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1. Introduction

Nonlinear systems of equations often arise when solving initial or boundary value
problems in ordinary or partial differential equations, see [14] and [15], for instance.
We consider the nonlinear system of equations

F (ξ) = 0

whereF (ξ) is a nonlinear operator from a real Euclidean space of dimensionn or
Hilbert space into itself. The Euclidean norm and corresponding inner product will be
denoted by‖·‖1 and (·, ·)1 respectively. A general different inner product with a weight
function and the corresponding norm will be denoted by (·, ·)0 and‖ · ‖ respectively.
In the first part of this article (Sects. 2 and 3) we assume that the Jacobian ofF (ξ)
has symmetric parts uniformly positive definite. In the final part (Sect. 4) a method is
presented where this assumption is not required.

The Newton method coupled with direct linear system solvers is an efficient way
to solve such nonlinear systems when the dimension of the Jacobian is small. When
the Jacobian is large and sparse some kind of iterative method may be used. This can
be a nonlinear iteration (for example functional iteration for contractive operators), or
an inexact Newton method. In an inexact Newton the solution of the resulting linear
systems is approximated by a linear iterative method. The following are typical steps
in an inexact Newton method for solving this nonlinear system.
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Algorithm 1.1 Inexact Newton
Chooseξ0

For k = 0, 1, . . . until convergencedo
1. Solve iteratively:F ′(ξk)∆k = −F (ξk)
2. ξk+1 = ξk +∆k

EndFor

For a given toleranceε > 0, convergence can be decided for example if
‖F (ξk)‖1 < ε.

If the linear iterative method is a Krylov subspace method then the Jacobian is
only required for performing Jacobian times vector operations. Efficient methods to
compute directly sparse Jacobians have been proposed [13]. Alternatively, (given a
small scalarε ) the Jacobian times vector operation can be approximated using the
following divided difference

F ′(ξ0)v ≈ F (ξ0 + εv)− F (ξ0)
ε

.

A very important question is how to terminate the inner and outer iterations in an
inexact Newton algorithm and retain a satisfactory convergence rate. Axelsson in [3]
and Dembo et al. in [9] study the convergence rates of the inexact Newton method in
relation to the accuracy to which the linear systems are solved (see also [10]). This
is expressed in terms of the ratio of the residuals of the inner and outer iterations:

‖F (ξk) + F ′(ξk)∆k‖1

‖F (ξk)‖1
.

An alternative to inexact Newton approach is to derive nonlinear iterative methods
which coincide with known iterative methods for linear systems. Some nonlinear iter-
ative methods have been derived, studied and used in various applications for steepest
descent methods, SOR type and conjugate gradient type methods for nonsymmetric
Jacobians (see [4], [5], [6], [7], [8], [12], [14], [15], [16], [17]).

The Generalized Conjugate Gradients (GCG) (see [1]) is an iterative method ap-
plicable to nonsymmetric linear systems. The main goal of this article is to derive
nonlinear versions of GCG and to establish global convergence results. In Sect. 2, we
derive the Nonlinear GCG method (NGCG) and we prove that under global condi-
tions it converges. In Sect. 3, we discuss convergence results for NGCG with nonlinear
preconditioning. In Sect. 4, we discuss a combined Approximate Newton and NGCG
method and show its global convergence.

2. Nonlinear GCG

In this section, our goal is to develop an iterative method for nonlinear systems of
equations with nonsymmetric Jacobians. This method will be a nonlinear extension
of GCG (see [1]) in the sense that it will be identical to GCG for linear systems of
equations. Global convergence will be shown for Jacobians whose symmetric parts
are uniformly positive definite.

Throughout Sects. 2 and 3, the following standard assumptions will be made on
the vector functionF (ξ). F (ξ) is a nonlinear function from a ball inRn around the
solution, containing the approximate solutions, intoRn. Without loss of generality we
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will state and prove our results assuming thatF (ξ) is defined on the whole spaceRn.
We also assume that the JacobianF ′(ξ) and the HessianF ′′(ξ) exist and that there
exist positive constantsδ1, δ2, δ3 such thatδ1 ≤ δ2 and for all vectorsv in Rn:

δ1‖v‖2
1 ≤ (F ′(ξ)v, v)1 (a),

‖F ′(ξ)v‖1 ≤ δ2‖v‖1 (b),(1)

‖F ′′(ξ)‖1 ≤ δ3 (c).

Assumption 1(a) states that the symmetric parts of the Jacobians are uniformly positive
definite and it implies that the Jacobians are nonsingular. The following lemma follows
from assumption 1(a).

Consider the mappingF : Ω ⊂ R
n −→ R

n, whereΩ is convex and assume
thatF is differentiable onΩ. The following equivalence relations hold:

Lemma 2.1. Let δ1 be a nonnegative constant. Then the following properties are
equivalent:
(a) (F ′(ξ)v, v)1 ≥ δ1‖v‖2

1 for all ξ ∈ Ω, and all v ∈ Rn

(b) (F (x)− F (y), x− y)1 ≥ δ1(x− y, x− y)1 for all x, y ∈ Ω
(c) For any two solutions of the ordinary differential equationx′(t) = −F (x(t)),
t > 0 it holds that

‖x(t)− y(t)‖ ≤ e−δ1t‖x(0)− y(0)‖.(2)

Proof. The relation

(F (x)− F (y), x− y)1 =

(∫ 1

0
F ′(ξ(t))(x− y)dt, x− y

)
1

,

whereξ(t) = y+t(x−y), holds. Hence, given (a), the mean value theorem for a scalar
function shows that (b) holds (for someξ on the line segment fromx to y). Further,

d(‖x(t)− y(t)‖2)
dt

= 2(x′ − y′, x− y)

= −2(F (x(t))− F (y(t)), x(t)− y(t))

≤ −2δ1‖x(t)− y(t)‖2 ,

which by integration, implies (c). Conversely, (2) implies

d(‖x(t)− y(t)‖2)
dt

≤ −2δ1e−2δ1t‖x(0)− y(0)‖2

or
−2(F (x(t))− F (y(t)), x(t)− y(t)) ≤ −2δ1e−2δ1t‖x(0)− y(0)‖2

that is
(F (x(t))− F (y(t)), x(t)− y(t)) ≥ δ1e−2δ1t‖x(0)− y(0)‖2 .

Letting t −→ 0 yields (b). Finally, lettingx = ξ, x − y = tv in part (b) and letting
t −→ 0+ we obtain (a). ut
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Remark.Any functionF satisfying part (b) withδ1 > 0 is said to be strongly monotone
in Ω. Using well known techniques it can be seen that Lemma 2.1 implies the existence
of a unique solution ofF (ξ) = 0 if F is strongly monotone.

Notation. We denote the JacobianF ′(ξk) by F ′
k. We denote by (·, ·)0 the inner product

with respect to the weight matrix (F ′
k)TF ′

k.

We next derive a nonlinear extension of the GCG method (see [1]). At first we
describe the method and then we outline the algorithm.

Method Description.For µ = 0 or 1 the inner product (., .)µ and its corresponding
norm will be used in the method. At each iterationk, a set of vectors and scalars are
computed. Also, some index parameters must be selected in advance.

(i) Index parameters.Given t and s fixed positive integers we selectsk = min(k, s)
and tk = min(k, t).
Then at each iteration (k) a (search) direction vector is computed by orthogonalizing
(with respect to (., .)µ ) the (nonlinear) residual vector againstsk preceding direction
vectors. The solution is approximated by solving anonlinear least squares(n.l.s.)
problem which minimizes the norm of the nonlinear residual over an affine subspace
based atξk−1 and the search directions{dk−j}, for j = 1, . . . , tk.

(ii) Vectors.Solution updates{ξk}, residuals{pk}, and search directions{dk}.

(iii) Scalars.The steplengths (used in updating the solution){α(k−1)
(k−j)}, for j = 1, . . . , tk

and the Gram-Schmidt orthogonalization parameters (used in updating the direction
vectors){β(k−1)

k−j }, for j = 1, . . . , sk . We useα(k−1)
(k−j) to denote both the independent

variables and the solution of the (n.l.s.) problem.

We next outline the nonlinear GCG algorithm (NGCG).

Algorithm 2.1 NGCG
Initial approximationξ0

d0 = −p0 = −F (ξ0)
For k = 1 until Convergencedo

1. ξk = ξk−1 +
∑tk

j=1α
(k−1)
k−j dk−j

where{α(k−1)
k−j } solve the (n.l.s.) problem

min ‖F ( ξk−1 +
∑tk

j=1α
(k−1)
k−j dk−j )‖2

1

2. pk = F (ξk)
3. β(k−1)

k−j = (pk, dk−j)µ/‖dk−j‖2
µ, j = 1, . . . , sk

4. dk = −pk +
∑sk

j=1β
(k−1)
k−j dk−j

EndFor

If k ≤ s, then Algorithm 2.1 generates search direction which are fully orthogonal.
In practice truncated versions are considered. The indexs is chosen under computer
storage constraints and Gramm-Schmidt stability considerations. We usually choose
t = s+ 1. Thus, after the iterationk = s: sk = sk−1 andtk = tk−1. In this case, at each
subsequent iteration one new search direction is added to the set of direction vectors
and the oldest direction is deleted from the set.

Remark.1. The direction vectors are orthogonal by the definition ofβ(k) in Algorithm
2.1 :
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(dk, dk−j)µ = 0, j = 1, . . . , sk .(3)

2. The steplengths
{
α(k−1)
k−j

}
solve a nonlinear least squares problem (n.l.s.) in Algo-

rithm 2.1 (1.) . This is equivalent to the orthogonality relations:

(pk, F ′
kd

k−j)1 = 0, j = 1, . . . , tk ,(4)

as it can be seen by partial differentiation of the error functional to be minimized.

Notation. At iterationk in Algorithm 2.1, we use the notationα =
[
α(k−1)
k−1 , . . . , α(k−1)

k−tk

]T

andD =
[
dk−1, . . . , dk−tk

]
to denote the steplengths and direction vectors (respec-

tively) used in updating the solution.
Initially (at iterationk = 1) the dimensions ofα andD are 1 andN × 1 and at

subsequent steps they increase totk andN × tk respectively. Now, 1. of Algorithm
2.1 is expressed concisely asξk = ξk−1 +Dα.

Remark. It will next be shown that the n.l.s. problems (of dimensiontk) in the
NGCG algorithm has a nontrivial solution. This means that there is progress towards
the solution at each iteration (i.e.‖F (ξk+1)‖1 < ‖F (ξk)‖1). The solutionα can be
obtained by a Newton method (see [10]). In such a Newton method the Jacobian
F ′(ξ + Dᾱ) ∗ D must be computed. In solving the n.l.s. problems evaluation of the
exact Jacobian can be avoided by using inexact line search methods (see [10]).

Lemma 2.2. In Algorithm 2.1, assume that iterationk − 1 (1 ≤ k) is well-defined. If
pk−1 6= 0, then the matrixD has full rank.

Proof. Assume that{dk−1, . . . , dk−tk} are linearly dependent. This implies thatdk−1

is a linear combination of{dk−2, . . . , dk−tk}. Then using NGCG (4.), we conclude
that pk−1 can be expressed as a linear combination of{dk−2, . . . , dk−tk}. Using
equality (4) we conclude that (pk−1, Fk−1d

k−j)1 = 0 for j = 2, . . . , tk−1. Since (by
definition) k − tk = k − tk−1, this yields (pk−1, Fk−1p

k−1)1 = 0 which contradicts
(1)(a) unlesspk−1 = 0. ut

We next prove that Algorithm 2.1 is feasible.

Lemma 2.3.In Algorithm 2.1, assume thatsk ≤ tk, for all k. Given any initial vector
ξ0 in Rn all iterations are well-defined and‖pk‖1 < ‖pk−1‖1.

Proof.At each iterationk, we must prove that (i) the direction vectors are well-defined
anddk 6= 0, if pk 6= 0 and (ii) the (n.l.s.) problem has a solution and‖pk‖1 < ‖pk−1‖1.
We use induction on the iteration indexk.

Case k=1. (i) is obvious. We must prove (ii). For simplicity of notation we use
fk−1(α) to denote (1/2)‖F (ξk−1+Dα)‖2

1. We must prove that there exists a nontrivial
minimum of fk−1(α). The gradient (∇fk−1(α)) of fk−1(α) equals:[

( F (ξk−1 +Dα), F ′(ξk−1 +Dα)dk−1 )1, . . . ,

( F (ξk−1 +Dα), F ′(ξk−1 +Dα)dk−tk )1
]T

.

Insertingα = 0 we obtain

∇fk−1(0) =
[
( pk−1, F ′

k−1d
k−1 )1, . . . , ( p

k−1, F ′
k−1d

k−tk )1
]T

=
[−( pk−1, F ′

k−1p
k−1 )1, 0, . . . , 0

]T
.
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For k = 1 the gradient∇fk−1(0) consists only of the first entry, which is negative
because of assumption (1)(a). This implies that there existsα 6= 0 such thatfk−1(α) <
fk−1(0).

We must now prove that the functionfk−1(.) assumes a minimum. We insert
ξ = ξk−1 andy = ξk−1 +Dα in inequality (2). Since (by Lemma 2.2)D has full rank,
Dα 6= 0 for α 6= 0. This implies that‖y‖1 → ∞ as‖ᾱ‖1 → ∞. Hence, Lemma 2.1
implies thatF (y) grows unbounded as‖α‖1 →∞. This proves that the n.l.s. problem
of NGCG (1.) has a solution. We also obtain that‖pk‖1 < 2fk−1(0)≡ ‖pk−1‖1.

Case m< k (induction hypothesis). We assume that (i) and (ii) hold true for iterations
m = 2, . . . , k − 1.

Case k.We firstly prove (i). We also assume thatpm 6= 0,m = 0, . . . , k−1, otherwise
the algorithm would have terminated. The induction hypothesis states that the direction
vectors are well-defined anddm 6= 0, m = 0, . . . , k − 1. The search directiondk is
well-defined, ifβ(k−1)

k−j , j = 1, . . . , sk are well-defined. This is true because (by the
induction hypothesis)‖dk−j‖µ 6= 0, for j = 1, . . . , sk. If dk = 0 thenpk depends
linearly on dk−j , j = 1, . . . , sk. Also, pk is orthogonal todk−j , k = 1, . . . , tk (see
(4)). Sincesk ≤ tk we conclude thatpk = 0.

To prove (ii) we note that the induction hypothesis and equality (4) imply that the
gradient∇fk−1(0) consists of zeros except of a negative value in the first entry. The
rest of the proof of (ii) is identical to casek = 1. ut

We next define a single nonlinear steepest descent step after each iteration of
NGCG has been completed. Fork = 1, 2, . . ., let ξk−1 and pk−1 for k ≥ 1 be
generated in NGCG. A single nonlinear steepest descent step is defined as follows:

ξ̂k = ξk−1 − α̂(k−1)
k−1 pk−1 ,(5)

whereα̂(k−1)
k−1 is the least positive real number that solves the nonlinear minimization

problem
min
α∈R

‖F (ξk−1 − αpk−1)‖2
1.

We next give an error bound on the decrease in the nonlinear residual that this
single nonlinear steepest descent step would bring about.

Lemma 2.4.Let our standard assumptions hold for the nonlinear functionF (ξ). The
single steepest descent step (5) is well-defined and the following inequality holds:

‖F ( ξk−1 − α̂(k−1)
k−1 pk−1 )‖1 ≤ c‖pk−1‖1 ,(6)

whereα̂(k−1)
k−1 is the steplength in (5) and0 < c < 1.

Proof. The proof (of (ii)) in Lemma 2.3 can be used to prove that the nonlinear
steepest descent is well-defined.

For simplicity of notation letgk−1(α) denote the scalar function (1/2)‖F (ξk−1−
αpk−1)‖2

1. Thengk−1(α) assumes a minimum at ˆα(k−1)
k−1 . The first and second deriva-

tives of gk−1(α) are:

g′k−1(α) = (F (ξk−1 − αpk−1), F ′(ξk−1 − αpk−1)pk−1)1 ,
g′′k−1(α) = ((F ′′(ξk−1 − αpk−1)pk−1, pk−1 )1, F (ξk−1 − αpk−1))1 +
‖F ′(ξk−1 − αpk−1)pk−1‖2

1.



On nonlinear generalized conjugate gradient methods 7

Using assumption (1) we obtain the following upper bound on|g′′(α)| for 0 <

α < α̂(k−1)
k−1 .

|g′′k−1(α)| ≤ (δ2
2 + δ3‖pk−1‖1)‖pk−1‖2

1.

A lower bound on ˆα(k−1)
k−1 can be obtained as follows:

Taylor’s expansiong′k−1

(
α̂(k−1)
k−1

)
around 0 gives:

g′k−1

(
α̂(k−1)
k−1

)
= 0 = g′k−1(0) +α(k−1)

k−1 g′′(α),

whereα = tk−1α̂
(k−1)
k−1 for sometk−1 in (0, 1).

Using the upper bound ong′′(α) derived above and assumptions (1) we can obtain
now the following bound

δ1(
δ2

2 + δ3‖pk−1‖1
) ≤ ( pk−1, F ′

k−1p
k−1 )1

‖pk−1‖2
1

(
δ2

2 + δ3‖pk−1‖1
) ≤ α̂(k−1)

k−1 .

We next obtain inequality (6). Using Taylor’s expansion we get:

gk−1(α) ≤ (1/2)‖pk−1‖2
1 − α(pk−1, F ′

k−1p
k−1)1 + (α2/2)g′′k−1(α) ,

whereα = tα for somet in (0, 1).
Now using the lower bound onα, the upper bound ong′′k−1(α) and assumption

(1) we prove inequality (6):

gk−1(α(k−1)
k−1 ) ≤ ‖pk−1‖2

1

2
− δ2

1‖pk−1‖2
1(

δ2
2 + δ3‖pk−1‖1

) +
δ2

1

2
(
δ2

2 + δ3‖pk−1‖1
)2g

′′
k−1(α)

≤ 1
2

[
1− δ2

1(
δ2

2 + δ3‖pk−1‖1
)] ‖pk−1‖2

1 . ut

The following theorem shows the global convergence of NGCG.

Theorem 2.1.Let ξ0 be an initial solution. Under our standard assumptions, NGCG
generates a sequenceξk, which converges to the unique solutionξ∗ of the nonlinear
operator equationF (ξ) = 0, and‖ξk − ξ∗‖1 ≤ (1/δ1)‖pk‖1.

Proof.By Lemma 2.3 the iterations in Algorithm 2.1 are well-defined. At each iteration
k, we use Lemma 2.4 to obtain a residual norm bound by using a single step of the
nonlinear steepest descent iteration (5). This implies that in NGCG:

‖pk‖1 ≤ c‖pk−1‖1, 0 < c < 1.

We conclude thatpk → 0 ask → ∞. This combined with Lemma 2.1 proves that
{ξk} is a Cauchy sequence and thus it converges. The proof of the uniqueness and
the error bound follow from Lemma 2.1 by insertingξ = ξk andy = ξ∗ respectively.
ut
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3. Preconditioning

There exists a convergence theory for variable-step preconditioning applied to GCG
(see [2]). Here we consider variable step preconditioning applied to NGCG. The
nonlinear operator equationF (ξ) = 0 can be preprocessed using a linear or nonlinear
operator.

Let Fr andFl denote the right and left preconditioners respectively. We assume
thatF−1

r andF−1
l exist. The preconditioned nonlinear operator equation can take one

of the following three forms:
(1) right preconditioning:

G(y) = F (Fr(y)) = 0, y = F−1
r (ξ) .(7)

(2) left preconditioning:

G(ξ) = Fl(F (ξ)) = 0 .(8)

(3) split preconditioning:

G(y) = Fl(F (Fr(y))) = 0, y = F−1
r (ξ) .(9)

In the case of right and left preconditioningFr andFl must locally approximate
the inverse ofF . In the case of split preconditioning the operatorFlFFr must be close
to the identity operator. In all cases the preconditioned operator equation is “easier” to
solve if the preconditioned operatorG has a Jacobian with “better” spectral properties
than the Jacobian ofF .

Notation.We denote the JacobianG′(ξk) byG′
k. We denote by (·, ·)0 the inner product

with respect to the weight matrix (G′
k)TG′

k.
We next formulate the preconditioned version of Algorithm 2.1 using right pre-

conditioning. The algorithms for the other types of preconditionings are similar.
Algorithm 3.1 (Right preconditioned NGCG)

Initial approximationξ0

y0 = F−1
r (ξ0)

d0 = −p0 = −G(y0)
For k = 1 until Convergencedo

1. yk = yk−1 +
∑tk

j=1α
(k−1)
k−j dk−j

where{α(k−1)
k−j } solve the (n.l.s.) problem

min ‖G( yk−1 +
∑tk

j=1α
(k−1)
k−j dk−j )‖2

1

2. pk = G(yk)
3. β(k−1)

k−j = (pk, dk−j)µ/‖dk−j‖2
µ, j = 1, . . . , sk andµ = 0 or 1 .

4. dk = −pk +
∑sk

j=1β
(k−1)
k−j dk−j

EndFor
ξk = Fr(yk)

The following remarks can be made on Algorithm 3.1:

(i) pk = G(yk) ≡ F (ξk)
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(ii) The Jacobian of the operatorG(y) equalsF ′(ξ)F ′
r(y). Thus,G′

k = G′(yk) =
F ′(ξk)F ′

r(yk). At each iteration, only multiplication byG′
k is required. This may

be approximated by the directional derivative approximation:

G′
kv ≈

G(yk + εv)−G(yk)
ε

.

(iii) ξk is only computed after the termination of the algorithm. Intermediate compu-
tation requires the additional workξk = Fr(yk) per iteration.

We next state the global convergence result for the right preconditioned NGCG
method as a corollary of Theorem 2.1. A similar result can be obtained for the other
two types of preconditioning.

Corollary 3.1. Let the standard assumptions (in Sect. 1) also hold for the vector func-
tionG(y) for all y ∈ Rn. Moreover, we assume thatF ′−1

r exists and there is a positive
constantδ4 so that

δ4‖v‖2
1 ≤ (F ′−1

r (y)v, v)1 ,(10)

for all vectorsv in Rn. Then the right preconditioned NGCG method generates a well-
defined iteration for any initial approximationξ0. The sequenceξk = Fr(yk) converges
to a unique solutionξ∗ of the nonlinear operator equationF (ξ) = 0 and

‖ξk − ξ∗‖1 ≤ (1/δ1δ4)‖F (ξk)‖1 .(11)

Proof.Theorem 2.1 applied to the nonlinear systemG(y) = 0 implies thatyk converges
to a unique solutiony∗ of G(y) = 0. Sinceξ = Fr(y) andF ′

r exist ξk converges toξ∗
andF (ξ∗) = 0. The error inequality is obtained from (10). Firstly, we use the mean
value theorem (similarly to proving (2)) to prove the following inequality:

δ4‖ξk − ξ∗‖1 ≤ ‖F−1
r (ξk)− F−1

r (ξ∗)‖1 = ‖yk − y∗‖1 .

This inequality combined with‖yk − y∗‖1 ≤ (1/δ1)‖F (yk)‖1 proves inequality (11).
ut

We next show that a combined Newton NGCG method converges for any initial
approximation.

4. The approximate Newton direction NGCG method (NNGCG)

Let {ρk}, 0≤ ρk < 1 be a nonincreasing sequence, and consider the iteration method:
given ξ0, for k = 0, 1, . . . computepk+1 such that

‖F (ξk) + F ′(ξk)pk+1‖ ≤ ρk‖F (ξk)‖1.(12)

In the standard Newton method we haveρk = 0. Here we only approximately solve
the linear equation. Let

dk+1 = −pk+1 +
sk∑
j=0

β(k)
k+1−jd

k−j , 0≤ sk ≤ k,(13)
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whereβ(k)
j are computed to make

(dk+1, dk−j)1 = 0, 0≤ j ≤ sk.(14)

(12) can be viewed as a nonlinear preconditioning step. Let the integersrk satisfy
0≤ rk−1 ≤ rk ≤ rk−1 + 1 and let

ξk+1 = arg min{‖F (ξ)‖; ξ = ξk +
rk∑
j=0

αk+1−jd
k+1−j}.(15)

Repeat until convergence.
Heresk + 2 is the dimension of the set of search direction vectors at stagek and

the functional‖F (ξ)‖ is minimized on a subspace spanned byrk + 1 vectors. The
norm is defined by the inner product (·, ·)0.

We let sk ≤ rk − 1. (Hence, in the simplest case whererk = 0, we letdk+1 =
−pk+1.) To computepk+1 from (12) one can use preconditioned iteration methods,
for instance. Recently it has been shown that efficient such methods exist even when
F ′(ξk) is indefinite (see [2]). We shall prove convergence of the above algorithm for
any initial approximation under the following assumptions:

(i.a) F ′(ξk) is nonsingular and there exists a constantβ such that

β = sup
k
‖F ′(ξk)

−1‖.(16)

or
(i.b) F ′(ξk) is nonsingular butF ′(ξ) may be singular at the limit point where

F (ξ) = 0. In this case we assume that

δ = sup
k
‖F ′(ξk)

−1
F (ξk)‖(17)

exists.
(ii) F ′(·) is Hölder continuous, i.e. there exists aγ, 0 < γ ≤ 1, such that

Kγ = (1 +γ) sup
k,ξ 6=ξk

‖ ∫ 1
0

[
F ′ (ξk + t(ξ − ξk)

)− F ′(ξk)
]
F ′(ξk)

−1
dt‖

‖ξ − ξk‖γ ,(18)

whereKγ <∞ .
Note that this is a relative Ḧolder bound, since the difference in the bracket is

multiplied with F ′(ξk)
−1

. This indicates that the constant is frequently not large.
Furthermore, in practice, it suffices to take the supremum in a ball about the points
ξk.

We shall analyze the convergence of the NNGCG algorithm first for the case (i.a),
(ii). The analyses for the case (i.b), (ii) will be similar.

Note first that for anyτk, 0 < τk ≤ 1,

min
ξ

‖F (ξ)‖, ξ = ξk +
rk∑
j=0

αk+1−jd
k+1−j

(19)

≤ ‖F (ξ̃)‖, ξ̃ = ξk + τkp
k+1.
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For later use, note thatτkpk+1 = ξ̃ − ξk.
Next note that

F (ξ̃) = F (ξk) + F ′(ξk)(ξ̃ − ξk) +(20) ∫ 1

0
[F ′(ξk + t(ξ̃ − ξk))− F ′(ξk)](ξ̃ − ξk)dt

= (1− τk)F (ξk) + τk(F (ξk) + F ′(ξk)pk+1)

+ τk

∫ 1

0
[F ′(ξk + t(ξ̃ − ξk))− F ′(ξk)]F ′(ξk)−1F ′(ξk)pk+1dt .

Note that (12) shows that

‖F ′(ξk)pk+1‖ ≤ (1 +ρk)‖F (ξk)‖(21)

and
‖pk+1‖ ≤ ‖F ′(ξk)−1‖ ‖F ′(ξk)pk+1‖ ,

that is
‖pk+1‖ ≤ β(1 +ρk)‖F (ξk)‖ .(22)

Also,
‖F ′(ξk)−1F (ξk) + pk+1‖ ≤ ‖F ′(ξk)−1‖ ‖F (ξk) + F ′(ξk)pk+1‖(23)

≤ ρk‖F ′(ξk)−1‖ ‖F (ξk)‖ ≤ ρkκk‖F ′(ξk)−1F (ξk)‖,
where

κk = ‖F ′(ξk)‖ ‖F ′(ξk)−1‖,
i.e. κk is the condition number of the operatorF ′(ξk).

Hence, an alternative estimate ofpk+1 is

‖pk+1‖ ≤ (1 +ρkκk)‖F ′(ξk)−1F (ξk)‖ .(24)

(20) and (21, 22) show now that

‖F (ξ̃)‖
‖F (ξk)‖ ≤ 1− τk + τkρk +

τk(1 +ρk)
‖ ∫ 1

0

[
F ′(ξk + t(ξ̃ − ξk))− F ′(ξk)

]
F ′(ξk)−1dt‖

‖ξ̃ − ξk‖γ ‖ξ̃ − ξk‖γ ,

that is, using (ii) and (22),

‖F (ξ̃)‖
‖F (ξk)‖ ≤ 1− τk + τkρk + [τk(1 +ρk)]1+γ Kγ

1 +γ
[β‖F (ξk)‖]γ

or
‖F (ξ̃)‖
‖F (ξk)‖ ≤ 1− τk + τkρk + [τk(1 +ρk)]1+γ K̃γ,k

1 +γ
,(25)

where
K̃γ,k = Kγ [β‖F (ξk)‖]γ .

For the proof of the global convergence theorem we may takeτk to be
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τk = min{1, τ̂k},
where ˆτk minimizes the upper bound in (25), that is,

τ̂k =

(
1− ρk

(1 +ρk)1+γ
K̃−1

γ,k

)1/γ

=

(
1− ρk

(1 +ρk)1+γ
K−1

γ

)1/γ

β−1‖F (ξk)‖−1.(26)

Noting that 0< τk ≤ 1, the upper bound becomes then

‖F (ξ̃)‖
‖F (ξk)‖ ≤

{
ρk + (1+ρk)1+γ

1+γ Kγβ
γ‖F (ξk)‖γ , if τ̂k ≥ 1

1− τ̂k
γ

1+γ (1− ρk), if τ̂k < 1.
(27)

Note now that the upper bound function in (25) as a function ofτ = τk > 0 is strictly
less than one, initially for sufficiently small values ofτ . Hence this and (19) show
that

‖F (ξk+1)‖
‖F (ξk)‖ < 1, k = 0, 1, . . .

As this holds in particular fork = 0, we have

‖F (ξ1)‖
‖F (ξ0)‖ ≤ 1− ε, for someε , 0< ε < 1,

where in fact we can letε be defined by

ε =

{
1− ρ0 − (1+ρ0)

1+γ

1+γ
Kγβ

γ‖F (ξ0)‖γ , if τ̂0 ≥ 1
τ̂0

γ
1+γ (1− ρ0), if τ̂0 < 1.

(28)

Note now that because of the minimization property of the algorithm,‖F (ξk)‖ does
not increase withk. Hence (26) shows that ˆτk does not decrease, so (27) shows that

‖F (ξk+1)‖
‖F (ξk)‖ ≤ 1− ε, k ≥ 1,

and by induction,
‖F (ξk+1)‖
‖F (ξ0)‖ ≤ (1− ε)k+1,

which shows the global convergence. We state this result:

Theorem 4.1.LetF (·) be a nonlinear differentiable mapping onRn and assume that
(i.a) and (ii) hold, whereξk is defined in algorithm NNGCG. Then the algorithm
converges for any initial approximationξ0 and

‖F (ξk)‖ ≤ (1− ε)k‖F (ξ0)‖, k ≥ 1,

whereε is defined in (28). ut
Remark.(26) shows that ask increases eventually 1≤ τ̂k, because‖F (ξk)‖ −→ 0.
Hence (35) shows that if we chooseρk = O(‖F (ξk)‖) then the algorithm eventually
converges with a superlinear rate, namely‖F (ξk+1)‖ = O(‖F (ξk)‖1+γ).

Consider now the case whereF ′(·) satisfies (i.b) and (ii), i.e.F ′(ξ) may be singular
at the limit point. In this case (20), (21) and (23, 24) show that
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‖F (ξ̃)‖
‖F (ξk)‖ ≤ 1− τk + τkρk + τk(1 +ρk)

Kγ

1 +γ
‖ξ̃ − ξk‖γ

≤ 1− τk + τkρk + τ1+γ
k (1 +ρk)

Kγ

1 +γ
(1 +ρkκk)γ ·

‖F ′(ξk)−1F (ξk)‖γ ,
or

‖F (ξ̃)‖
‖F (ξk)‖ ≤ 1− τk + τkρk +

τ1+γ
k

1 +γ
· K̃γ,k,(29)

where
K̃γ,k = (1 +ρk)Kγ(1 +ρkκk)γ‖F ′(ξk)−1F (ξk)‖γ

Now we chooseτk such that
τk = min{1, τ̂k},

where ˆτk minimizes the upper bound in (29), that is,

τ̂k =

(
1− ρk
Kγ,k

)1/γ

=

(
1− ρk
1 +ρk

K−1
γ

)1/γ 1
1 +ρkκk

‖F ′(ξk)−1F (ξk)‖−1.(30)

Note that for anyk, (29) and (17) show that

‖F (ξ̃)‖
‖F (ξk)‖ ≤ 1− τk + τkρk +

τ1+γ
k

1 +γ
C,(31)

where
C = 2Kγ(1 + c)γ · δγ .

Here δ is defined in (23) andc = supk ρkκk. We assume here that the numbersρk
are chosen such thatc <∞. In particular, this means that (12) is solved particularly
accurately at the final steps of the algorithm NNGCG, whenF ′(ξk) becomes more
singular andκk increases.

Note now that there exists aτ = τk for which (31) is strictly smaller than one, so

‖F (ξ̃)‖
‖F (ξk)‖ ≤ 1− ε,(32)

for some,ε, 0< ε < 1.
As in the proof of the previous theorem, this shows that there exists anε, 0 <

ε < 1, such that
‖F (ξk+1)‖
‖F (ξk)‖ ≤ 1− ε, k ≥ 0

and hence global convergence. We have shown:

Theorem 4.2. Let F (·) be a nonlinear differentiable mapping onRn and assume
that (i.b) and (ii) hold, whereξk is defined in algorithm NNGCG. If (12) is solved
sufficiently accurately so thatρkκk ≤ c holds for anyk, for some constantc, where
κk is the condition number ofF ′(ξk), then the algorithm converges for any initial
approximationξ0 and

‖F (ξk)‖ ≤ (1− ε)k‖F (ξ0)‖, k ≥ 1,
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for someε, 0 < ε < 1. ut
The above shows that as long asF ′(ξk) is nonsingular and‖F ′(ξk)−1F (ξk)‖ is

uniformly bounded, the algorithm NNGCG can be made to converge by properly
handling the relative accuracy parameter sequence{ρk}. In particular, we can solve
F (ξ) = 0 even ifF (·) has a multiple root.

Note that the theorems hold for any version of the NNGCG method, including
the truncated versions, whererk < k + 1. In particular they hold forrk = 0, when
ξk+1 is computed using just a linesearch.

We conclude with a remark concerning automatic differentiation. The algorithm
NNGCG requires updating the JacobianF ′(·) at every iteration step. However, using
iterative solution methods to compute the search directionpk+1, the Jacobian is never
required in explicit form, but only used implicitly to compute matrix-vector products.
Recent improvements of automatic differentiation methods show that such products
can be computed with a complexity of the same order as a function evaluation (like
(F (ξk), F (ξk))0). For a survey of such results, see [13]. Hence, it is not computation-
ally efficient in general to avoid updating the Jacobian for a differentiable mapping
at every iteration step.

5. Conclusions

We have presented and analyzed a nonlinear generalization of GCG for solving non-
linear algebraic systems of equations. It has been shown that under the assumption
that the Jacobian is positive definite and the Hessian is bounded the methods are guar-
anteed to converge globally to a unique solution. We also proved convergence results
for this nonlinear iterative method used in conjunction with nonlinear precondition-
ing. Under the weaker assumption of a nonsingular and Hölder continuous Jacobian
matrix it has also been shown that the combined Newton and NGCG method con-
verges globally. This result includes functions for which the Jacobian is singular in the
limit point. The damped (and inexact) Newton methods in [3] and [9] require special
choice of steplengths. On the other hand in the NNGCG method the corresponding
coefficientsαj are computed automatically by the algorithm.

Acknowledgement.Some comments made by two anonymous referees, which helped improve the presen-
tation of some parts of the paper are gratefully acknowledged.
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