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1 INTRODUCTION 

Many important scientific and engineering problems 
require the computation of a small number of eigen- 
values and their corresponding eigenvectors of large and 
sparse matrices such as those arising in the discretization 
of nonlinear, time-dependent partial differential equa- 
tions by Galerkin’s method of weighted residuals and 
finite element basis functions. The wanted eigenvalues 
are in most cases in the extreme part of the matrix 
eigenspectrum, i.e. those with the algebraically largest or 
smallest real parts. These eigenvalues determine the 
stability of solutions, i.e. the outcome of the competition 
between a base state - an equilibrium state in this work 
- of a system and ever-present disturbances of 
infinitesimal (practically small) amplitude. 

The equations are discretized in space by nicely suited 
finite element basis functions and Galerkin’s method of 
weighted residuals, which reduces the original partial 
differential equation system to a large system of 
ordinary differential equations: 

R (Y, 9;~) = 0 (1) 
where R is the set of residuals, y and jr are the sets of 

* Author to whom correspondence should be addressed. 

values of the unknowns at the nodes of the discretization 
(nodal values) and of their time derivatives, respectively, 
and p is a relevant parameter (or a set of them). 
Equilibrium solutions yo satisfy the nonlinear system: 

WY,, 0;~) = 0 (2) 

which is solved by Newton iteration with parameter 
continuation. 

Stability is governed by the system linearized for small 
disturbances Sy from yo, the time dependence of which 
can be taken as exponential. Thus Sy = My and stability 
is governed by a linearized eigenproblem:’ 

6R = R,Sy + R$Gy = 0, i.e. Jxi = XiMxi (3) 

where the eigenvectors xi are normal mode components 
of Sy, $ = R, is the Jacobian matrix of the equilibrium 
state, m z -R1 is the overlap or ‘mass’ matrix of the 
finite element basis functions, and the eigenvalues Ai, or 
growth factors, are the stability indicators. Depending 
on the sign of Ai, the equilibrium state is either stable or 
unstable to the corresponding eivenvector or mode (and 
to the disturbance it carries). The eigenproblem is to be 
solved for the most dangerous modes, i.e. those with 
largest growth factors. 

The generalized eigenproblem (3) is usually reduced, 
via appropriate matrix transformations, to the standard 
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Fig. 1. An axisymmetric ferrofluid interface in an external magnetic field. Governing equations and boundary conditions. 

eigenvalue problem 

&L = /Lx (44 
The transformation used here is of shift-and-invert 
type: 

[(J - (M)-‘M]Xi = TjXi (4b) 
where A E (J - CM)-‘&I, p= ri G l/(Xi - C) and C is a 
chosen shift; letting C = 0, eigenpairs (p = ri, xi) of eqn 
(4) tUt7l into eigenpairs (Xi, Xi) Of eqn (3). 

The eigenvalue problem (4) could be symmetric or 
nonsymmetric. Depending on the symmetry of A, 
different eigensolvers are used to solve eqn (4). Arnoldi’s 
eigensolver is appropriate for the nonsymmetric case; 
Lanczos’ for the symmetric. 

It is worth mentioning that the standard eigen- 
problem arises directly in the computation of stability 
of time periodic solutions bifurcating from steady ones 
(Hopf bifurcation). In that case, the wanted eigenvalues 
are those that are about to cross the unit circle in the 
complex plane.2 

The case under study here is drawn from capillary 
magnetohydrostatics. The stability of equilibrium states 
of ferrofluid masses with free surfaces in an external 
magnetic field of varying strength is computed. The 
equilibrium equations are derived from an energy 
formulation (variational formulation) and the resulting 
Jacobian matrix is symmetric; or from a force for- 
mulation, where the equations are statements of force 

balances, and the resulting Jacobian matrix is non- 
symmetric. 

2 THE CASE STUDY: MAGNETOHYDROSTATIC 
EQUILIBRIUM OF AXISYMMETRIC 
FERROFLUID INTERFACES 

The situation of concern is shown in Fig. 1. It is the 
equilibrium deformation of a laterally unbounded, 
axisymmetric interface between a ferromagnetic liquid, 
commonly known as a ferrofluid, and a non-magnetic 
medium (e.g. air) in the presence of a magnetic field. 
In the absence of an applied field the ferrofluid interface 
is flat and remains flat until the strength, Ho, of an 
applied uniform magnetic field oriented perpendicularly 
to the interface reaches a critical value, Ho,cr. At 
Ho > Ho,cr the interface deforms in the direction of the 
field, whereas the ferrofluid underneath remains static. 
Distortions of the interface shape lead to deviations of 
the nearby magnetic field from the uniformity it displays 
away from the interface. 

This phenomenon was first observed in confined 
ferrofluid interfaces by Cowley & Rosensweig3 and it 
was named normal field instability. The name is 
suggestive of the mechanism that causes the phenom- 
enon: the flat interface is distorted by ever-present 
disturbances, and the flux of the applied magnetic field is 
concentrated at the peaks of the distorted surface; the 
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magnetostatic forces tend to magnify any disturbance 
but surface tension tends to flatten the surface and 
eliminate the disturbance and so does gravity when, as 
in the present case, the ferrofluid is below a lighter non- 
magnetic fluid. At the onset of the instability the 
destabilizing influence of magnetostatic forces exceeds 
the stabilizing influence provided by surface tension and 
gravity. 

The equations governing the magnetohydrostatic 
equilibrium of the ferrofluid interface are listed below 
(and displayed in Fig. 1); they are derived in detail in 
Refs 4 & 5. 

The magnetostatic forces within the ferrofluid (phase 
b) are governed by Laplace’s equation for the magneto- 
static potential, u: 

V2Ub = 0 (54 

The magnetostatic potential in air (phase a) also satisfies 
Laplace’s equation: 

v2u, = 0 (5b) 

The potential u ‘produces’ the magnetic field, H, 
H = Vu. The magnetic induction, B, is everywhere 
parallel to H, B = pH, inside the ferrofluid, and 
B = poH, inside air, where p is the magnetic per- 
meability of the ferrofluid, taken as constant and b is 
the constant in the Biot-Savart law, p. = 4n x lop7 H/ 
m (SI units). 

The static equilibrium shape of the interface is 
dictated by the requirement that the magnetostatic 
force balances the capillary force - a resultant of 
surface tension, (T, acting in a curved interface - and 
the hydrostatic pressure - a resultant of gravity. Force 
balancing is expressed by a nonlinear partial differential 
equation, the magnetically augmented Young-Laplace 
equation of capillarity: 

-gAph + ;po~2(nV~t,)2 + ;pox(Vur,)2 + 2x0 = K 

(6) 

on z = h(r), with h(r) representing the shape of the 
interface; thus the gradient of the potential ub entering 
eqn (6) is evaluated at z = h(r). g is the gravitational 
acceleration, x E (p/pa) - 1 > 0 is the magnetic sus- 
ceptibility of the ferrofluid and Ap z pb - pa is the 
density difference between ferrofluid and air. The unit 
normal n to the interface and the local mean curvature 
2X of the interface are given by 

n = -he, + e, 
(1 + h:)“’ 

(7) 

2x =A d rhr [ 1 r dr (1 + hf)‘12 
(8) 

Here the subscript r denotes differentiation in the radial 

direction (and the subscript z in Fig. 1 differentiation in 
the vertical direction). e, and e, are the unit vectors in 
the r- and z-directions, respectively. K in eqn (6) is an 
unknown, a constant reference pressure along the 
interface. 

The ferrofluid is incompressible and thus its volume is 
preserved in any interface deformation: 

J 

R 
rh(r) dr = 0 (9) 

0 

The undeformed (flat) ferrofluid/air interface is located 
at z = 0; this explains why the right side of eqn (9) is set 
to zero. 

The equations are posed in a domain that is truncated 
both above and below the interface, i.e. -D2 5 z 5 D1 
(see Fig. 1); D1 and D2 are taken large enough so that 
the magnetic field is virtually uniform at the top and 
bottom boundaries of the domain. Although the 
ferrofluid interface is laterally unbounded, the domain 
is taken to be laterally bounded. Its size in the radial 
direction is dictated by the wavenumber, k,, = 
(@b/4 1’2 9 of the distorted axisymmetric interface 
shape at the onset of the instability.415 The wavelength, 
R (0 I r 5 R) of the interface shape is given by R = 
Mkn where Xi is the smallest zero of the Bessel 
function J*(r), X1 M 3.832.’ 

The set of governing equations and boundary con- 
ditions listed above is called the force formulation of the 
magnetohydrostatic equilibrium of a ferrofluid inter- 
face, because they are statements of balances of all 
forces that are present in the ferrofluid/air system. 

An alternative formulation is the so-called energy 
formulation that is a statement of minimization of the 
total energy of the system at equilibrium. The appro- 
priate energy functional that includes the gravitational, 
magnetic and interfacial energies of the system and 
accounts for the constraint of fixed ferrofluid volume is 
given by 

J Rh2rdr-fp R 9~ igAp 
0 JJ “, (vub)2r dr dz 

0 2 

+o o JJ R D’(V~,)2rdrdz+~J~(l+h:)“2rdr h 

J 
R 

l kK hrdr 
0 

(10) 

and it is minimized over all admissible perturbations of h 
and u. The minimization of eqn (10) over perturbations 
u + eq(r,z) and h + e<(r) of u and h, respectively, is 
equivalent to the condition 

PVWI,=, = 0 (11) 

Substituting the perturbations of u and h into eqn (10) 
and requiring that the minimization condition be 
satisfied, we recover the governing equations and 
boundary conditions of the force formulation; i.e. the 
minimizers u and h of B are the equilibrium solutions 
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that satisfy eqns (5), (6) and (9) and their boundary 
conditions (for details we refer to Refs 6 & 7). Therefore, 
force and energy formulations are equivalent. 

The set of governing equations (5), (6) and (9) and 
their boundary conditions in the force formulation (or 
the equivalent energy formulation) constitute a non- 
linear problem. The inherent nonlinearities arise in the 
Young-Laplace equation (eqn 6) and they are due to 
the curvature term, a nonlinear function of interface 
location (c$ eqn 8), and to the magnetic terms, which 
are nonlinear in the gradient of the magnetostatic 
potential at the interface. Furthermore the problem is 
a free boundary one because the interface shape is 
unknown a priori and must be solved for right along 
with the magnetostatic potential. 

3 THE COMPUTATIONAL PROBLEM 

The problem of magnetohydrostatic equilibrium of an 
axisymmetric ferrofluid interface so formulated as to 
account for the effects of gravity, surface tension and 
magnetic field non-uniformity, including large distor- 
tions of the interface from any simple shape, is amenable 
to solution only by means of modem computer-aided 
methods. The choice here is the combination of 
Gelerkin’s method of weighted residuals and finite 
element basis functions.8 

The domain is tessellated into quadrilateral elements 
between suitably placed vertical spines and transverse 
curves whose intersections with each spine are located at 
distances that are proportional to the displacement of 
the interface along that spine. The dependent variables 
u(r,z) and h(r) are then expressed in terms of finite 
element basis functions that are quadratic polynomials 
in each spatial coordinate defined on a standard nine- 
node isoparametric square element: 

u(r, 2) = 2 Z.&(r, Z) 
i=l 

h(r) = 5 hjq’(r, h(r)) 
j=l 

(12b) 

Each basis function is unity at the ith node created by 
the tessellation and zero at all other nodes. Here Ui is the 
value of the potential at the ith node in the domain and 
hj is the value of the interface displacement at the jth 
interface node. iV is the total number of nodes in the 
entire domain and M is the number on the interface 
alone. 

The governing equations (5) and (6) are discretized 
with the Galerkin method by weighting their residuals 
with each basis function in turn, i.e. by multiplying each 
equation by each basis function separately, then substi- 
tuting the unknowns from eqns (12), then integrating by 
Gauss quadrature in the isoparametric domain and 

setting each of the resulting equations to zero; for more 
details about the implementation of the method we refer 
to Refs 9 & 10, where similar situations are analyzed. 
Equation (9), being already an integral equation, is not 
weighted in the Gale&n sense; h is substituted from eqn 
(12b) and the integration is also done by Gauss 
quadrature. 

The discretized problem is a set of (N + A4 + 1) 
nonlinear algebraic equations in the unknowns Ui, hj and 
K. In compact form it reads 

R = P,,RYLJvcI = NY;P) = 0 (13) 

where R is the set of residuals and Rp, RYL, Rvc the 
subsets of residuals of Laplace’s equation, the Young- 
Laplace equation and the volume constraint, respec- 
tively; y s [u, h, K] is the set of unknowns and 
II= [Ul,U2,..., 4, h = [h 7 h2, . . . , hM] are the subsets 
of unknowns of the potential values at the nodes and of 
the interface location at the nodes along the interface, 
respectively; p is a relevant parameter. Here the 
parameter of importance is, of course, the strength of 
the applied magnetic field, Ho, or the applied magnetic 
induction, B0 = hoHo. 

At a given parameter value, p = Bs, the algebraic 
equation set is solved by Newton iteration: 

J(k)[Y(k+l) _ y(k)] = -Rck) (14) 
where k is the iteration counter, y@) is the approxi- 
mation of the solution at the kth iteration and Rtk) is the 
set of residuals calculated at y = y@). Initial estimates, 
y(O), of a solution at a given parameter value are 
provided by solutions already found at nearby para- 
meter values, in the course of continuation in parameter 
space.” J(k) is the Jacobian matrix: 

Jij = aRi/ayj (15) 

calculated at y = yCk). 
J is a sparse matrix, due to the limited overlap of the 

finite element basis functions over the domain. In block- 
notation J is: 

J= 

aR, :aR,: 

J!!! 1- d!_ _: - -" _ _ 

~RYL : dRyL : dRyL 

---'-ai-' al _ _ - -' - _ _ _ _'_ _a_K_ _ 

0 
: dRvc : 
:x-i O 

(16) 

The off-diagonal blocks [aR,/ah], of size (N x M), and 
[aRyL/aU], of size (M x N), are not identical: in the 
former, all Laplace’s equation residuals depend on the 
interface location unknowns through the element 
boundaries that follow the interface shape; in the 
latter, the Young-Laplace equation residuals depend 
only on the potential unknowns at the nodes that belong 
to elements adjacent to the interface (since in eqn 6 the 
gradient of the potential is evaluated at z = h(r)). 
Therefore J is a non-symmetric matrix. 
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At each iteration, the linearized equation set (14) is 
solved by a frontal solver,12 an implementation of Gauss 
elimination suitable for the direct solution of large and 
sparse equation systems. At a given value of the 
parameter p, the nonlinear equation set (13) can have 
a unique solution, or multiple solutions (when p is a 
bifurcation point), or even no solution (when p is a 
turning point on a solution branch). Solution multi- 
plicity is monitored and entire solution branches are 
traced by parameter continuation. 

Stability is governed by the minimization of the 
energy functional B in eqn (10). Replacement of u and h 
in eqn (10) by their approximations from eqns (12) 
yields an expression 9 = P(y;p) = B(u, h, K;p) for the 
energy functional. The necessary condition for the 
minimization of 9 is: 

ag 0 -= 
ay 

(17) 

The solutions of eqns (17) are solutions of the 
magnetohydrostatic equilibrium of the ferrofluid inter- 
face and they should coincide with those of eqns (13), as 
expected by the equivalence of the force and energy 
formulations. 

Any admissible disturbance from an equilibrium 
solution is expressed in terms of the same finite element 
basis functions used for the approximation of the 
equilibrium solution (cJ eqns 12). Thus stability is 
governed by a generalized eigenproblem13 

I-JXi=X~l& (18) 

where H is the so-called Hessian, or stability matrix, of 
the energy formulation, Hij = #g)l&i@j, and M is the 
overlap or ‘mass’ matrix of the finite element basis 
functions, i.e. the inner products of basis functions. The 
Hessian and mass matrix in eqn (18) are evaluated at 
equilibrium solutions. In block-notation H is: 

All off-diagonal blocks of u in eqn (19) are identical 
because differentiation of 9 is independent of the order 
of the unknowns; therefore H is a symmetric matrix. 

All the eigenvalues of the symmetric eigenproblem 
(18) are necessarily real; if any of the eigenvalues is 
negative, the equilibrium state is unstable to the 
corresponding eigenvector xi, that is to the disturbance 
‘carried’ by the eigenvector. Therefore, among the 
eigenvalues those that change sign (‘cross’ zero) along 
a solution branch signal change of solution stability. 
Thus the eigenvalues to be monitored along an 

equilibrium solution branch (in the course of parameter 
continuation) are those of the smallest magnitude. 
Because the eigenvalues of the standard eigenproblem 

&i = xx (20) 
and those of the generalized eigenproblem (18) cross 
zero simultaneously, it suffices to monitor the eigen- 
values of smallest magnitude of eqn (20). The equiva- 
lence of force and energy formulations in the continuum 
suggests that the eigenvalues of smallest magnitude of 
the standard eigenproblem 

Jx = xx 

could be monitored, instead. 

(21) 

4 THE ARNOLD1 AND LANCZOS 
EIGENSOLVERS 

When A is a n x n non-symmetric matrix, as in the case 
A = J (CZ eqn 21) the eigenproblem 

& = xx 

is solved here by Amoldi’s algorithm:1~‘4~15 

(22) 

Choose qI with llqiI[ = 1 
Forj = 1 until Convergence Do 

(1) Compute and store Aqj 
(2) Compute h,,j ,= (&j, qr) t = 1,. . . , j 
(3) rj = Aqj - C:Tbh,jql 
(4) hj+ l,j = (rj, rj) 
(5) qj+l = rjlhj+l,j 

End For 

At step j, the algorithm produces an orthonormal basis 
h+l2Y . , q,,,} of the Krylov subspace Kj spanned by 
Ql, A% , . . . , &-‘qi. The projection of A on Kj is 
represented in the basis {e} by the upper Hessenberg 
matrix PIj = QTAQj, whose elements are the coefficients 
h,. The eigenvalues of & provide approximations of 
the eigenvalues of A only for the outermost part of the 
spectrum of A, whereas the inner eigenpairs are poorly 
represented. Therefore inversion is applied in solving 
eigenproblem (21) (or 18, 20) if the eigenvalues to be 
computed are those of smallest magnitude - the case 
when the wanted eigenvalues are about to cross zero. 
The eigenproblem for Hj is small and it is solved 
routinely by EISPACK. 

The number of Amoldi steps, m, that is the dimension 
of the Kyrlov subspace Kj, was kept small to reduce 
computational cost and storage requirements that both 
increase very fast with m.’ To compensate for the small 
value of m, an iterative variant of Arnoldi’s method was 
employed in which the process is restarted every m 
steps.‘17 

When A is a n x n symmetric matrix, as in the case 
A = H (cJ eqn 20), Lanczos’ algorithm’6~‘7 is preferred 
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for the solution of eqn (20): 

vi:=0 i= 1,2,...,n 
(00 := 1 
j := 0 
DO While (/3j # 0) 
If (j # 0) then 

For i= l,...,n 
t I= Wi, Wi I= ?Ji/pj, Vi : = -Pjt 

v:=&w+v 

j:=j+ 1 
aj := (W,V),V := V-ajW 

Pj := IIVII 

The extreme eigenvalues and the corresponding 
eigenvectors of A are approximated by the eigenvalues 
of the symmetric tridiagonal matrix xj whose diagonal 
and subdiagonal elements are al, . . . , aj and pi, . . . , pj- i, 
respectively. The eigenproblem for Tj is solved with 
EISPACK, as before. 

An eigenpair (Xi, xi) of eqn (22) is declared converged 
when the corresponding residual norm Resi E 
[[AXi - X~X~II satisfies the stopping criterion Resi < 
& = 10-6. 

5 STABILITY ANALYSIS: RESULTS AND 
DISCUSSION 

Theoretical predictions were computed at the followin 
f parameter values: x = (p/& - 1 = 1, Ap = 792 kg/m 

and [T = 0.029 N/m. The computational domain was 
half of that shown in Fig. 1, the one to the right of the 
symmetry axis at r = 0, due to the axial symmetry of the 
solutions sought; it was tessellated tinely enough that the 
solutions of the discretized governing equations are 
reliable, i.e. robust against further discretization refine- 
ment. Twenty elements were placed in the vertical 
direction and ten in the radial - a total of 200 elements. 
The total number of unknowns (and thus of equations) 
was 883. The discretization used was judged appropriate 
to guarantee reliability of solutions: doubling the 
number of elements led to solutions that were close to 
within 1*5% to the ones already obtained. The govem- 
ing equations as well as the corresponding residual 
equations admit a flat solution at all values of applied 
field strength: 

flat interface: h = 0, 
linear magnetostatic potential: 

~a = (Bo/Po~>(z + D2/(x + I)), 

ub = (Boh‘k + D2)9 

reference pressure K = 1 B&/p 

The eigenvalues of smallest magnitude (usually 10 in 
number) of the eigenproblems (18), (20) and (21) were 
monitored along the flat solution branch by continua- 
tion in the value of Bo. Arnoldi’s eigensolver was used 
for eqn (21) and Lanczos’ for eqns (18) and (20); for the 

purpose of comparison, Amoldi’s was also used for eqns 
(18) and (20). The determinant of J and H was also 
monitored. The eigenvalues of smallest magnitude were 
computed most conveniently by incorporating the 
inverse power method in the eigensolvers.‘@ This 
required inversion of J and H (instead of a matrix- 
vector multiplication - the case when the eigenvalues 
of largest magnitude are wanted). Inversion, however, 
was already done by frontal solver (before solving the 
eigenproblems) for solving the linearized set of govem- 
ing equations during Newton iteration (eqn 14); what 
needed to be done was simply the implementation of 
a ‘communication interface’ between Amoldi’s and 
Lanczos’ solvers and the resolution part of the frontal 
solver (the subroutine that re-solves Jx = b, or &X = b, 
when J or H are already inverted and b changes). 

The computations were carried out on a single 
processor MIPS R3000/40MHz of a Silicon Graphics 
Power Server. 

The flat solution becomes unstable to axisymmetric 
disturbances of the interface shape beyond a critical 
magnetic induction strength, B,,,, (Ho,, = Bo,cr/h). 
The predicted critical value of B. at the onset of the 
instability was Bo,cr = 150.842 Gauss and agrees, within 
0.2%, with predictions of linearized theory.’ At the 
parameter value B. = Bo,cr a bifurcation point appears 
on the branch representing the flat solution. Across the 
bifurcation point on the flat solution the determinant of 
J and of B changes sign indicating that an odd number 
of eigenvalues of J and H change sign. Arnoldi’s and 
Lanczos’ eigensolvers find sign change of a single 
eigenvalue. 

The bifurcation of equilibrium solutions with dis- 
torted interface shape from the flat solution branch is 
shown in Fig. 2; their branch is hereafter called distorted 
solution branch. The bifurcation is two-sided (or trans- 
critical), i.e. distorted solutions exist near criticallity at 
parameter values higher and lower than B. = Bo,+. The 
eigenvector x corresponding to the eigenvalue that 
crosses zero is an axisymmetric disturbance that gives 
way to axisymmetric equilibrium solutions with dis- 
torted interface shape emanating from the flat solution 
branch. The interface shape in the eigenvector is shown 
in Fig. 3(a). Initial estimates, yf’, of solutions on the 
distorted solution branch are provided by x: 

yd (O) = yf + EX (23) 
where yr is a solution on the flat solution branch at 
B. = Bo,cr and E is a small amplitude parameter. 

Sample interface shapes on the distorted solution 
branch are shown in Fig. 2. On the supercritical part of 
the branch (B. > Bo,cr) the deflection of the interface is 
negative at the axis of symmetry (r = 0). On the 
subcritical part a spike develops at the axis of symmetry. 
The subcritical part of the distorted solution branch 
‘turns back’ towards values of B. higher than the critical 
at a turning point A, where Bo = BO,A = 148.2Gauss 
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Fig. 2. Bifurcation diagram of equilibrium axisymmetric 
shapes of ferrofluid interfaces in magnetic field (Bo = &&). 

(see Fig. 2); i.e. distorted interface shapes with a spike at 
r = 0 do not exist at Be < &A. The turning point is 
circumvented during parameter continuation by 
employing arc-length-type continuation methods.” 

The stability of solutions along the flat and the 
distorted solution branches is determined by the sign of 
the eigenvalues of the eigenproblems (18) (20) and (21). 
Stability of solution changes when a positive eigenvalue 
turns negative. This happens along the flat solution 
branch across B0 = BO,, and along the distorted solu- 
tion branch across B0 = B,,, and B0 = &A. Equili- 
brium solutions on the flat solution branch are stable at 
0 < B0 < &, Cr and unstable at B0 > &,,,. Solutions on 
the supercritical part of the distorted solution branch 
are stable; on the subcritical part solutions are unstable 
at BO,* < B0 < B0,cr but they regain stability past the 
turning point (at B0 > B,,.). The stability results 
predicted here agree with those dictated by elementary 
stability and bifurcation theory.2 The interface shape in 
the eigenvectors corresponding to the eigenvalues that 
change sign on the distorted solution branch across 
B0 = B,,,, and across B0 > B,, A are shown in Fig. 3(b, c), 
respectively. 

Stability predictions of Arnoldi’s and Lanczos’ 
methods are practically identical. However, Lanczos’ 
method is superior to Arnoldi’s in terms of computa- 
tional cost: as shown in Fig. 4(a), for a reasonable size of 
the matrix (J and HJ, Arnoldi’s eigensolver is about 
three times more expensive than Lanczos’. Performance 
diagrams of Arnoldi’s and Lanczos’ eigensolvers are 
shown in Fig. 4(b-d). At fixed number of Arnoldi steps, 
the computational cost grows sharply, although linearly, 

(4 W (4 

Fig. 3. Interface shape in the eigenvectors: (a) on the flat branch at B. = Bo,& (b) on the bifurcating branch of distorted interface 
shapes at B. = Bo,,,; (c) close to the turning point A. 
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with the number of wanted eigenvalues (Fig. 4b). Cost 
stops linearly with the number of Arnoldi steps, at fixed 
number of wanted eigenvalues, up to about 15 steps 
(Fig. 4c). Figure 4(d) shows that the cost of Lanczos’ 
eigensolver grows almost linearly with the number of 
wanted eigenvalues. 
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