
EISEVIER Parallel Computing 22 (1996) 623-641

PARALLEL
COMPUTING

Parallel iterative S-step methods for unsymmetric
linear systems ’

A.T. Chronopoulos av*, C.D. Swanson b

’ Computer Science Depurtment, Wayne State University, State Hall 431, 5143 Cuss Avenue, Detroit,

MI 48202, USA

b Gray Research, Inc., 655A Lone Oak Drive, Eagun. MN 55121 USA

Received 2 May 1995; revised 23 August 1995

Abstract

GCR (Generalized Conjugate Residual) and Omin (Orthomin) are iterative methods for
approximating the solution of unsymmetric linear systems. The S-step generalization of these
methods has been derived and studied in past work. The S-step methods exhibit improved
convergence properties. Also, their data locality and parallel properties are enhanced by forming
blocks of s search direction vectors. However, s is limited (to s 5 5) by numerical stability
considerations. The following new contributions are described in this article. The Modified
Gram-Schmidt method is used to AT A-orthogonalize the s direction vectors within each S-step
block. It is empirically shown that use of values of s, up to s = 16, preserves the numerical
stability of the new iterative methods. Finally, the new S-step Omin, implemented on the CRAY
C90, attained an execution rate greater than 10 Gjlops (Billion Floating Point Operations per set).

Keywords: Iterative methods; S-step Orthomin; Modified Gram-Schmidt; Cray C90

1. Introduction

We consider a linear system of equations

Ax=f (1)

where A is a real unsymmetric matrix of size n. In this article we use modified
Gram-Schmidt to orthonormalize the direction vector blocks in the S-step Omin (GCR)

* Corresponding author. Email: chronos@cs.wayne.edu.

’ This work was supported in part by NSF under grant CCR-9496327. Cray Research, Inc. and the

Pittsburgh Supercomputing Center provided the CRAY C90 time.

0167-8191/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved.

PII SO167-8191(96)00022-1

624 A.T. Chrorwpoulos, C.D. Swanson/Parallel Computing 22 (1996) 623-641

(introduced in [S]). This new approach shows (empirically) that s can be extended up to
16 without loss of numerical stability. The new methods have still attractive parallel
properties.

Several algorithms which improve the data locality for dense linear algebra problems
exist for shared memory systems [12,141. These algorithms are coded using the Basic
Linear Algebra Subroutines (BUS) [1,12]. Three different classes of BLAS exist:
BLASl (based on single vector operations), BLAS2 (based on matrix times vector
operations), BLAS3 (based on matrix times matrix operations). BLAS can be coded as
high performance kernels on shared memory computers either with vector registers
(BLASl and BLAS2) or local memory (or cache) (BLAS3). One important advantage of
these algorithms over the standard ones is their low ratio of memory references over
floating point operations. This allows efficient use of vector registers and local
memories. It also enhances parallelism by reducing the need for frequent synchroniza-
tions of the processors.

In the area of iterative methods for solving linear systems, BLASl or BLAS2 module
implementations consisting of one or more single vector operations have been studied in
[lo-12,25,30]. The S-step iterative methods [6-8,16-181 can be expressed in terms of
BLAS2 and BLAS3 operations. The S-step methods form (at each iteration) a block of s
independent direction vectors using repeated matrix-vector products of the coefficient
matrix with a single residual vector. Then the solution is advanced simultaneously using
the s direction vectors. Compared to the standard methods the S-step methods have
improved data locality properties and parallelism. However, s is limited to s I 5 due to
numerical stability considerations. An alternative approach to the S-step methods is
offered by the block methods. The block methods use many independent initial residual
vectors and they can also be expressed in terms of BLAS2 and BLAS3 operations.
However, finding several independent initial residual vectors is a very difficult task.
Some representative recent references in this area are [5,22-241.

The main goal of this work was to use the Modified Gram-Schmidt method to
orthonormalize the direction vectors within each block of the S-step (GCR) Orthomin.
The new methods have slightly worse data locality properties and slightly more
operations than the S-step methods. However, the block size s can be increased (up to
s = 16) without affecting the numerical stability of the method. Thus, the overall
parallelism is enhanced. We studied the convergence and robustness of the new methods
and implemented them on a 16 processor CRAY C90. We ran tests with a linear system
arising in the discretization of a (Zdimensional) partial differential equation at a
sustained execution rate greater than 10 GFlops.

The following notation will be used throughout the article. The transpose of the
matrix A will be denoted as AT. Lower case Greek characters will denote scalars or
realfunctions and lower case English letters will denote vectors except for i, j,k,l,m,n,s
which will denote positive integers. If the symmetric part of A (i.e., AT + A/2) is
positive definite then the matrix A will be called definite; otherwise it will be called
indefinite. We also call the linear system with an (in)de$nite coefficient matrix an
(in)definite linear system. We define the minimal polynomial of a nonzero vector v
with respect to matrix A to be the least degree manic polynomial qk(X) such that
qk(A)v = 0. The lth power of the matrix A is denoted by A’.

A.T. Chronopoulos, C.D. Swanson/ Parallel Computing 22 (19961623-641 625

The article follows the following structure. In Section 2, the orthogonal S-step
methods are presented. In Section 3, the convergence and robustness of the new methods
are discussed. In Section 4, an unsymmetric linear system arising in the discretization of
a partial differential equation is presented. In Section 5, a parallel preconditioner
(proposed in the past and used here) is outlined. In Section 6, the implementation of the
new methods on a shared memory multiprocessor using BLAS is discussed. In Section
7, the results of the parallel implementation are discussed. Section 8 contains a summary
and conclusions.

2. Orthogonal S-step GCR and S-step Omin

Omin and GCR [13,27] are iterative methods which apply to unsymmetric definite
linear systems. The S-step Orthomin and S-step GCR have been derived and studied in
[8]. For s = 1, these methods are identical to Omin and GCR respectively. However, for
s > 1 they are more powerful in terms of their convergence and parallel properties.

In order to understand these S-step methods, we first outline an s-dimensional
steepest descent method called the S-step Minimal Residual (MR) method. Let X, be an
initial guess to the solution of (1) and let r, =f- Ax, be the initial residual. For
i= l,..., S-step MR computes a block of direction vectors denoted by the matrix

[ri,Ari,..., A”- ‘ri] (of dimension n X s) and uses them to update the solution vector

xi+l =xi+ol!.ri+ . . . +tifA’-‘ri,

where (wi are the steplengths that minimize I] ri+ , II2 over the affine Krylov subspace

(

s
xi+ ~oljAj-‘ri:cxj scalarsand ri=f-Axi .

j=l 1

This method is theoretically equivalent to GMRES(s) [8]. S-step MR is not stable as s
increases because of loss of orthogonality of the direction vectors used. However, it is
useful in understanding other Krylov subspace iterative methods.

For integers i,k and 1 I i,k, let ji = 1 for S-step GCR and ji = max(l,i - k + 1) for
S-step Omin(k). In S-step GCR and S-step Omin(k), each iteration generates a block of
s direction vectors, which are denoted by the matrix Pi = [pf , . . . ,pf]. Here, unlike
S-step MR, these blocks are created to be AT A-orthogonal. Pi is obtained from the
column vectors [ri,Ari,...,A”-‘ri], by simultaneously AT A-orthogonalizing them
against the preceding blocks of direction vectors ([pi’, . . . ,p,f]), for jj I j I i - 1.
However, the direction vectors within each block (Pi) are not AT A-orthogonalized. The
norm of the residual Ilri+ ,112 is minimized simultaneously in all s new direction vectors
in order to obtain xi+ , [8].

Here, we propose the following modification to the S-step GCR and S-step Omin(k).
At each iteration i, we apply the Modified Gram-Schmidt method (MGS) (see [3]) to
orthogonalize the column vectors of the matrix AP,. This yields the orthogonal S-step
methods. The orthogonal S-step GCR (Omin(k)) will be denoted by OSGCR

(OSOmin(s,k)).

626 A.T. Chronopoulos, C.D. Swanson/ Parallel Computing 22 (1996) 623-641

The following notation facilitates the description of the algorithm.
. The vector zi = [a):, . . . , a;lT (of dimension s> are the steplengths that minimize

11 ri+ ,112 over the affine Krylov subspace

s

xi + ccyjAp,‘: aj scalars .

j= 1

. For indices 1= 1 , . . . ,s and ji <j I i, & = [pj”‘), . . . ,~jl.~)lr are vectors (of dimen-
sion s) of parameters used in orthogonalizing AP, against APj.
For integers i,k and 1 < i,k, let ji = 1 for OSGCR and ji = max(l,i - k + 1) for

OSOmin(s,k). We summarize OSGCR and OSOmin(s,k) in the following algorithm.

Algorithm 1. OSGCR and OSOmin(s,k)

Compute r, = f - Ax,.
For i= l,... until convergence do

1. Compute AP, = [Ar,,A*r,, . . . ,Asril and set Pi = [ri,Ari,. . . ,A”- ‘ril If (1 < i)
then
2. compute & = [(A’rJrAp!, . . . ,(A’rilTAp; >lT, where 1 = 1,. . . ,s and j =
ii- I), - . . .i - 1
3. AP, = AP, - C;:;(_ APj[($;_,
4. Pi = Pi - c;:;(;_ &$3J;= ,
EndIf
5. Apply MGS to the matrix AP, to obtain final AP, and Pi
6. Compute LJ = [r:Apf , . . . ,r~Ap,“]r

7. ri+ I = ri - AP,cI~

8. xi+1 = xi + Pi%
EndFor

We note that the column vectors APj, for j = jci_ ,), . . . ,i - 1, are orthonormal. For
s = 1 Algorithm 1 is the (GCR) Omin(k) algorithm,

Remark 1. The following alternative computations are possible in Algorithm 1.
(a) Step 7 can be replaced by direct computation of the residual ri+, = f - Axi+ ,.

This may enhance the efficiency and robustness of the method for larger s. In our
implementation we used this approach for s 2 8.

(b) The computation of AP,. can be carried out directly if matrix vector products are
faster than linear combinations in steps 3 and 4. We note that there are s completely
parallel matrix-vector products. We did not use this approach in our implementation.

We next display the storage and computational work for a single iterufion of
Algorithm 1 in Table 1. Storage includes the matrix A and the matrices:

A.T. Chronopoulos, C.D. Swanson/Parallel Computing 22 (1996) 623-641 627

Table 1

Number of vector operations for the j-th iteration of OSGCR and OSOmin(s,k) given in terms of n

vops

Stg

DP~
Mv

Lc

OSGCR OSOmiu

2(j+l)s 2(k+l)s

(2j+ l)s* +3s miu([(2 j + l)s* + 3~1, [(2k + l)s2 + 3sl)

[(4j+2jlr2 +2s] min([(4j+2)s2 +2ZI, [(4k +2)s2 +2sl)

We only count vector operations on vectors of dimension (of the linear system) n.
We use the following notation:
- Vops (Vector operations);
+ Dpr (Dot products);
* Mu (Matrix times vectors);
- Lc (Linear combinations);
* Stg (Storage requirements for vectors besides the Matrix A).

The number of dot products required to apply MGS to APj (step 5 of Algorithm 1)
equals s(s + 1)/2. Updating APj and Pi then requires s(s - 1) additional vector
operations for linear combinations. Counting the vector operations in the rest of the steps
of the Algorithm 1 is an easier task and yields the totals in Table 1.

3. Convergence properties

In this section we discuss the main convergence results and the robustness of
(OSGCR) OSOmin(s,k).

It has been proved that S-step (GCR) Omin(k) (with 1 5 s,k) converges for unsym-
metric definite linear systems and for a class of unsymmetric indefinite linear systems
[8]. These results also apply to (OSGCR) OSOmin(s,k). Unlike Omin(k), which only can
be applied to definite linear systems, S-step Omin(k) and therefore OSOmin(s,k)
converges for at least the same class of linear systems for which GMRES(s) converges.
For fixed s, the choice of the parameter k affects the convergence speed of OSOmin(s,k)
(similarly to Omin(k)). However, the choice of the parameter s affects the convergence
and parallel properties of the method.

The main convergence theorem for (OSGCR) OSOmin(s,k) can be stated as follows.

Theorem 1. Let 1 < s and assume that the degree of the minimal polynomial of r, is
greater than s. Assume that for each iteration i = 1,. . . (in Algorithm 1) (a definiteness
condition) rT Air, + 0 holds for some j (1 I; j < s). Then (OSGCR> OSOmin(s,k) and
GMRES(s) converge to the solution.

Proof. Given in [8] 0

The condition rTAiri # 0 for some j (1 zz j s s), provides that one of the steplengths
oi is not zero and thus progress towards the solution is made at the ith iteration of

628 A.T. Chronopoulos, C.D. Swanson/Parallel Computing 22 (1996) 623-641

Algorithm 1. Following this theorem we can describe the cases for which Algorithm 1
may break down.

Remark 2. The conditions of Theorem 1 can be violated as follows.
(a) This is a harmless violation. The degree of the minimal polynomial of the

residual, sl, is less than s. This is detected in step 5, because the vectors AP, are then
linearly dependent. Algorithm 1 converges in one iteration. However, in the implementa-
tion s must replaced by sl in steps 6, 7, 8. OSOmin(sl,k) also converges in this case.

(b) The violation of the definiteness condition in Theorem 1 is detected by using a
parameter (Count(a)> that counts the number of nonzero steplengths (in step 6). If
Count(a) = s, then Algorithm 1 is unable to advance to the next iteration. In this case,
the method must be restarted with a different initial solution or a larger s.

We next present examples of contrived linear systems to illustrate the convergence
properties of the methods. In all the matrix examples in this section unlabeled entries

are equal to zero. The following example makes both GMRES(s) and OSOmin(s,k)
break down for s less than the dimension (n) of the system [20,4,15].

Problem I. Let the linear system matrix (of dimension n) be

and let the right hand side be [l,O, . . . , OIT. Then for x,, = 0, rTAiri = 0 for all j, with
1 I j < n. This causes both GMRES(s) and OSOmin(s,k), with s < n, to break down.
For OSOmin(s,k) this breakdown is detected by checking if (Y i = 0. A remedy for this is
to restart the method (with the current residual T-J and applyTn a preprocessing stage) a
single step of the Conjugate Residual method (e.g., expressed by Algorithm 1 as the
OSOmin(l,l)) applied to the normal equations and then continue with OSOmin(s,k).
The normal equations formulation of this problem makes the coefficient matrix (ATA)

equal to the identity and thus one step of OSOmin(l,l) would find the solution.
The following theorem concerns the convergence of OSOmin(s,l) for symmetric or

skew-symmetric linear systems.

Theorem 2. Let s 2 2 and assume that the degree of the minimal polynomial of r, is
greater than s. Furthermore, assume that either A is (skew-jsymmetric or A = I - N,

where N is skew-symmetric. Then (OSGCR) OSOmin(s,k) converges to the solution.

Also, OSOmin(s,l) is equivalent to OSGCR and thus it converges in at most [n/s]
iterations.

Proof. Given in [8] 0

A.T. Chronopoulos, C.D. Swanson/Parallel Computing 22 (1996) 623-641 629

Theorem 2 shows the advantage of OSOmin(s,l) (a truncated method) over GMRES(s)
(a restarted method). The second method may break down for skew-symmetric linear
systems, as shown in the following example.

Problem 2. Let the linear system (skew-symmetric) matrix of dimension n be

1
0

-1
1
0 1

-1 0
-1

(3)

and the right hand side [l/\/2,0,. . . , O,l/ JT]‘. This linear system arises naturally in
discretizing the boundary value problemi

with boundary conditions e(O) = (r(l) = 0, when p + 0. For problem 2 with initial
solution equal to zero, GMRES(s) does not converge unless s = n 141. For this problem
OSOmin(2,l) converges in at most [n/2] iterations.

Remark 3. Although we have not made a theoretical study of the error properties of
Algorithm 1 we make two observations:

(a) The modified Gram-Schmidt method error is proportional to the condition
number of matrix AP, (Cond(APi)) [3]. We have not estimated the Cond(AP,) in our
tests. However, it did not affect the accuracy of the solution for an ill-conditioned
problem that we tested OSOmin(s,k) (with s I 16).

(b) The linear system can be scaled (by the maximum absolute value of the (row)
column entries) to achieve (TOW) column equilibration [31]. This scaling modifies the
matrix entries so that they do not exceed one, so past errors do not accrue due to
matrix-vector products (in step 1). This is not a prohibitive task for sparse matrices.
Also, equilibrated diagonal linear systems are solved in one iteration of Algorithm 1.

We next consider an ill-conditioned linear system and test the robustness of
OSOmin(s,k) for several values of s (1 I s < 16). This problem has been used by H.F.
Walker to test the robustness of GMRES(32) [28].

Problem 3. Let the linear system matrix of dimension n = 100 be

2

(4)

99
0

where (Y = 103, the right hand side is [l,l,. . . , llT and x0 = 0. We ran OSOmin(s,k)
with (s,k) = (1,8), s = 2, 4, 8, 16 and k = 1. Each iteration of Algorithm 1 requires s

630 A.T. Chrotwpoulos, C.D. Swanson/Parallel Computing 22 (1996) 623-641

0

-1

E
o -2
z

-6

20 40 60 80 100

Matrix vector products

Fig. 1. Convergence of true error for Problem 3.

matrix-vector products. The plotting of the error versus the number of matrix-vector
products is a good quick way to compare the various methods for convergence speed.
The log,, of the Euclidean norm of the true (residual) errors in terms of the number of
matrix-vector products are plotted in Figs. 1 and 2. It can be seen that the methods’
convergence is unaffected for up to s = 16. For s = 1 the method broke down for
k < 26. The linear system was not equilibrated (as described in Remark 2). Using
OSOmin(s,k) without equilibration runs the risk of magnifying errors (in carrying out
step 1). Despite this and the large condition number the method remains robust.

0

E -1
:
2 -2

;;I

3
-3

.rl
z
-4

p: -5

g-6

-7

60 80

Matrix vector products

Fig. 2. Convergence of residual error for Problem 3.

A.T. Chronopoulos, C.D. Swanson/ Parallel Computing 22 (1996) 623441 631

4. An unsymmetric large sparse linear system

We have discretized a partial differential equation boundary value problem on a
square region by the method of finite differences. This is a standard elliptic problem
which can be found in [19] and the right hand side function is constructed so that the
analytic solution is known.

Problem 4.

-(P4J&, - (o+& + (NC, + (UJ)5* + HJ =x7

where

(6,&) E a= (071) x (04,

p(S,&) =e+152,0(5,&) =eS1S237(51&) =P.(6, +5*),

*(El &) = 5,e5152 sin(nE1) sin(nSz),

with Dirichlet boundary conditions and x(.$,,.!&) the corresponding right hand side
function. By controlling 3 and p, we could change the degree of nonsymmetry of the
problem. We chose 4 = 50.0, p = 1.0.

If this problem is discretized using the centered difference scheme on a uniform
n, x ny grid (where n, = n,) with mesh size l/(n, + 11, we obtain a linear system of
equations

of size n = n’,. If we use natural ordering of the grid points, then the matrix A is a block
tridiagonal matrix of the form

A= [C,_,,D,,B,], 1 <k<n,, (5)

where C,_ , , D,, B, are matrices of size n,; and C,, = B,x = 0. The matrices C, _ , , B,
are diagonal matrices and D, are tridiagonal matrices. The matrix is large. For example,
if n, = 100, then the dimension of A is n = 104.

5. Preconditioning

The convergence rate of the Krylov subspace methods (such as OSGCR, OSOmin) is
closely related to the condition number of the system matrix. Matrices with high
condition numbers may lead to slow convergence rates. A strategy which is often
implemented in conjunction with iterative methods is to apply a preconditioner which
transforms the original system into one with a matrix of a smaller conditioner number or
with clustered eigenvalues. The transformed system is then solved by the iterative solver

632 A.T. Chronopoulos, C.D. Swanson/Parallel Computing 22 (1996) 623-641

at a faster convergence rate. Let K be the right preconditioning matrix. System (1) is
transformed to

(AK)K-‘x=f,

which is then solved by the iterative solver.
Either K is a close approximation to the inverse of A i.e.

(6)

or AK has clustered eigenvalues. The preconditioner K must be easily invertible, so that
the system K- ’ x = b is easy to solve. In combining right preconditioning with
Algorithm 1, we only need to change step 1, as follows:

Compute P. = [Kr,,K(AK)ri,. . . ,K(AK)“-‘r,], AP, =

[A&,~AK)~~, ,..., CAK~~-J.

We choose the ILU factorization preconditioner [26]. The basis for the ILU factoriza-
tion method is that the matrix A is decomposed into upper and lower triangular matrices
U and L such that A = LU + A, where K - ’ = LU and A is an error matrix. Also, we
assume that if Ai,,i, = 0, then both Ui,,i, and Lil,i, = 0. In other words, L and U have
the same sparsity patterns as A. This is the ILU(0) method. For more details see [19,26].

Although ILU preconditioning can improve the convergence rate of the iterative
solvers considerably, the preconditioner itself may have very slow execution rates if not
implemented properly on a vector-parallel computer. This is due to the following fact.
Let L and U be the incomplete LU factors of A. Then solution of the two triangular
systems Ly = b and Ux = y requires back-solving, which is a serial operation.

Let us now consider ILU(0) for the block tridiagonal A of our model problem. This
can be implemented in vector mode by using a Neumann series expansion, proposed by
van der Vorst in 1982 [26]. The original problem can be scaled so that the diagonal
entries of L and U are 1. Suppose E is the matrix consisting of the subdiagonal of L

(Li,,i,_ 1> and F is the matrix consisting of the remaining subdiagonals Li,,i2, i, < i, - 1.
Then L = I + E + F. So the system to be solved is:

(Z+E+F)y=b

or, in block form

(8)

(z+E,)Yk=bk-Fk-,Yk-,. (9)

where Ekr Fk are the diagonal and subdiagonal blocks of L and b, and yk are the
corresponding block subvectors. Assuming that the norm of E is small relative to the
norm of I, this can be expanded via a Neumann Series,

y~=(Z+E,)-‘(b,-F,_,y,_,)=(Z-E,+E,Z-~~+...)(b,-F,_,y,_,).

(10)

The power series is usually truncated after the second term. The backward solution
for U is obtained similarly. Note that one of the conditions for use of the Neumann

A.T. Chronopoulos, C.D. Swanson/ Parallel Computing 22 (1996) 623-641 633

CPU0

CPU1

---I Region1

--r---l Region2

.

.

.

CPUm-1 i--
Region,

Fig. 3. ParaIlel execution of ILU for Problem 4.

series is that the norm of E is small relative to 1. This will be the case for diagonally
dominant systems, but may break down for systems that are not diagonally dominant.

The Neumann expansion leads to vector operations on blocks of length = n,, where
n, is the number of gridpoints in the x direction of the solution mesh. The vectorizable
preconditioning shows substantial improvement over serial preconditioning on vector
processors. However, no parallelism exists because there is a recurrence (of order 1) in
the computation of the different vector blocks. That is, block k uses the result of block
k- 1.

A method for parallelizing the ILU preconditioner was introduced by Radicati di
Brozolo and Robert in 1988 [21]. It was proposed to partition the preconditioned matrix
into a number (m) of overlapping submatrix regions. Each region consists (of a
contiguous index sequence) of submatrix blocks of the type [C,_ , , D, , Bk]. The loss of
connection between the regions is partially compensated for by introducing smaller
overlapping region segments. Each submatrix region is then executed in parallel on m
processors. After the back solution step is carried out (independently in each submatrix
region) the overlapped values between the separate regions are set equal to the average
of that determined in each region. It is found ([21]) that this overlapping strategy gives
better performance than the nonoverlapping one. Here, we use an overlapping of a single
submatrix block of the type [C,_ , ,D,,B,], between two successive parallel regions. The
parallel implementation of this technique, on m processors (CPVs), is illustrated in Fig.
3.

If m = 1, this preconditioner is exactly the same as the vectorized ILU precondi-
tioned method. If m > 1, this type of preconditioning is slightly less effective at
reducing the condition number because of the loss of connection between the submatrix
regions. In general, the effectiveness of the preconditioner is reduced as m becomes
larger, but the performance on parallel processors improves.

634 A.T. Chrorwpoulos, C.D. Swanson/Parallel Compuring 22 11996) 623-641

6. The multi-processor implementation

The final numerical experiments (in single user mode) were executed on a CRAY C90
system at Gray Research, Inc.. This system has 16 CPUS and 256 million 64bit words
of shared memory. In the CRAY C90, each CPU has two vector pipelines, with each
pipeline having one floating-point functional unit for addition and one for multiplication.
Thus a CRAY C90 CPU can produce four floating-point results per clock period if
addition and multiplication operations can be chained together. The constructs utilized
by linear solvers and implemented in BLAS routines take advantage of this feature. The
CRAY C90 has a clock period of 4.167 nanoseconds giving a peak performance of
959.9 Mflops per CPU.

Each CPU has eight vector registers (each 128 words long) and four ports to memory.
In three-port vector mode, during any given clock period there can be two reads from
memory and one write to memory. The fourth port is used for other I/O purposes or for
the instruction buffers. To support the dual pipelines in the vector unit, each port is 128
bits (i.e., two words) wide. A fully configured 16 CPU system has a memory bandwidth
of 246 Gbytes/sec.

The CRAY C90 operating system is UNICOS, an extended version of UNIX * that
supports optimizing compilers and the autotasking feature for parallelization. Autotask-
ing automatically detects and exploits parallelism in a program. The user can also insert
compiler directives to provide enhanced parallel execution. For example, directives can
be used to tell the compiler when potential dependencies inhibiting parallel code
generation can safely be ignored.

Finally, the CRAY C90 provides highly optimized scientific mathematics libraries,
including efficient implementation of BLAS (1, 2, 3) ([1,12]). Let x and y be vectors
and cx be a scalar. BLASl perform vector-vector operations such as:

Y+~X+Y (saxpy)

The BLASl sdot, sscal, scopy were also used in the implementation. The BLAS2
perform matrix-vector operations including the rank-one update (used in the implemen-
tation) of the form

B=axyT+B (sger),

where B is matrix of dimension n X s, OL is a scalar, x is a vector of dimension n and y
is a vector of dimension s. BLAS3 perform matrix-matrix operations and are designed
to take advantage of systems with cache or local memories. The only BLAS3 used in the
implementation was scopy2, which copies a matrix into another matrix (needed in step 1
of Algorithm 1). Scopy2 enhances the execution rate of the copy operation for problem
sizes that exceed the capacity of the CRAY C90 main memory. The performance of
BLAS used is discussed below.

* UNICOS and CRAY C90 are trademarks of Cray Research, Inc. and UNIX is a trademark of UNIX
Systems Laboratories, Inc.

A.T. Chrompoulos, C.D. Swanson/Parallel Computing 22 (1996) 623-641 635

.

.

___------_-_-_-_-___--__---

CPU,_1 G-1 Dm I
Fig. 4. Parallelization of the matrix-vector product on m CPUs.

Parallelizafion of the BLAS on a system with m CPUs was implemented by
partitioning the vectors of dimension n into m equal subvectors and making m
independent BLAS calls. Parallelization of the ILU step was discussed in the previous
section and illustrated in Fig. 3. Parallelization of the sparse matrix-vector product (for
system size n = m2> was implemented by simply partitioning the matrix and vector
along the dimension n as illustrated in Fig. 4.

7. Results

In this section we describe the results of the implementation on the CRAY C90 of
OSOmin(s,k) applied to solve Problem 4. For the runs described here we used the
stopping criterion

IlrJl2
m s 1o-6 0

and the initial solution vector

x(i) = 0.05 * mod (i,50)

and dimension n, = 512. The matrix was equilibrated by columns in the unprecondi-
tioned case. We executed OSOmin(s,k) with (s,k) = (1,4) (i.e. the standard Omin(4))
and (s,k) = (s,l) for s = 2,4,8,16. Choice of k = 4 is (empirically) the best (in terms of
number of iterations) for OSOmin(l,k). Similarly, the choice of s = 2 is the best for
OSOmin(s,l), with s 2 2. Problem 4 is definite so the choice of s = 1 can be used for
convergence. Here, it must be noted that the choice of s is related both to the
convergence and to the parallelism of the methods. The method, applied to Problem 4,
converges for any s, 1 5 s < 16. However, there are more difficult problems [29] which
require s = 16 for convergence.

636 A.T. Chronopoulos, CD. Swanson/Parallel Computing 22 (1996) 623-641

Table 2
OSOmin(s,k) single processor performance in Mflops for PDE problem

Mflops/%
Matvec

SaxPY
Inner products &lot)
Linear comb. (sger)

ScoPY
ILU preconditioner

Whole code:
Unpreconditioned case

s=16,k=l s=8, k=l s=4,k=l s=2, k=l s=l,k=4

691/7 701/13 702/18 703/25 706/17
749/l 759/2 759/4 760/5 781/7

860/30 869/27 865/24 859/20 861/18
816/60 79Q/55 742/48 705/38 613/51

--/l --/2 --/3 ---/5 --/4
470 470 470 470 476

817 777 733 688 664
768 707 647 597 600

Percentages are for the Unpreconditioned case

Single CPU performance results for the preconditioned and unpreconditioned prob-
lem and for the constituent operations are listed in Table 2. Results are in millions of
floating point operations per second (Mflops). The percent of time used by each type of
operation in the unpreconditioned case is also listed. The algorithm is dominated by
linear combinations, implemented using the BLAS2 sger. Performance of sger is seen to
degrade as the number of columns (s) decreases to 1. Nevertheless, since the peak single

Table 3
Speed-ups for constituent operations within the OSOmin(s,k) code

S k 4 urocessors 8 processors 16 processors

Inner products 16 1 4.0
8 1 3.9
4 1 3.9
2 1 3.8
1 4 3.8

Linear comb. 16 1 4.0
8 1 3.9
4 1 4.0
2 1 4.0
1 4 3.9

SaxPY 16 1 4.0
8 1 4.0
4 1 4.0
2 1 4.0
1 4 3.9

ScoPY 3.9
Matvec 3.8
ILU preconditioner 3.8

7.7 13.4
7.6 12.8
7.2 11.8
7.0 10.1
6.8 10.2

7.9 14.5
7.8 14.3
7.7 14.0
7.6 12.4
7.7 13.1

6.9 10.8
6.8 10.6
6.5 10.0
6.3 9.0
6.3 9.2

7.4 12.0
6.9 10.6
7.3 12.3

A.T. Chrorwpoulos, C.D. Swanson/ Parallel Computing 22 (1996) 623-641 637

Table 4
Wallclock time, iterations and speed-up for the unpreconditioned problem

s k

Wallclock seconds (iterations)
OSOmin(s,k) 16 1

OSOmin(s,k) 8 1

OSOmin(s,k) 4 1

OSOmin(s,k) 2 1

Omin(k) 1 4

speed-up
OSOmin(s,k) 16 1
OSOmin(s,k) 8 1
0SOminh.k) 4 1
0SOmih.k) 1 4
Omin(k) 1 4

1 processor 4 processors

61.24 14.91

(75) (73)
33.16 8.58

(139) (139)
24.10 6.30

(314) (314)
19.56 5.41

(715) (720)
21.60 6.08

(1076) (1076)

1.00 4.1 I
1.00 3.87
1.00 3.82
1.00 2.99
1.00 3.55

8 processors 16 processors

7.85 4.34
(74) (73)

4.38 2.55
(138) (139)

3.43 2.09
(313) (313)

3.11 2.18

(717) (723)
3.55 2.45

(1076) (1076)

7.80 14.13
7.57 13.00
7.03 11.53
4.60 6.19
6.08 8.83

CPU performance for the CRAY C90 is 960 Mflops, the overall results demonstrate
efficient vector performance for the OSOmin(s,k) algorithm.

Table 3 shows the parallel performance for the constituent operations, listed as
wall-clock time and speed-ups obtained using 4, 8 and 16 CPUs. For scopy, matrix-vec-
tor, and the ILU routine, speed-ups were independent of s. For inner products (sdot),
linear combinations (sger) and saxpy operations, the speed-ups improved as s increased

60

0 2.5 5 7.5 10 12.5 15

Number of CPUs

Fig. 5. Run-time for Problem 4 (Unpreconditioned).-x- (s,k)= (1,261, - = - (s,k) = (2,1), -* -
(s,k)=(4,l),-+-_(s,k)=(8,1),-O-~s,)=(l6,l).

638 A.T. Chronopoulos, C.D. Swanson/ Parallel Computing 22 (1996) 623-641

Number of CPUs

Fig. 6. Speed-up for Problem 4 (Unpreconditioned).

from 2 to 16 with the OSOmin(l,4) results falling between the OSOmin(2,l) and
OSOmin(4,l) results.

Wallclock-time and speed-up results for the unpreconditioned problem are given in
Table 4 and illustrated in Figs. 5 and 6. The best absolute performance for this problem
was achieved with OSOmin(4,l) using 16 CPUs. For the parallel preconditioned
implementation, the number of parallel overlapped blocks m was chosen to be equal to

Table 5
Wallclock time, iterations and speed-up for the preconditioned problem

s k

Wallclock seconds (iterations)

1 processor 4 processors 8 processors 16 processors

SOmin(s,k)

OSOmin(s,k)

0SOmixh.k)

OSOmin(s,k)

Omin(k)

Speed-up
OSOmin(s,k)
0SOmih.k)
OSOmin(s,k)
OSOmin(s,k)
Omin(k)

16 1 22.08 6.20 3.44 2.22
(25) (26) (26) (27)

8 1 12.95 3.78 2.17 1.46
(40 (46) (45) (45)

4 1 8.73 2.84 1.86 1.29
(83) (91) (98) (94)

2 1 :z, 2.17 1.43 1.16
(161) (161) (176)

1 4 9.25 3.09 2.01 1.49
(340) (364) (368) (365)

16 1 1.00 3.56 6.43 9.95
8 1 1.00 3.43 5.97 8.87
4 1 1.00 3.08 4.70 6.79
2 1 1 .oo 3.22 4.88 6.04
1 4 1.00 2.99 4.60 6.19

01.
0 2.5 5 7.5 10 12.5 15

Number of CPUs

Fig. 7. Run-time for Problem 4 (Preconditoned).

639

the number of processors of C90. Wallclock-time and speed-up results for the precondi-
tioned problem are given in Table 5 and illustrated in Figs. 7 and 8. The best absolute
performance for this problem was achieved with OSOmin(2,l) using 16 CPUs. The fact
that we observe speed-ups higher than the number of CPUs is due to the slight variation
in the number of iterations for convergence in the parallel execution of the algorithm.

8. Summary and conclusions

We presented an improved version of S-step methods for unsymmetric linear systems
in which the s direction vectors within each S-step block are AT A-orthogonalized using

8

OF.
0 2.5 5 7.5 10 12.5 15

Number of CPUs

Fig. 8. Speed-up for Problem 4 (Preconditoned).

640 A.T. Chronopoulos, C.D. Swanson/Parallel Computing 22 (1996) 623-641

the Modified Gram-Schmidt technique. This permitted larger values of s (up to s = 16)
than in the original methods, yielding more robust algorithms. With larger s values, the
number of iterations is reduced with more work being done in each iteration, a situation
that makes more efficient use of multiple processors. The additional work from the MGS
orthogonalization is compensated by enhanced parallel performance (i.e., higher speed-
ups) to obtain algorithms with multiple processor performance comparable to Omin. For
the large and sparse problem analyzed, the best performance on the 16 CPU CRAY C90
was obtained with s = 4 (unpreconditioned) or s = 2 (preconditioned). However, there
are indefinite systems [29], where s = 16 must be chosen to obtain convergence. Here,
we demonstrated that the OSOmin(s,k) algorithm scales to 16 processors with good
vector and parallel performance.

In general one can determine the best choice of s and k for convergence using a
small dimension n, because the convergence properties of the method depend on the
spectral properties of the linear system [15,20]. The more difficult the linear system the
larger the s and k will be required. Then, one must use s CPUs in executing
OSOmin(s,k) to solve the problem (of the large dimension) in order to achieve high
efficiency on the parallel system. Finally, as observed in Remark 3, OSOmin(s,k) must
always be applied with a good preconditioner or in conjunction with column(row)
equilibration of the coefficient matrix.

Acknowledgements

The comments of the anonymous referees, which helped improve the presentation of
some parts of the paper are gratefully acknowledged.

References

[I] E. Anderson et al., LAPACK Users’ Guide, (SIAM, Philadelphia, 1992).

[2] 0. Axelsson, A generalized conjugate gradient, Least squares method, Numer. Math. 51 (1987) 209-227.

[3] A. Bjork, Least Squares Methods: Handbook of Numerical Analysis, Vol. 1 Solution of Equations in RN
(Elsevier, North Holland, Amsterdam, 1988).

[4] P.N. Brown, A theoretical comparison of the Amoldi and GMRES algorithms, SIAM J. Sci. Stat. Comput.

12(l) (1991) 58-78.
[5] C.G. Broyden, Block conjugate gradient methods, Optimization methods and Software 2 (1993) 1-17.
[6] A.T. Chronopoulos and C.W. Gear, S-step iterative methods for symmetric linear systems, Journal of

Computational and Applied Mathematics 25 (1989) 153- 168.

[7] A.T. Chronopoulos and C.W. Gear, Implementation of preconditioned S-step conjugate gradient methods

on a multiprocessor system with memory hierarchy, Parallel Computing 11 (1989) pp. 37-53.

[8] A.T. Chronopoulos, S-step iterative methods for (non)symmetric (inklefmite linear systems, SIAM J. on
Num. Analysis 28(6) (1991) 1776-1789.

[9] J.W. Demmel, M.T. Heath and H. van Der Vorst, Parallel Numerical Linear Algebra (Acta Numerica 2,

Cambridge University Press, 1993).

[lo] E. de Sturler, A parallel variant of GMRES(m), in: J. Miller and R. Vichnevetsky, eds., Proc. of the 13th
IMACS World Congress on Computation and Applied Math. (Criterion Press, Dublin, 1991) 682-683.

[1 1] J.J. Dongarra and R.E Hiromoto, A collection of parallel linear equations routines for the Denelcor HBP,

Parallel Computing 1 (1984) 133- 142.

A.T. Chronopoulos. C.D. Swanson/ Parallel Compuring 22 (19961623-641 641

[12] J.J. Dongarra, IS. Duff, D.C. Sorensen, and H.A. van der Vorst, Soloing Lineur Systems on Vector and
Shared Memory Parallel Computers (SIAM publications, 1991).

[131 SC. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of

linear equations, SIAM J. Numer. Anal. 20 (1983) 345-357.

[14] K. Gallivan, M. Heath, E. Ng, J. Ortega, B. Peyton, R. Plemmons, C. Romine, A. Sameh and R. Voigt,

Purallel Algorithms for Dense Linear Algebra Compufurions (SIAM, Philadelphia, 1990).

[151 A. Greenbaum and Z. Strakos, Mufrices rhur generure rhe same Krylou uurieries, Institute of Mathematics

and its Applications Volumes in Applied Mathematics, vol. 60, 1994.

[I61 SK. Kim and A.T. Chronopoulos, A class of Lanczos-like algorithms implemented on parallel comput-

ers, Purullel Computing 17 (1991) 763-778.
[17] S.K. Kim and A.T. Chronopoulos, An efficient nonsymmetric Lanczos on parallel vector computers, J. oj

Compur. and Applied Marh. 42 (1992) 357-374.
[I81 S.K. Kim and A.T. Chronopoulos, An efficient parallel algorithm for extreme eigenvalues of sparse

nonsymmetric matrices, The Inr. J. on Supercomputing 6(1) (1992) 98- 111.

[191 S. Ma and A.T. Chronopoulos, Implementation of iterative methods for large sparse nonsymmetric linear

systems on parallel vector computers, Inr. J. on Supercompuring 4(4) (1990) 9-24.
[20] N.M. Nachtigal, S.C. Reddy and L.N. Trefethen, How fast are non-symmetric matrix iterations?, SIAM J.

Murrix Anal. Appl. l3(3) (1992) 778-795.

[21] G. Radicati di Brozolo, Y. Robert, Parallel conjugate gradient-like algorithms for sparse nonsymmetric

systems on a vector multiprocessor, Parallel Computing 11 (1989) 223-239.
[22] M. Sadkane and B. Vital, Davidson’s method for linear systems of equations, Implementation of a block

algorithm on a Multi-processor, Technical Report TR/PA/91/60, CERFACS, Toulouse, 1991.

[23] V. Simoncini and E. Gallopoulos, An iterative method for nonsymmetric systems with multiple right hand

sides, SIAM J. Sci. Srut. Compur. 16 (1995) 917-933.

]24] V. Simoncini and E. Gallopoulos, Convergence properties of block GM-RES and matrix polynomials, to

appear in: Linear Algebra und its Applicarions, also: Center for Supercomputing Research and Develop-

ment, Technical Report No. 13 16, April 1994.

[25] D.C. Sorensen, Implicit application of polynomial filters in a k-step Amoldi method, SIAM J. Murrix
And. Appl. 13 (1992) 357-385.

[26] H. van der Vorst, A vectorizable variant of some ICGG methods, SfAM J. Sci. Srur. Compur. 3 (1982)
350-356.

[27] P. Vinsome, An ireruriue merhodfi,r soluing sparse ser.s ofsimultaneous eyuurions (Society of Petroleum
Engineers of AIME, SPE 5729, 1976).

[28] H.F. Walker, Implementation of the GMRES method using householder transformations, SIAM J. Sci.
Srur. Compur. 9 (1988) 152-163.

[29] A.M. Wissink, AS. Lytintzis and A.T. Chronopoulos, Efficient iterative methods applied to the solution

of transonic flows, J. of Compururional Physics 123 (I 996).

[30] D.M. Young and D.R. Kincaid, The ITPACK software package, in: B. Engquist and T. Smedsaas, eds.,

PDE SOFTWARE: MODULES, INTERFACES AND SYSTEMS (North Holland, Amsterdam, 1984)
193-206.

]3 11 Z. Zlatev, Compurarionul Methods for Generul Spurse Murrices (Kluwer Academic Publishers, I 991).

