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1. Introduction

Nonlinear systems of equations often arise when solving initial or boundary value
problems in ordinary or partial differential equations, see [14] and} fbb instance.
We consider the nonlinear system of equations

FE)=0

where F'(€) is a nonlinear operator from a real Euclidean space of dimension
Hilbert space into itself. The Euclidean norm and corresponding inner product will be
denoted byj|-||1 and ¢, -); respectively. A general different inner product with a weight
function and the corresponding norm will be denoted hy){ and|| - | respectively.

In the first part of this article (Sects.2 and 3) we assume that the Jacobi&(t)of

has symmetric parts uniformly positive definite. In the final part (Sect. 4) a method is
presented where this assumption is not required.

The Newton method coupled with direct linear system solvers is an efficient way
to solve such nonlinear systems when the dimension of the Jacobian is small. When
the Jacobian is large and sparse some kind of iterative method may be used. This can
be a nonlinear iteration (for example functional iteration for contractive operators), or
an inexact Newton method. In an inexact Newton the solution of the resulting linear
systems is approximated by a linear iterative method. The following are typical steps
in an inexact Newton method for solving this nonlinear system.

* This work was partially supported by travel grants from the Office of International Education and
from the Army High Performance Computing Research Center at the University of Minnesota
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Algorithm 1.1 Inexact Newton

Chooset?

For k=0,1,... until convergence&lo
1. Solve iteratively:F'(¢*) A, = —F(¢F)
2. £k+l - fk + Ak

EndFor

For a given tolerances > 0, convergence can be decided for example if
IFER Il < e.

If the linear iterative method is a Krylov subspace method then the Jacobian is
only required for performing Jacobian times vector operations. Efficient methods to
compute directly sparse Jacobians have been proposed [13]. Alternatively, (given a
small scalare ) the Jacobian times vector operation can be approximated using the
following divided difference

F/(EO)’U ~ F(go + EU) - F(go)

A very important question is how to terminate the inner and outer iterations in an

inexact Newton algorithm and retain a satisfactory convergence rate. Axelsson in [3]
and Dembo et al. in [9] study the convergence rates of the inexact Newton method in
relation to the accuracy to which the linear systems are solved (see also [10]). This
is expressed in terms of the ratio of the residuals of the inner and outer iterations:

| F(EF) + F'(€") Akl
[ F(&¥)]11

An alternative to inexact Newton approach is to derive nonlinear iterative methods
which coincide with known iterative methods for linear systems. Some nonlinear iter-
ative methods have been derived, studied and used in various applications for steepest
descent methods, SOR type and conjugate gradient type methods for nonsymmetric
Jacobians (see [4], [5], [6], [7], [8], [12], [14], [15], [16], [17]).

The Generalized Conjugate Gradients (GCG) (see [1]) is an iterative method ap-
plicable to nonsymmetric linear systems. The main goal of this article is to derive
nonlinear versions of GCG and to establish global convergence results. In Sect. 2, we
derive the Nonlinear GCG method (NGCG) and we prove that under global condi-
tions it converges. In Sect. 3, we discuss convergence results for NGCG with nonlinear
preconditioning. In Sect. 4, we discuss a combined Approximate Newton and NGCG
method and show its global convergence.

2. Nonlinear GCG

In this section, our goal is to develop an iterative method for nonlinear systems of
equations with nonsymmetric Jacobians. This method will be a nonlinear extension
of GCG (see [} in the sense that it will be identical to GCG for linear systems of
equations. Global convergence will be shown for Jacobians whose symmetric parts
are uniformly positive definite.

Throughout Sects. 2 and 3, the following standard assumptions will be made on
the vector functionF'(¢). F(€) is a nonlinear function from a ball ii™ around the
solution, containing the approximate solutions, ififd. Without loss of generality we
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will state and prove our results assuming th¢t) is defined on the whole spagg’.
We also assume that the Jacobi@t{¢) and the Hessiak"’(£) exist and that there
exist positive constants, 6,, 63 such that; < 6, and for all vectors in R™:

alllf < (F'©v,o) (a),
1) |F @)z < G2flvlls (b)),
[F"@E)l1 <63 (o).

Assumption 1(a) states that the symmetric parts of the Jacobians are uniformly positive
definite and it implies that the Jacobians are nonsingular. The following lemma follows
from assumption L.

Consider the mapping’ : 2 Cc R™ — k"™, where{? is convex and assume
that F' is differentiable onf2. The following equivalence relations hold:

Lemma 2.1. Let 6; be a nonnegative constant. Then the following properties are
equivalent:

@) (F'(&)v,v)1 > b1]jv|3 for all £ € 2, and allv € R™

(b) (F(2) = F(y), 2 —y)r = 61z —y, x —yh forall z,y € ©2

(c) For any two solutions of the ordinary differential equatiof(t) = —F(x(t)),
t > 0t holds that
) () = y(@)| < & **[|2(0) — y(0)]|-

Proof. The relation

1
(F(x) — F(y). = — ) = ( /0 FUE@) e — ), x—y) ,

1

whereé(t) = y+t(z —y), holds. Hence, given (a), the mean value theorem for a scalar
function shows that (b) holds (for songeon the line segment from to y). Further,

d([lz(t) — y@)I%)
dt

= —2(F(x(t)) — Fy(t)), =(t) — y(t)
< —261|x(t) — y(®)|%

which by integration, implies (c). Conversely, (2) implies

d([lz(t) — y®)II?)
dt

=20 -y, v —y)

< —26167 2| 2(0) — y(0)||?
or
—2(F(x(t)) — F(y(t)), (t) — y(t)) < —261€2"*(|z(0) — y(0)|?
that is
(F(z(t) — Fy@), z(t) — y(t)) > 61672 ||z(0) — y(0)||* .

Letting ¢t — 0 yields (b). Finally, lettingr = £, x — y = tv in part (b) and letting
t — 0+ we obtain (a). O
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Remark Any function I satisfying part (b) withd; > 0 is said to be strongly monotone
in £2. Using well known techniques it can be seen that Lemma 2.1 implies the existence
of a unique solution of'(¢) = 0 if F' is strongly monotone.

Notation. We denote the Jacobidr((¢¥) by F}. We denote by-(-)o the inner product
with respect to the weight matrixt{)" F.

We next derive a nonlinear extension of the GCG method (speAl first we
describe the method and then we outline the algorithm.

Method DescriptionFor i = 0 or 1 the inner product. (), and its corresponding
norm will be used in the method. At each iteratibna set of vectors and scalars are
computed. Also, some index parameters must be selected in advance.

(i) Index parametersGivent and s fixed positive integers we selegf, = min(k, s)

andt, = min(k, t).

Then at each iteratiork} a (search) direction vector is computed by orthogonalizing
(with respect to (.),, ) the (nonlinear) residual vector agairst preceding direction
vectors. The solution is approximated by solvingn@nlinear least squares(n.l.s.)
problem which minimizes the norm of the nonlinear residual over an affine subspace
based at*~! and the search directiofg/* 7}, for j = 1,...,t.

(i) Vectors. Solution updateg¢*}, residuals{p”}, and search directiongi*}.

(iii) Scalars.The steplengths (used in updating the soluti{mﬁj:%}, forj=1,...,t
and the Gram-Schmidt orthogonalization parameters (used7 in updating the direction
vectors){\"~V}, for j = 1,..., s, . We usea(; 7] to denote both the independent

variables and the solution of the (n.l.s.) problem.
We next outline the nonlinear GCG algorithm (NGCG).

Algorithm 2.1 NGCG
Initial approximation¢®
d°=—p° = —F(£°
For k =1 until Convergencelo
1 gk =ghte s ot Nk
where{a{""} solve the (n.l.s.) problem

min [|[F(gF1+ 3% ol Va0 )2
2. p* = F(¥)
3. BE D =@, d* ),/ dE 2, =1, s
4. db = —pk+ Y5k, Dk
EndFor

If & < s, then Algorithm 2.1 generates search direction which are fully orthogonal.
In practice truncated versions are considered. The isdiexchosen under computer
storage constraints and Gramm-Schmidt stability considerations. We usually choose
t = s+1. Thus, after the iteratioh = s: s, = s,,_1 andt;, = t;_1. In this case, at each
subsequent iteration one new search direction is added to the set of direction vectors
and the oldest direction is deleted from the set.

Remark.. The direction vectors are orthogonal by the definitioét in Algorithm
2.1:
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(3) (dkvdk_j),u =0, j=1,... 5.

2. The steplength{ag“_‘jl)} solve a nonlinear least squares problem (n.l.s.) in Algo-

rithm 2.1 (1.) . This is equivalent to the orthogonality relations:
(4) (pka];dk_j)l:Oajzlv"'atk7
as it can be seen by partial differentiation of the error functional to be minimized.

N
Notation. At iteration in Algorithm 2.1, we use the notatian= |a{ ", ... a{"}
andD = [d",... d*'] to denote the steplengths and direction vectors (respec-
tively) used in updating the solution.

Initially (at iteration & = 1) the dimensions oft and D are 1 andN x 1 and at
subsequent steps they increaset@nd N x t; respectively. Now, 1. of Algorithm
2.1 is expressed concisely &= ¢*~1 + Da.

Remark. It will next be shown that the n.l.s. problems (of dimensig) in the
NGCG algorithm has a nontrivial solution. This means that there is progress towards
the solution at each iteration (i.¢F (%Y1 < ||F(€¥)||1). The solutiona can be
obtained by a Newton method (see [10]). In such a Newton method the Jacobian
F'(¢ + Da) = D must be computed. In solving the n.l.s. problems evaluation of the
exact Jacobian can be avoided by using inexact line search methods (see [10]).

Lemma 2.2.In Algorithm 2.1, assume that iteratiodh— 1 (1 < k) is well-defined. If
p*~1 Z0, then the matrixD has full rank.

Proof. Assume thafd*~1,... d¥='} are linearly dependent. This implies th#t !

is a linear combination ofd*=2,... d*~*}. Then using NGCG (4.), we conclude
that p*~1 can be expressed as a linear combination{@f2,... d*~'}. Using
equality (4) we conclude thap{~?*, Fj,_1d*~7); = 0 for j = 2,...,t,_1. Since (by
definition) k — t;, = k — t;,_1, this yields p*~1, Fj,_1p*~1); = 0 which contradicts
(D)(a) unlesg*~t=0. O

We next prove that Algorithm 2.1 is feasible.

Lemma 2.3.In Algorithm 2.1, assume thaj, < ¢, for all k. Given any initial vector
€%in ™ all iterations are well-defined anfip®||y < ||p* 2|1

Proof. At each iteratiork, we must prove that (i) the direction vectors are well-defined
andd* # 0, if p* # 0 and (ii) the (n.l.s.) problem has a solution dpd ||, < [|p* |-
We use induction on the iteration indéx

Case k=1.(i) is obvious. We must prove (ii). For simplicity of notation we use
fr—1(c) to denote (12)|| F(¢¥~1+Da)||?. We must prove that there exists a nontrivial
minimum of f;_1(«). The gradient V fx_1(c)) of fr_1(c) equals:

[( F(¢*1+ Da), /(€51 + Da)d* 1)y, ..,
(F(€*1+ Da), F/(¢5=1 + Da)d" 1+ ),]" .

Insertinga = 0 we obtain

V fi-1(0)

_ . . _ T
[( pk 1a Flizfldk ! )17 ceey ( pk 17 Fléfldk e )l]

= [_(pk717F]g—lpkil )1707"'70]T
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For k = 1 the gradien¥ f;_1(0) consists only of the first entry, which is negative
because of assumption (1)(a). This implies that there exist® such thatf;,_1(a) <
Jr-1(0).

We must now prove that the functiof},_1(.) assumes a minimum. We insert
¢ =¢F1andy = €14 Da in inequality (2). Since (by Lemma 2.2) has full rank,
Da # 0 for a # 0. This implies thaf|y||s — oo as||al|1 — cc. Hence, Lemma 2.1
implies thatF'(y) grows unbounded ggy||1 — oo. This proves that the n.l.s. problem
of NGCG (1.) has a solution. We also obtain that||; < 2f_1(0) = |[p* 1.

Case mx k (induction hypothesis). We assume that (i) and (ii) hold true for iterations
m=2,...,k—1.

Case kWe firstly prove (i). We also assume thdt 0, m =0,...,k—1, otherwise
the algorithm would have terminated. The induction hypothesis states that the direction
vectors are well-defined and™ # 0, m = 0,...,k — 1. The search direction” is
well-defined, ifﬁ,g“_’jl), j=1..., s are well-defined. This is true because (by the
induction hypothesis)|d*~7|, # 0, for j = 1,...,s,. If d* = 0 thenp® depends
linearly ond*=7, j = 1,...,s.. Also, p”* is orthogonal tod*~7, k = 1,...,t; (see
(4)). Sinces, < t, we conclude thap® = 0.

To prove (ii) we note that the induction hypothesis and equality (4) imply that the
gradientV f;_1(0) consists of zeros except of a negative value in the first entry. The
rest of the proof of (ii) is identical to case=1. O

We next define a single nonlinear steepest descent step after each iteration of
NGCG has been completed. Fér= 1,2,..., let ¢! and p*~* for k > 1 be
generated in NGCG. A single nonlinear steepest descent step is defined as follows:

(5) ék — §kfl _ &Eck:ll)pkfl ,

wherea* ! is the least positive real number that solves the nonlinear minimization

problem
min [|[F(" — ap* )|},
ach

We next give an error bound on the decrease in the nonlinear residual that this
single nonlinear steepest descent step would bring about.

Lemma 2.4.Let our standard assumptions hold for the nonlinear functi¢(g). The
single steepest descent step (5) is well-defined and the following inequality holds:

(6) IF(EF1 — &P PpR=y |y < ellp 1,

wherea!"~ is the steplength in (5) and < ¢ < 1.

Proof. The proof (of (ii)) in Lemma 2.3 can be used to prove that the nonlinear
steepest descent is well-defined.
For simplicity of notation le,_1(c) denote the scalar function (2)|| F(¢F~1 —

ap®~1)||3. Thengi_1(a) assumes a minimum algf”_“ll). The first and second deriva-
tives of g, _1(«) are:

Gr1(@) = (F(EM — aph=h), /(€ — aph D11,

gr_q(e) = (F"(€" 1 — ap™ Y=t pF =1 ), F(EF1 — apF=1) +
| F/(€F = — ap™~1)p*=22.
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Using assumption (1) we obtain the following upper bound|gf{(«)| for 0 <

(k=1)
a <o 4.

g1 1(@)] < (63 + 8llp" | )[lp* 13

A lower bound ono*~Y can be obtained as follows:

Taylor's expansiony,, ; (a}f 11)) around 0 gives:

k—1 k—1

91 (agﬁ 1)) 0=g;_ 1(0)+04( )9”(01)
_ A (k— 1)

wherea = t;,_14;, "’ for somet;_1 in (0, 1).

Using the upper bound g5t (o) derived above and assumptions (1) we can obtain
now the following bound

01 (P L F "t ~(k—1)
2 k—1 < k—1]12 (K2 k—1 Sa Qp 17
(65 +83llp"= 1) ~ lIp*2(IF (65 + ballp*—2|)

We next obtain inequality (6). Using Taylor's expansion we get:
gr-1() < (1/2)IP"HE — a@* T Fi_p" D+ (02/2)gi_1(a)

wherea = ta for somet in (0, 1).
Now using the lower bound on, the upper bound op; _,(a) and assumption
(1) we prove inequality (6):

PG sl o

2 (63 + 63l HI1)  2(82 + 83)lpF 1))

< Yoo 2. O
2 (17 (534 83l )

The following theorem shows the global convergence of NGCG.

(k— 1))

IN

gr—1(ay,” 29h—1()

Theorem 2.1.Let £° be an initial solution. Under our standard assumptions, NGCG
generates a sequenégé, which converges to the unique solutighof the nonlinear
operator equationF'(¢) = 0, and [|¢* — £*[|x < (1/82)||p" .

Proof.By Lemma 2.3 the iterations in Algorithm 2.1 are well-defined. At each iteration
k, we use Lemma 2.4 to obtain a residual norm bound by using a single step of the
nonlinear steepest descent iteration (5). This implies that in NGCG:

Ip*l2 < ellp* 1, 0<e<1.
We conclude thap® — 0 ask — oo. This combined with Lemma 2.1 proves that
{¢*} is a Cauchy sequence and thus it converges. The proof of the uniqueness and
the error bound follow from Lemma 2.1 by insertiig- ¢* andy = £* respectively.
O
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3. Preconditioning

There exists a convergence theory for variable-step preconditioning applied to GCG
(see [2). Here we consider variable step preconditioning applied to NGCG. The
nonlinear operator equatiafi(¢) = 0 can be preprocessed using a linear or nonlinear
operator.

Let F,. and F; denote the right and left preconditioners respectively. We assume
that -1 andFl_1 exist. The preconditioned nonlinear operator equation can take one
of the following three forms:

(2) right preconditioning:

) Gly) = F(F.(y) = 0.y = 7).
(2) left preconditioning:

(8) G©) = Fi(F(€)=0.
(3) split preconditioning:

(9) Gy) = Fi(F(F @) =0,y = () .

In the case of right and left preconditionirdg and F; must locally approximate
the inverse off. In the case of split preconditioning the operatof' F,. must be close
to the identity operator. In all cases the preconditioned operator equation is “easier” to
solve if the preconditioned operat6f has a Jacobian with “better” spectral properties
than the Jacobian of'.

Notation.We denote the Jacobiai (¢*) by G.. We denote by-(-)o the inner product
with respect to the weight matrixG{,)" G
We next formulate the preconditioned version of Algorithm 2.1 using right pre-
conditioning. The algorithms for the other types of preconditionings are similar.
Algorithm 3.1 (Right preconditioned NGCG)

Initial approximation&®
= F7Y(€0)
d®=—p° = -G(y°)
For k = 1 until Convergencealo
1. yk — k—l + Ztk (k—l)dk—j
Where{a(k 1)} solve the (n.l.s.) problem
min [|G(y* -+ 325k afPdE )|}

2. p" = G(yM)
3.8 (k l)—(pk d*=9),, /|| d*= JHWJ'_ ..,sgandy=0o0r1.
4. dk = pk+ EjZI ﬁ;(vk,jl)dk J

EndFor

& = Fo(y")

The following remarks can be made on Algorithm 3.1:

() p* =G(y*) = F(E")
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(i) The Jacobian of the operata®(y) equals F'(€)F/(y). Thus, G, = G'(y*) =
F'(¢F)F!(y*). At each iteration, only multiplication b} is required. This may
be approximated by the directional derivative approximation:

k4 _ k
Glo ~ Gy +ev) =G
€

(iii) ¢* is only computed after the termination of the algorithm. Intermediate compu-
tation requires the additional wo = F,.(y*) per iteration.

We next state the global convergence result for the right preconditioned NGCG
method as a corollary of Theorem 2.1. A similar result can be obtained for the other
two types of preconditioning.

Corollary 3.1. Let the standard assumptions (in Sect. 1) also hold for the vector func-
tion G(y) for all y € R". Moreover, we assume thay ! exists and there is a positive
constantd, so that

(10) Sallvllf < By @)v, o) s

for all vectorsv in R™. Then the right preconditioned NGCG method generates a well-
defined iteration for any initial approximatiogf. The sequencg® = F,.(y*) converges
to a unique solutiort* of the nonlinear operator equatiof () = 0 and

(11) 1€ = & [l1 < (1/6168) | F(EP)l2 -

Proof. Theorem 2.1 applied to the nonlinear systéy) = 0 implies that/* converges

to a unique solutiony* of G(y) = 0. Since¢ = F,(y) and F exist&* converges ta*

and F'(¢*) = 0. The error inequality is obtained from (10). Firstly, we use the mean
value theorem (similarly to proving (2)) to prove the following inequality:

Sall€® — €l < 1FHEM) — FHED L = 19* — v*[la -

This inequality combined withiy* — y*||1 < (1/61)|| F(¥*)||1 proves inequality (11).
O

We next show that a combined Newton NGCG method converges for any initial
approximation.

4. The approximate Newton direction NGCG method (NNGCG)

Let {px},0 < pr < 1 be a nonincreasing sequence, and consider the iteration method:
given &, for k = 0, 1,...computep®*! such that

(12) |FER) + F' (™ < pil F(EF)|2.

In the standard Newton method we haye= 0. Here we only approximately solve
the linear equation. Let

Sk
(13) A= Mty a0 a0 < s <,
j=0
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where3%*) are computed to make
(14) (d**,dF7); = 0,0 < j < sp.

(12) can be viewed as a nonlinear preconditioning step. Let the integesatisfy
0<rp_1<r,<rp_1+1andlet

(15) ¢t =arigmin{[|F©)[;€ = €F + Y apaayd™ 7},

J=0

Repeat until convergence.

Here s, + 2 is the dimension of the set of search direction vectors at stagel
the functional||F'(£)|| is minimized on a subspace spannedy+ 1 vectors. The
norm is defined by the inner product -o.

We lets, < r, — 1. (Hence, in the simplest case whefe= 0, we letd**! =
—p**1) To computep®*! from (12) one can use preconditioned iteration methods,
for instance. Recently it has been shown that efficient such methods exist even when
F'(¢%) is indefinite (see [2]). We shall prove convergence of the above algorithm for
any initial approximation under the following assumptions:

(i.a) F'(¢%) is nonsingular and there exists a constarguch that

(16) = s’gpl\F’(fk)_lll-

or
(i.b) F’(£*) is nonsingular butF’(¢) may be singular at the limit point where
F(£) = 0. In this case we assume that

(17) 5= sgpnF’(s’f)‘lF(sk)n

exists.
(i) F’(:) is Holder continuous, i.e. there existsyal < v < 1, such that

1 ! k _ ¢k o ek ek 1
(18) K, =(1+7) sup I fo [F" (€ + 1€ — €M) : 1;“(5 )] F'(¢*) )
k&7 1€ — &l

where K, < oo .

Note that this is a relative &lder bound, since the difference in the bracket is
multiplied with F’(g’“)fl. This indicates that the constant is frequently not large.
F}Erthermore, in practice, it suffices to take the supremum in a ball about the points
&x,

We shall analyze the convergence of the NNGCG algorithm first for the case (i.a),
(ii). The analyses for the case (i.b), (ii) will be similar.

Note first that for anyr,,0 < 7, < 1,

(19) min 3 [ FE]. €=+ agnyd*
=0

<|IF@)|,€ = " +mp**t.
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For later use, note that,p**l = ¢ — ¢*.
Next note that

(200 F(E©) F(EFY + F(€R)(€ — €F) +

l ~ ~
/O [F/(€* + (€ — €9) — FUEMICE — ¥
(1= ) F(E") + 7 (F(EF) + F'(€X)ph™)

l ~
Tk/o [F/(fk + t(f _ fk)) - F'(fk)]F’(ék)le'(ﬁk)pkﬂdt .

+

Note that (12) shows that

(21) [ E"(€F)p* | < 1+ pr)|| FEM)]|
and
P < (|F/ @) I € p)
that is
(22) IPF* < B+ pR) | F(EM)] -
Also,
(23) |F'(EF)TLRER) + p™ )| < | F/(€F) M |1 F(ER) + F (€M
< ol F/ER) 7Y IFEM < prrnl| F/(EX)LFER)]],
where

ki = [ FEOEED

i.e. k; is the condition number of the operatsr (¢F).
Hence, an alternative estimate jgf* is

(24) IPE*Y] < (L + prorsw) || F/(EF)TLE(ED))) -
(20) and (21, 22) show now that

H;(fk))ln S 4= Tpy ¥
| fo [F/(€F +t(E — €%)) — F/(eM)] F/(€%)at|

. & _ ek
o 1€~ |,

k(1 + o)

that is, using (ii) and (22),

||£((§c))|| < 1= 7+ Tepr + [Te(L+ )] 1[?7 [BIFENI
or . .
(25) ||§((§k))|| < 1= 7+ Trpr + [Te(L+ )] fls,
where

Ky = K [BIFE -
For the proof of the global convergence theorem we may taki® be
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Tk = min{l, ’7’:]@},

where7, minimizes the upper bound in (25), that is,

A _ 1-pr ~_1 1/7_ 1—py 1 v -1 k) —1
@ = (o ) = (e ) I
Noting that 0< 7, < 1, the upper bound becomes then
1) IF@I _ [ on+ ©0 7 K87 FER, i 7> 1
IEEN ~ | 1= Teqi, (1= px), if 7, < 1.

Note now that the upper bound function in (25) as a function efr;, > 0 is strictly
less than one, initially for sufficiently small values of Hence this and (19) show

that
IEE*Y]
(&R

As this holds in particular fok = 0, we have

I1FEY]
IEEO

where in fact we can let be defined by

<1k=01,...
<1-¢, forsomee ,0<e <1,

1y -
28) c=) 1-po = GRTTRBFEO), =1
7o 117 (1 - 00)7 if 0 <1

Note now that because of the minimization property of the algorithf{£*)|| does
not increase withk. Hence (26) shows thaf, does not decrease, so (27) shows that

PGl
1—¢, E>1,
lFEn) =1 hE
and by induction,
[FEH| k1
1-—
e ¢

which shows the global convergence. We state this result:

Theorem 4.1.Let F(-) be a nonlinear differentiable mapping @i* and assume that
(i.a) and (i) hold, where¢® is defined in algorithm NNGCG. Then the algorithm
converges for any initial approximatiof? and

IFEI < @ =) FE, k=1,
wheree is defined in (28). O

Remark.(26) shows that a& increases eventually 4 7, becausd|F(¢¥)|| — O.
Hence (35) shows that if we choogg = O(|| F(¢¥)||) then the algorithm eventually
converges with a superlinear rate, namgly(¢**1)|| = O(|| F(€¥)|1**).

Consider now the case wheF&(-) satisfies (i.b) and (ii), i.eF”(£) may be singular
at the limit point. In this case (20), (21) and (23, 24) show that
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IF @) Ky = g
1— 7+ A+ (1l + — R
IFEh)| S i+ TP + Tr( Pk)1+7”£ &l
K
< 17+ TP +T;+7(1+Pk)1+7 (L +prkr)” -
aé
IF(EM REM)P,
or ~ -
(A Tk o
<1l—7 + + .
(29) 1EER) S 1— 7+ Trpr 14+ Ky K,
where

Ko = (L+pi) K (L + prory)Y | F(€F) 2R (R

Now we chooser;, such that
Tk = min{l, ’7’:]6},

where7;, minimizes the upper bound in (29), that is,

. 1/ . 1/~
(30) @:(1 W) :<1 WK?) L FE e

Ky k 1+pg 1+ prkk

Note that for anyk, (29) and (17) show that

IF@I _ 7

(31) <l-—me+mpe+ ©C,
[EEh == T 1y

1+

where
C=2K,(1+c¢)-67.

Here ¢ is defined in (23) and = sup, pxxr. We assume here that the numbggs
are chosen such that< co. In particular, this means that (12) is solved particularly
accurately at the final steps of the algorithm NNGCG, wh&(¢”) becomes more
singular andx;. increases.

Note now that there exists@a= 7 for which (31) is strictly smaller than one, so

IFAI _,

(32) |Fen) =t

for some,, 0< e < 1.
As in the proof of the previous theorem, this shows that there exists @rc
e < 1, such that
IFEY)

IEEM —

and hence global convergence. We have shown:

1—e k>0

Theorem 4.2. Let F(-) be a nonlinear differentiable mapping dh™ and assume
that (i.b) and (i) hold, wheret* is defined in algorithm NNGCG. If (12) is solved
sufficiently accurately so thatyx; < ¢ holds for anyk, for some constant, where
Ky, is the condition number of”(¢%), then the algorithm converges for any initial
approximations® and

IFED < @ =" IFE, k=1,
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forsomes,0<e <1 O

The above shows that as long A4¢¥) is nonsingular and F’(¢%)~1F(¢¥)]| is
uniformly bounded, the algorithm NNGCG can be made to converge by properly
handling the relative accuracy parameter sequgpgé. In particular, we can solve
F(¢) =0 even if F(-) has a multiple root.

Note that the theorems hold for any version of the NNGCG method, including
the truncated versions, wherg < k + 1. In particular they hold for, = 0, when
¢+*1 is computed using just a linesearch.

We conclude with a remark concerning automatic differentiation. The algorithm
NNGCG requires updating the Jacobi&f(-) at every iteration step. However, using
iterative solution methods to compute the search diregiféh, the Jacobian is never
required in explicit form, but only used implicitly to compute matrix-vector products.
Recent improvements of automatic differentiation methods show that such products
can be computed with a complexity of the same order as a function evaluation (like
(F(£F), F(€%))o). For a survey of such results, see [13]. Hence, it is not computation-
ally efficient in general to avoid updating the Jacobian for a differentiable mapping
at every iteration step.

5. Conclusions

We have presented and analyzed a nonlinear generalization of GCG for solving non-
linear algebraic systems of equations. It has been shown that under the assumption
that the Jacobian is positive definite and the Hessian is bounded the methods are guar-
anteed to converge globally to a unique solution. We also proved convergence results
for this nonlinear iterative method used in conjunction with nonlinear precondition-
ing. Under the weaker assumption of a nonsingular abltiét continuous Jacobian
matrix it has also been shown that the combined Newton and NGCG method con-
verges globally. This result includes functions for which the Jacobian is singular in the
limit point. The damped (and inexact) Newton methods in [3] arfjd¢guire special
choice of steplengths. On the other hand in the NNGCG method the corresponding
coefficientsa; are computed automatically by the algorithm.
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