trapezoidal and the Euler implicit 
methods require also the computation of the Jacobian 3. It is clear that these methods involve 
more computations per time step than Lax. However, they allow much larger stepsizes which 

may make them overall faster than Lax. 

4. FLOW RATE-FLOW DENSITY (q-k) MODEL CURVES 

A u-k model curve (see (2) and (3) b a ove is an indispensable part of the flow conservation ) 
model. This relation can be used to express the flow rate as a function of the flow density, i.e., 

Q = q(k). This function is a nonlinear function which must satisfy some general requirements. 
The equations that define the q-k curve are used in the programs to convert from density to flow 
and from flow to density. 

These general requirements on the q-k curve can be derived from the following observations on 
traffic 

0 

flow modeling [7]. 

For uncongested flow an increase in density corresponds to an increase in flow, up to a 
critical density k,, where the flow becomes congested. 

Maximum flow occurs at the critical density: qmor = q(k,). 
For congested flow an increase in density corresponds to a decrease in flow, up to the jam 
density kja,, where flow stops. 
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A q-k model curve must also be adapted to characteristics of the freeway section which it rep- 
resents. Theoretical q-k model curves can not be adapted to the special roadway characteristics 
and so such a model function must be constructed from empirical data. Greenshields q-k curve 
is derived from Equations (2) and (3) and appropriate choices for the free flow speed UI and 
jam density kjcj,, = kg. In our applications, we chose of =(60 miles/hour) and k,-, =(180 vehi- 
cles/mile). The Greenshields curve has the basic features described above but can not be tuned 
to local characteristics of a freeway section. However, we used Greenshield’s q-k curve in the 
initial development of the programs and as a baseline for comparisons. 

4.1. Experimental q-k Model Curves 

Field data for constructing the q-k model curve (see Table 1) were collected in I-35 W in 
Minneapolis. With these discrete data a piecewise linear q-k curve was derived [8]. Such a 
curve must have parameter ranges reflecting the road characteristics of the freeway section it 
represents [9]. With our discrete data the experimental q-k curve must have following parameter 
ranges: 

l The critical density k, should be about 70 to 75 vehicles/mile/lane. 
l The maximum flow qmax should be less than 2500 to 2700 vehicles/hour/lane. 
l The slope of the curve at k = 0, which represents the free-flow speed of, should be 

approximately 65 to 75 miles/hour. 

We have used several curve fitting methods to construct continuous q-k curves from the set of 
(1, q) discrete data points available. Our objective was to find a general method that produces a 
curve which is based on the discrete data, has the basic features of a q-k curve, has the parameter 
ranges (described above), and also works well in the numerical methods for solving (1). We used 
three different methods piecewise linear, cubic spline, and least squares to approximate q-k 
curves from field data. 

The simplest method consists of connecting the q-k data points with straight line segments, 
yielding a piecewise linear q-k curve. This is a continuous curve that passes through all data 
points but the slope of the curve (which is used in the implicit methods) is discontinuous at the 
line segments intersections. 

In an effort to find a curve that interpolated all of the q-k data points and that also had a 
continuous first derivative, we constructed a cubic spline. The cubic spline is a collection of 
third-degree polynomials, one polynomial for each interval between q-k data points. We tested 
both clamped (slope at endpoints is specified) and natural (slope at endpoints is unspecified) 
splines and found that for our field data set the splines were nearly identical. All cubic spline 
programs used the natural cubic spline. 

Finally, several least squares approximations were tried. In this method the data points 
(ki, qi) axe used to construct a rectangular matrix with row i composed of powers of ki and a 
right-hand-side vector containing the qi. Then the matrix is reduced using the singular value 
decomposition method (SVD) available in the LINPACK package or the Matlab package [lo]. 
The reduced matrix is then used to find the coefficients of the curve that minimizes the total 
squared error between the data points and the curve. This method will produce curves of any 
degree up to the number of data points. Quadratic, cubic and quartic least-squares polynomial 
curves were found using the Matlab’s (SVD). 
The quartic curve 

q = -1.7156 x 1O-5 k4 + 7.1802 x 1O-3 k3 - 1.2514 k2 + 94.8463 k - 69.1588 

appeared to be the lowest-degree least-squares approximation to the discrete data that satisfies 
the q-k curve criteria. This quartic polynomial must be evaluated at each node for each time 
step so it is important to use a polynomial of the least degree. 

The choice of q-k curve was found to have a large effect on the stepsize selection of the implicit 
methods. Implicit methods using the smooth q-k curves generated by the least squares and 
Greenshield’s methods were able to use larger time steps than the programs using cubic spline 
or piecewise linear curves. 
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Table 1. Empirical q-k data. 
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Table 2. Uncongested flow field data. 
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5. FREEWAY TRAFFIC MODEL CASES 

Three model cases of freeway traffic flow were used to test the numerical methods described 
above. These model cases describe congested/uncongested pipeline and entry/exit freeway trafFic 
flows. Each model case consists of a section of a single-lane freeway. The data sets used with each 
model case give the number of vehicles counted crossing each boundary (all lanes) during each 
5-minute interval. In all model cases, these numbers, vehicles/5 minutes, are then multiplied by 12 
and divided by the number of lanes to yield an average single-lane flow rate in vehicles/hour/lane. 
The field data are collected as follows: A detector is placed at a check station which counts the 
volume of cars passing that road point every 5 minutes. Check stations are set at the upstream 
and downstream boundaries and at one more locations in the freeway stretch in between. These 
measurements provide a flow-time function. This function has the form of a step function. The 
flow at the boundaries is used to set up the boundary conditions of the PDE (1). The flow at 
intermediate points is used to compute the deviation of the computed model solution from the 
field data. 

In our modeling we distributed linearly the flow within the 5-minute intervals. The result- 
ing boundary flow-time function is piecewise linear. In the programs boundary flow rates are 
converted to density (vehicles/mile/lane) using a q-k relation. This gives boundary density-time 
functions which are piecewise linear. This is implemented as follows. At each time step the 
boundary densities must be assigned to the boundary nodes (upstream and downstream), and 
then the boundary flow is determined from the density. In these programs the boundary density 
at each time step is found by linear interpolation between the known density values at t = 5 min, 
10 min, etc. Then boundary flow is found at the point on the q-k curve corresponding to the 
boundary density. 

MCM 16:5-H 
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Table 3. Congested flow field data. 

Initial condition: 575 veh/5 mini4 lanes uncongested flow at all nodes 
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5.1. Uncongested Pipeline 

The uncongested pipeline freeway traffic model case consisted of a 4000-ft segment of a a-lane 
freeway. In this model case, the road segment contains no entry or exit ramps and the traffic 
flow is always uncongested. This was the Minneapolis I-35 W northbound between the 76th and 
the 70th streets with a check station located at the 73rd street. The field data in Table 2 contains 
traffic flow measurements (vehicles/5 minutes/2 lanes) made at the upstream and downstream 
boundaries and at a check station point 2000 ft from the upstream boundary. Observations were 
recorded at 5-minute intervals over a span of 2 hours. These field data have also been used 
in [8,9]. 

5.2. Congested Pipeline 

The congested pipeline model case allows both congested and uncongested flow in a road seg- 
ment without entry or exit ramps. The data used in this model case was taken from observations 
of 3600-ft segment of 4-lane freeway. This was the Minneapolis I-35 W southbound between 
the 26th and the 31th streets with a check station at the 28th street. Traffic flow measurements 
(vehicles/5 minutes/4 lanes) were made at the upstream and downstream boundaries and at a 
check station point 1600 ft from the upstream boundary. Along with the flow measurements, the 
state of congestion (uncongested or congested) at the boundaries was also recorded. Observations 
were recorded at 5-minute intervals over a span of 2 hours and 40 minutes. These field data have 
also been used in [8,9]. 

The field data Table 3, for the congested model case, represents a road section that changes from 
uncongested to congested flow and remains congested for approximately 2 hours, then changes 
from congested to uncongested flow. For each numerical method that we tested, the largest 
error occurred in the second congestion-change interval, where flow changes from congested to 
uncongested. The next largest error occurred at the first congestion-change interval. 

In the implicit methods programs, we used a large time step in the intervals where congestion 
remains constant and we used a small time step in congestion-change intervals, to minimize 
the error in those intervals. In addition to the decrease in the time step we used repeated 
iterations (extra Newton steps) in the congestion-change intervals. The implicit methods yielded 
considerably smaller maximum errors after these improvements were made to the codes. 
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Table 4. Entry/exit field data. 
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9” = upstream flow, qrn = entry flow, q2 = exit flow 

qc = flow at check point, qd = downstream flow 

All flow is uncongested. q,,, and qz are given in veh/5 mm/ramp 

AU mainstream flow is given in veh/5 mini3 lanes 
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6:30 473 17 466 4 483 8:15 513 24 530 8 528 

6:35 536 24 568 13 532 8:20 550 33 551 6 581 

6:40 536 23 565 8 607 8:25 552 26 574 11 5234 

6:45 603 20 598 9 583 8:30 528 23 530 22 556 

6:50 634 22 583 5 624 8:35 545 28 550 12 554 

6:55 599 25 621 12 612 8:40 557 38 558 17 609 

7:00 577 24 566 13 600 8:45 530 44 537 15 572 

7:05 581 26 601 7 598 8:50 573 40 580 14 598 

7:lO 612 27 605 6 621 8:55 538 40 540 22 575 

7:15 588 26 611 6 625 9:oo 461 38 467 15 549 

7~20 588 28 577 5 611 9:05 432 33 433 24 427 

7:25 606 26 605 12 609 9:lO 428 31 440 13 488 

7~30 534 23 593 4 637 9:15 425 17 446 17 403 

7:35 556 29 563 4 574 9:20 427 27 416 10 470 

7:40 599 24 591 5 604 9:25 478 46 496 15 479 

7:45 534 21 526 3 553 9:30 417 28 423 19 474 

Table 5. q-k curve comparison results for congested flow. 

Comparison of numerical methods using different q-k curves 
Lax method: dt = 1 s for all curves 

Method 
Max Error (veh/5 min/4 lanes) 

Greenshield Linear Cubic Spline Least Squares 

dt=l5:3s dt=6:3s dt=6:3s dt=15:3s 

Lax 205.86 261.98 278.56 273.56 

Euler 45.35 302.12 317.73 77.32 

Traoezoid 40.62 300.93 318.52 106.77 

5.3. Ent y/Exit 

The entry/exit freeway is a section of I-35 W northbound in Minneapolis. The upstream/down- 
stream boundaries were set at the location of the 55th street and the 46th street, respectively. 
The uncongested entry/exit model case consists of a 6400-ft section of 3-lane freeway with one 
entrance ramp and one exit ramp. The entrance ramp is located 1400 ft below the upstream 
boundary and the exit is located 5600 ft below the upstream boundary. The first check station is 
located 2000 ft below the upstream boundary; the second check station is located 3800 ft below 
the upstream boundary. 

The data in Table 4 were collected by the Department of Civil Engineering and the Minnesota 
Department of Transportation on November 8, 1989. The data consists of flow measurements 
(vehicles/5 minutes/3 lanes) made at the boundaries and at the check stations and ramp flow 
measurements (in vehicles/5 minutes) made at each ramp. Observations were recorded at 5- 
minute intervals during one morning from 6:05am to 9:30am. The initial conditions were not 
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q-k CURVES 

q = traffic flow in vehicles/hour/lane 
k e traffic density in vchicles/milc/lanc 

k 

Figure 1. 

specified so we have assumed the initial flow to be the average of the flow values at the check 
stations at 6:05am, and constant along the road section. For this report, only the measurements 
made at the first check station were used in comparisons with the numerical program output. 

In this simplified model case the flow is assumed to be uncongested at all times. Merging flow 

from the entry ramp is added to the flow at the first node downstream of the ramp. If merging 
flow plus mainstream flow exceeds the maximum flow qmax, the flow value at the entry node is 

set to qmax and any excess merging flow is not used in the calculations. Exiting flow is subtracted 
from the first node downstream of the exit ramp. 

6. RESULTS 

Table 1 contains the data for the empirical q-k curve. These data were used in constructing 
the piecewise linear, cubic spline and least squares approximations shown in Figure 1. Tables 2-4 
contain the field data for the uncongested/congested and entry/exit freeway traffic flow tests. 

For the tests, the time stepsiee selection was made as follows. For the Lax method, we set 
At = 1 sec. This is required in order to maintain numerical stability. For the implicit methods 
we increased the time stepsize subject to the restriction that the maximum error does not exceed 
that of the Lax method. For the uncongested and entry/exit flow csses a single time stepsize w&8 

selected. For the congested flow case two different time stepsizes were used. One small stepsize 
was used in the 5-minute time intervals of change from congested to uncongested (or vice versa) 
and another large stepsize was in other time intervals. 
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7200 

(O/O! 
Figure 2. Lax Method. Uncongested Pipeline Flow (veh/5 min/2 lanes). Quartic 
Least Squares Q - k Curve, dx = 200 ft, dt = 1 s. 

7200 

Figure 3. Implicit Euler Method. Uncongested Pipeline Flow (veh/5 min/2 lanes). 
Quartic Least Squares q-k Curve, dx = 200 feet, dt = 15 s, omega = 1.0. 
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7200 

Figure 4. Trapezoid Method. Uncongested Pipeline Flow (veh/5 min/2 lanes). Quar- 
tic Least Squares q-k Curve, dx = 200 feet, dt = 15 s, omega = 1.0. 

9600 

Figure 5. Lax Method. Uncongested Pipeline Flow (veh/5 min/4 lanes). Quartic 
Least Squares q-k Curve, dx = 200 feet, dt = 1 s. 
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Figure 6. Implicit Euler Method. Uncongested Pipeline Flow (veh/5 min/4 lanes). 
Quartic Least Squares q-k Curve, dt = 200 feet, dt = 15 s in regular regions, dt = 3 s 
in congestion-change regions, omega = 1.0. 

Figure 7. Trapezoid Method. Uncongested Pipeline Flow (veh/5 min/4 lanes). Quar- 
tic Least Squares q-k Curve, dx = 200 feet, dt = 15 s in regular regions, dt = 3 s in 
congestion-change regions, omega = 1 .O. 
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IO ft 

9000 

Figure 8. Lax Method. Uncongested Entry/Exit Flow (veh/5 min/3 lanes). Quartic 
Least Squares q-k Curve, dx = 200 feet, dt = 1 s. 
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q cars/ 
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1400 ft 

Figure 9. Implicit Euler Method. Uncongested Entry/Exit Flow (veh/5 min/3 lanes). 
Quark Least Squares q-k Curve, dx = 200 feet, dt = 15 s omega = 1.0. 
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Table 6. Uncongested flow results. 

Quartic Least Squares q-k Curve 

dt=15s 

Time = exec time on SPARCstation 1 

Method 

Lax 

Error (veh/5 min/2 lanes) Time 

IlW4XhlUItl average (s) 

9.61 3.93 2.6 

Euler 

I 

9.84 

I 

4.01 0.6 

Trapezoid 9.83 4.03 0.6 

9000 

Table 7. Congested flow results. 

Quartic Least Squares q-k Curve 

dt=15:3s 

Time = exec time on SPARCstation 1 

Method 
Error (veh/5 min/4 lanes) Time 

maximum average (s) 

Lax 273.56 24.99 3.2 

Euler 77.32 17.33 1.6 

Trapezoid 106.77 20.88 1.6 

(010) 
Figure 10. Trapezoid Method. Uncongested Entry/Exit Flow (veh/5 n&/3 lanes). 
Quartic Least Squares q-k Curve, dz = 200 feet, dl = 15 s omega = 1.0. 

The tests for selecting the best empirical q-k curve pointed to the quartic least squares ap- 
proximation. This allows the largest stepsize combinations in the implicit methods yielding the 
smallest maximum error. The results for the congested case are contained in Table 5. The 
largest of the stepsizes was found to give the smallest maximum error in the uncongested and 
entry/exit flow cases. Table 6 shows the results for accuracy and execution time obtained on the 
Sun SPARCstation 1, using a time step size At = 15 set for the implicit methods programs on the 
uncongested field data. Table 7 shows the results obtained on the same machine using congested 
field data and At = 15 set during regular intervals and At = 3 set during congestion-change 
intervals. Table 8 shows the results obtained on the same machine using the entry/exit field data 
and At = 15 sec. 

The best performance in accuracy and execution time was obtained with the Euler implicit 
method using three (Newton) iterations per time step in congestion-change intervals. This method 
showed a large improvement over the Lax method in both error and time required. In the 
uncongested and entry exit cases (Tables 6 and 8) the maximum errors in all three methods are 
of the same magnitude. In the congested case (Table 7) the maximum error produced by the 
Euler method was about one fourth of the maximum error produced by the Lax method. The 
implicit methods are more than twice as fast the Lax method (Tables 6-8 last column) for the 
congested case and more than three times in the uncongested and entry/exit cases. 
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Table 8. Entry/exit flow results. 

Quartic Least Squares q-k Curve 

dt= 15 8 

Time = exec time on SPARCstation 1 

Method 
Error (veh/5 min/3 lanes) Time 

maximum average (s) 

Lax 42.66 11.58 7.2 

Euler 42.51 11.38 1.6 

Trapezoid 42.52 11.50 1.6 
_I 

The 3-D figures, Figure 2-10, show the Lax, Euler and Trapezoid solution using the empirical 
quartic least squares approximation. These solutions plots look very close to each other in all 
cases except the congested flow case. The high oscillations in the congested/uncongested change 
intervals appear in the Lax method more than the Euler method. 

‘7. CONCLUSIONS 

We have studied the use of implicit numerical methods solve the flow conservation continuum 
model. We have written an experimental code in C simulating a freeway (un)congested pipeline 
and freeway entry/exit traffic flow. Tests with real data collected from the I-35 W freeway 
in Minneapolis were conducted on a workstation computer. Our tests show that the implicit 
methods are more efficient than the Lax method and provide the same or better accuracy. This 
could increase if iterative methods are used instead of the Gaussian elimination in solving the 
tridiagonal linear systems required by the implicit methods. 
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