
AIAA JOURNAL

Vol. 37, No. 10, October 1999

Parallel Newton~Krylov Method for Rotary-Wing

Flowfield Calculations

Andrew M. Wissink*
NASA Ames Research Center, Moffett Field, California 94035-1000

Anastasios S. Lyrintzist
Purdue University, West Lafayette, Indiana 47907

and

Anthony T. Chronopoulost

University of Texas at San Antonio, San Antonio, Texas 78249

The use of Krylov subspace iterative metbods for tile implicit solution of rotary-wing ftowtields on parallel com·
puters is explored. A Newton-Krylov scheme is proposed that couples conjul!ate-gradlent-like Iterative methods
within the baseline structured-grid EulerlNavier-Stokes flow solver, transonic unsteady rotor Naviel'-Stokes. Two
Krylov methods are studied, generalized minimum residual and orthogonal sostep orthomin. Preconditioning is
performed with a parallelized form of the 10weI'-upper symmetric Gauss-Seldel operator. The scheme is imple
mented on the IBM SP2 multiprocessor and applied to three-dimensional computations of a rotor In forward flight.
The Newton-Krylov scheme is found to be more robust and to attain a higher level ofUme accuracy In implicit time
stepping, increasing tbe allowable time step. The method yields approximately a 20% reduction In solution time
with the same level of accuracy In time-accurate calculations but requires more memory than do more traditional
implicit techniqes.

T
Introduction methods make them well suited for CPO calculations on large-scale

HE accurate numerical simulation of the aerodynamics and massively parallel petaflop computer architectures.
the aeroacoustics of rotary-wing aircraft is acomplex and chal In this paper, we investigate the performance of Krylov subspace

lenging problem. Three-dimensional unsteady EulerlNavier-Stokes iterative solvers applied to three-dimensional calculations of a rotor
computational fluid dynamics (CPO) methods are widely used,1-4 in forward flight. Our goal is to provide insight into the perfor
but their application to large problems is liinited by the amount mance of these methods for typical large-scale rotary-wing aerody
of computer time they require. Efficient utilization of parallel pro namics computations. Two iterative methods are tested: the popular
cessing is one effective means of speeding up these calculations.s generalized minimum residual (GMRES) methodl6 and a relatively
Another is the use of more efficient numerical solution methods. new scheme called orthogonal s-step orthominl7 (OSOmin). They

In recent years, a number of researchers6- 14 have reported bene are applied in a matrix-free inexact Newton formulation within the
fits in the use of conjugate-gradient-Iike Krylov subspace iterative baseline transonic unsteady rotor Navier-Stokes (TURNS) code.2•3

solvers for nonlinear CFD problems. Krylov methods are used in In an earlier work,S an efficient parallel implementation of the im
conjunction with more traditional implicit solution methods, which plicit lower-upper symmetric Gauss-Seidel (LU-SGS) operator!8
act as a preconditioner, to accelerate the nonlinear convergence in in TURNS was introduced. This operator is used here for precondi
the implicit solution. They are particularly useful for problems for tioning the Krylov methods. The Newton-Krylov scheme is coded
which traditional methods exhibit slow convergence, which can oc with message-passing interface (MPI) message passing and imple
cur with very fine viscous grids, certain turbulence models, and with mented on the IBM SP2 multiprocessor. All calculations are re
multiple grids. A large memory requirement is the main drawback stricted to the Euler equations by use of a nonlifting rotor, but the
associated with Krylov methods. This has limited their application approach is readily extendible to viscous flows.
mainly to two-dimensional problems in the past, although some

Baseline Numerical Method three-dimensional calculations have been successfully performed
recently. I I. 13 The baseline numerical method is the structured-grid Eulerl

Recent advances in parallel processing technology may encour Navier-Stokes solver, TURNS.2•3 The TURNS code was devel
age more widespread use of conjugate-gradient-like schemes within oped by Srinivasan in conjunction with the U.S. Anny Aeroftight
the CPO community. The methods are amenable to parallel process dynamics Directorate at NASA Ames Research Center. It is used
ing because most operations are performed on large vectors that can for calculating the flowfield of a helicopter rotor (without fuselage)
be easily distributed. Further, the large memory capacity available in hover and forward flight conditions. In addition to NASA and the
on modem distributed-memory parallel machines can effectively lift U,S. Anny, various universities and the four major U.S. helicopter
many ofthe storage restrictions that have limited their use in the past. companies use the code. The excellent predictive capabilities of
It is reasonable to postulate that Krylov methods wiIl be applicable the TURNS code for lifting rotors in hover and forward-ftight con
to relatively large three-dimensional problems in the not-too-distant ditions, in both subsonic and transonic flow regimes. have been

4future. Keyes et al. 1S pOint out that the scalability ofNewton-Krylov validated against wind-tunnel data in other studies.2

The goveming equations solved by the TURNS code are the
three-dimensional unsteady compressible thin-layer Navier-Stokes
equations, applied in conservative form in a generalized body-fittedJune 1997; revision received 1 February 1999; accepted for

publication 12 March 1999. This paper is declared a work of the U.S. Gov curvilinear coordinate system:
ernment and is not subject to copyright protection in the United States.

·Research Scientist, MeAT, Inc., MS 258-1. Member AIAA.

t Associate Professor, School of Aeronautics and Astronautics. Associate

Fellow AIAA. where q is the vector of conserved quantities; E, F, and G, are the
*Associate Professor, Division of Computer Science, 6900 North Loop inviscid flux vectors; and S is the viscous flux vector. The gener

1604 West. alized coordinates are 't =t, ~ = Hx, y, Z, I), 1/ =1/(x, y, z, t), and

1213

1214 WISSINK. LYRINTZIS. AND CHRONOPOULOS

I; {(X, y, Z, t), where the coordinate system x, y,:c, t is attached
to the blade. The TURNS code is run in Euler mode (i.e., a = 0) for
all calculations presented in this paper.

The inviscid fluxes are evaluated with Roe's upwind differenc
ing!9 in all three directions. The use of upwinding obviates the
need for user-specified artificial dissipation and improves the shock
capturing in transonic flowfie1ds. The spatial differencing scheme is
third-order accurate with the higher-order accuracy obtained using
van Leer's (MUSCL) approach.20 Flux limiters are applied so that
the scheme is total variation diminishing.

The implicit operator used in the TURNS code for time stepping
in both steady and unsteady calculations is the LU-SGS operator of
Yoon and Jameson. 18 This operator takes the form

(2)

where t::.qn = q" + I - q" andf(q") is the spatially differenced right
hand-side vector:

(3)

The factors D. L, and U are diagonal,lower, and upper tridiagonal
matrices, respectively, determined with a spectral approximation
for the flux Jacobians. The use of a spectral approximation places
the largest terms on the diagonal matrix, which ensures diagonal
dominance and allows the method to converge for any time step. A
two-step symmetric Gauss-Seidel scheme is used for the solution
ofEq. (2).

For unsteady time-accurate calculations with LU-SGS, the fac
torization error is reduced when subiterations are applied. Bl use of
the solution at time level n, the initial condition is set q" + .0 = q",
and LU-SGS is applied to solve the following equation in each inner
iteration:

where t::.qn+l.m=qn+l.m+ 1 qn+l.m. In Eq. (4), n refers to the
nonlinear iteration or time step and m to the subiteration. Three
subiterations were used for the cases in this work. On comple
tion of the subiterations, the solution at the next time level is
q" + I =qn + I.mm...

Additional algorithm details of the TURNS code are given in
Ref. 3.

LU·SGS Parallelization
An efficient approach for parallelizing the LU-SGS implicit al

gorithm in TURNS has been introduced by the authors in an earlier
work.s The approach is based on the data-parallel lower-upper re
laxation (DP-LUR) operator of Candler et al.21

DP-LUR is an efficient parallel modification of LU-SGS for data
parallel-type parallel implementations. The algorithm uses the same
factorization technique used in the LU-SGS algorithm, based on a
spectral approximation of the flux Jacobians. However, it replaces
the symmetric Gauss-Seidel sweeps, which are difficult to paral
lelize, with a point-relaxation method. Multiple relaxation itera
tions (generally 3-6) of the point-relaxation method are applied at
each nonlinear iteration. The relaxation sweeps make the method
amenable to parallel processing because it can be easily load bal
anced with only nearest-neighbor communication. Further details
of DP-LUR are explained in Ref. 21.

An alternative approach for parallelizing the LU-SGS algorithm,
which is based on the DP-LUR algorithm but designed specifically
for multiple-instruction multiple-data parallel implementations (I.e.,
use of message passing), was introduced in an earlier work.s Once
the computational space has been divided into subdomains, the orig
inal LU-SGS algorithm is applied simultaneously to each processor
subdomain. Then border data between the subdomains are commu
nicated by the relaxation-type approach of DP-LUR. The use of
multiple relaxation sweeps is retained to enhance the robustness of
the original algorithm lost in the domain decomposition. Because
the method combines aspects of both LU-SGS and DP-LUR, it is
referred to as hybrid LU-SGS. The algorithm is as follows.

Algorithm 1: Hybrid LU-SGS

Aq(O) -D- 1 • t::.tf(qn)

For i = I , i,wf>!p' do
communicate t::.q(i - I) data at processor borders to neighboring

processors
set t::.q(i) = t::.q(i -I) at borders
perform LU·SGS sweeps locally on each processor, computing

t::.q(i) over each subdomain
End for

t::.q" = t::.q(iswe<p)

On a single processor, the hybrid LU·SGS is identical to the
original LU-SOS algorithm. On many processors (in the limit as
the number of processors approaches the number of grid points),
the algorithm becomes identical to DP-LUR. Like DP-LUR, hybrid
LU-SGS can be implemented such that it is completely load bal
anced with only nearest-neighbor communication required between
the subdomains. Hybrid LU-SGS was found to require fewer re
laxation iterations at each nonlinear iteration and is consequently
more computationally efficient for parallel calculations with the
TURNS code by use of the third·order-accurate upwind.differenced
method used in this work. The method converges for all cases tested
with isweep = I, but it experiences a slight reduction in convergence
over the original LU·SGS algorithm. With isweep =2, however, the
method shows essentially convergence identical to that of the orig
inal LU-SGS, even with large numbers of processor subdomains.
Further details of the hybrid LU-SGS algorithm are given in Ref. 5.

Inexact Newton's Method
Fully implicit Newton's method is the most robust technique for

solving systems of nonlinear equations. To implement Newton's
method, the fully coupled set of governing equations are linearized
about time level n, which produces a large linear system at each
nonlinear iteration:

(5)[I +MG~r]t::.qn = -t::.tf(q")

where t::.q" =q" +I -q" andf(q") denotes the spatially differenced
convective terms given in Eq. (3). If the linear system in Eq. (5)
is solved exactly at each time level, the method becomes Newton's
method exactly and is capable of achieving quadratic convergence
and is completely time accurate with no restriction on the time
step used for the nonlinear iteration. However, Newton's method
in its exact form is not applicable to most CFD problems of interest
because the CPU time and storage required for exactly solving the
sparse linear system with a direct method is too costly.

An efficient alternative to the exact method is an inexact Newton
method. An inexact Newton method refers to use of an approximate
technique for solution ofthe linear system arising in Eq. (5). In CFD
applications, this linear system becomes very large and sparse, and
iterative methods based on the conjugate-gradient (CG) method of
Hestenes and Stiefel22 have been found to be very successful in de
termining an approximate solution to this type of system. These CG
type methods work on the prinCiple. that the residual of the linear
system is minimized over a Krylov subspace and are therefore com
monly referred to as Krylov methods. Further discussion of the
Krylov methods used in this work is deferred to the next section.

Formation and storage ofthe Jacobian term (af/aq) inEq. (5) can
be difficult and costly. Krylov solvers have the nice property that the
Jacobian matrix is used only in matrix-vector multiplies, for which
the following finite-difference numerical approximation can be used
(to compute the product of the Jacobian times arbitrary vector w):

of w ~ f._(;.;:..q...;,.+_s..,;w);,...-...:f:...,;(q:..:.,) (6)
8q s

The existence of the numerical matrix-vector approximation is im
portant because it allows the use of nearly consistent left- and right
hand sides in the solution with a matrix-free approach. That is, the
large cost of computing and storing the Jacobian at each nonlinear
iteration is avoided.

http:MG~r]t::.qn
http:approach.20

W1SSlNK, LYRJNT'Z!S, AND C!·lROT'rOPOULOS

This advantage does not come without other costs, however. The
numerical derivative requires a function evaluation [i.e.,j(q + £11')]
at every approximate matrix·-vector multiply, whkh may be less
efficient than an actual sparse-matrix multiplication. Also, the finite
difference approximation of the Jacobian is less accurate than an
exact determination. Nevertheless, the amount of storage saved by
utilizing the numerical approximation is significant. The matrix··
free approach has been successfully appiied in a number of other

II 13works:I.

The choice of c in approximation (6) can affect the nonlinear
convergence ofihe method and should be chosen carefully. It is de
sirable to use as small a value as possible to increase the accuracy of
the finite-difference approximation, but too small a choice wiJl iead
to numerical roundoff errors. When q and ware comparably scaled,
c should ideally be near the square root of the machine roundoff,
.JSmach, which is 10-7_10-8 in double-precision accuracy. The en
tries in the q vector are nondimensionalized such that each entry
has a value of approximately unity. The w vector is scaled within
the Krylov methods such that its root mean square is approximately
unity, so each entry has a value of approximately 1/.JN (N is the
dimension of the vector). Thus, a simple yet accurate determination
of cis

c = -IN. Cmach (7)

This choice was also proposed by Cai et al. 12
An important consideration in the use of approximate iterative

methods is what level of linear accuracy is required within each
nonlinear iteration for maintaining convergence in the nonlinear
solution. Oembo et al.B have proven that the nonlinear iterations
will converge as long as the linear solution accuracy is at least

I1I(qn) +j'(q")6.q" 112 ~ 1)1I1(q")112 (8)

where 0 < 1) ~ 1. That is, the L2 norm of the linear residual is less
than or equal to that of the nonlinear residual. In enforcing this
nonlinear convergence criteria, a certain fixed value of 1) is specified
and, at each nonlinear iteration, linear iterations of the Krylov solver
are performed until relation (8) is satisfied. A maximum of20 linear
iterations is specified in the code, but this limit is rarely reached.

iterative Methods
Over the past two decades, a number of efficient Krylov subspace

iterative methods have been developed for solving large sparse lin
ear systems. These methods are formulated as generalizations of the
well-known CG method,22 The convergence of CG is ensured only
for symmetric positive definite linear systems, but most CPO ap
plications of interest (e.g., transonic flow) generate nonsymmetric
linear systems. A number of generalizations of the CG have been
proposed for nonsymmetric systems. These nonsymmetric gener
alizations can be divided into two main categories, (biorthogonal)
Lanczos-based methods and Arnoldi-based methods.

Lanczos-based methods include the CG squared24 method, sta
bilized variants of the biconjugate-gradient method,25 and methods
based on the quasi-minimum residual idea.26 The approach used
in deriving these methods from the CG is to relax the minimization
property while keeping the efficient three-term-recurrence relations.
This allows the size of the Krylov subspace to grow (making the
implicit solution more robust) without an increase in memory. How
ever, relaxing the mini mization property can cause the linear conver
gence of the norm of the residual to become erratic, which can nega
tively affect the nonlinear convergence. Also, biorthogonal Lanczos
and biconjugate-gradient-type methods require the transpose of the
Jacobian for matrix-vector multiplies. The computation of A T re
quires an explicit determination of the Jacobian matrix A, rendering
them inapplicable with a matrix-free implementation approach.

Arnoldi-based schemes are formulated with the approach of
relaxing the three-term-recurrence relations while keeping the
residual minimization property. Some examples of Arnoldi-based
schemes include the GMRES method,16 the generalized conjugate
residual method,27 the generalized conjugate-gradient least-squares
method,28 and orthomin.29 As a result of keeping the residual min
imization property, the convergence of these schemes tends to be
more stable. However, relaxing the three-term recurrences requires
that all direction vectors in the Krylov subspace be stored so that

storage costs increase linearly 'vvith th.:; dirnens.loll of the I(r:';tov
subspace,

The two iterative methods chosen for this work are Arnoldi·
based schemes, for three reasons, First, the errqtic convergence
typically associated with Lanczos.. basec1 schemes is vkwed as a
deterrent to the acceptance of Krylov methods for a wide range
of CPO problems. Second, Lanczos .. based schemes cannol be im·
plemented within the matrix-free approach. Third, separate studies
by Ajmani and Liou9 and McHugh and Kno!i'7 have determined
that the GMRES Amoldi-based method was more efficient than
several LanGzos.. basecl schemes for solution of the Navler--Stokes
equations.

The first iterative method applied in this work is the GMRES
method ofSaad and Shultz. 16 The application of the GMRES method
within the context of nonlinear CPO problems is described in de..
tail in a number of references.6.1O.11.IJ.JO A restarted version of the
algorithm is used, GMRES(m), where m is the dimension of the
Krylov subspace. With the restarted version, the Krylov subspace
size is fixed, and if the linear solution does not satisfy the nonlinear
convergence requirements in relation (8) after the fixed Krylov di
mension is reached, the method is restarted with the current solution
as the initial guess.

The second iterative method used is the OSOmin method of
Chronopoulos and Swanson. 17 The so-called s-step class of iterative
methods is formulated to be more parallelizable implementations of
standard iterative methods. Some of the advantages associated with
s-step methods include a higher degree of robustness, better par
allelization potential, and reduced memory contention for shared
memory parallel machines (see Ref. 28 for a more general discussion
of s-step methods). In 1991, Chronopoulos31 introduced an s-step
version of the classical nonsymmetric orthomin (k) method. This
version was modified to maintain orthogonality between the dif
ferent s directions by use of a modified Gram-Schmidt algorithm,
which allows larger numbers of s steps (up to 16). The resulting
OSOmin(s, k) method is theoretically proven to maintain the same
level of robustness as GMRES(m) when s =m (Ref. 28).

Both the GMRES and the OSOmin methods are proved to
solve nonsymmetric linear systems with symmetric parts [Le.,
(A + AT) /2] positive definite (i.e., with all positive eigenvalues).
In an earlier work,3o the authors showed that OSOmin(s, k) outper
formed GMRES(m) for solution of the steady two-dimensional tran
sonic small disturbance equation on the vectorized shared-memory
Cray C90.

Storage is a major consideration for the solution of three
dimensional problems, and the predominant total storage costs for
the baseline TURNS code with and without the Krylov methods
are shown in Table 1. Note that when k =1 and s =m, the storage
requirements of the GMRES and the OSOmin methods are approx
imately the same.

Preconditioning
The convergence rate of Krylov solvers is sensitive to the condi

tion number (Le., eigenvalue spectrum) of the coefficient matrix of
the linear system. A preconditioner can be used to cluster the eigen
values and thereby accelerate the solution of the iterative method.
The proper choice of a preconditioner is essential for efficiency.

A preconditioner is applied in the following way: A precondition
ing matrix p-l is added to the left of the original unpreconditioned
linear system in Eq. (5) and results in the following new linear sys
tem to be solved at each nonlinear iteration n:

Table 1 Storage requirements"

Method Storage

Baseline TURNS 3N
TURNS +GMRES(m) 3N + (m+4)· N
TURNS +OSOmin(s, k) 3N + (s . k +3) . N

aN = number of gridpoints x 5 (number of dependent variables
in three dimensions).

http:references.6.1O.11.IJ.JO
http:orthomin.29

1216 WISSINK, LYRINTZIS, AND CHRONOPOULOS

For a preconditioner to be effective, it must perform a reasonable
approximation to the inverse of the linear system and it must be able
to perform this approximation at low cost (CPU time).

One of the more popular types of preconditioners is that based
on incomplete factorizations [e.g., incomplete lower-upper (ILU)
factorization]. Ajmani et a1.8 found the lower-upper symmetric suc
cessive overrelaxation (LV-SSOR) method of Yoon and Jameson18

(of which LV-SGS is a subset) to be more efficient than ILV factor
ization for inexact Newton solution of transonic and subsonic two
dimensional Navier-Stokes flows. Considering these results and the
fact that an effective parallelization strategy exists for LV-SGS (I.e.•
hybrid LV-SGS). it is an attractive preconditioning choice for our
application.

Parallel Implementation
The flowfield domain is laid out on an array of processors by

a single-program multiple-data parallel implementation strategy,
which preserves the original structure of the code. The three
dimensional flowfield domain is divided in the wraparound and
spanwise directions to form a two-dimensional array of processor
subdomains, as shown in Fig. 1. Each processor executes a version
of the code simultaneously for the portion of the flowfield that it
holds. Coordinates are assigned to the processors to determine the
global values of the data each holds. Border data are communicated
between processors, and a single layer of ghost cells stores this com
municated data. The MPI software routes communication between
the processor subdomains.

There are essentially four main steps of the inexact Newton al
gorithm: 1) explicit flux evaluation by Roe-upwinded third-order

accurate spatial discretization to form the right-hand-side vector,
2) preconditioning by hybrid LU-SGS. 3) implicit solution by the
Krylov subspace solver, and 4) explicit application of boundary con
ditions. The communication required in step 1 is straightforward.
After the flux vectors are determined with the MVSCL routine, they
are communicated and stored in the ghost layer. Then Roe differenc
ing is applied (this additional communication step could be avoided
by use of a ghost layer of two cells, but the present approach was
easier to implement into the existing code). Preconditioning with
hybrid LV-SGS in step 2 was explained above. The communica
tion pattern for this step is nearest neighbor, and communications
are performed only after the interior domain updates (i.e., after each
sweep)~ The two Krylov subspace solvers utilized in step 3 perform,
in addition to matrix-times-vector operations, two main numerical
operations: SAXPY's and dot products. SAXPY's, or vector up
dates, are performed locally and require no communication. Global
dot products are straightforward to parallelize: Local dot products
are formed at each processor and a global sum operation (MPI
REDVCE) is used to compute the global product. This operation
requires log2 p messages, where p is the number of processors (the
exact number of messages for the reduce operation may depend on
how the MPI collective communication operations are implemented
for the particular parallel architecture). Overall, both GMRES and
OSOmin are quite scalable and easy to parallelize.

Application of the boundary conditions in step 4 can be done
locally on each processor, with the exception of the averaging of
data across the C-plane overlap behind the trailing edge of the rotor
blades. Processors that contain data on the blade surface do not par
ticipate in the averaging but spend time invoking the flow-tangency

P02 P42 P12
10 14 11

POl P11 P21

5 6 7

Poo P10 P20

0 2

- J

P22 P32
12 13

pal P41

8 II

pao P40
3 4Kl

Fig. 1 Partitioning the three-dimensional domain on a two-dimensional array of processors.

W1SSINK, LYRlNTZ!S, AND CHRONOPOULOS i2J7

boundary condition, Thus a good degree of load balance between
processors is maintained during application of the boundary con-
ditions, It should be noted here that load balance concerns caused
us to split the fiowfield subdomains in only two directions rather
than three. If the domain were broken in the normal direction, in·
terior proct'-ssors would be required to sit idle dming the commu-
nication step required for application of the boundary conditions
at the C plane. This introduces a load imbalance that can signifi
cantly reduce parallel perf0n11anCe on large numbers of processors,
Although breaking the domain in all three directions yields square
subdomains, thereby minimizing the amount of datu communicated,
the inefficiency caused by the idle processors during the boundary
condition application is expected to outweigh the efficiency gained
by use of square subdomains.

Computed Resuits
The paralJelized inexact Newton implementation of the TURNS

code is tested on the l60-node IBM SP2 at NASA Ames Research
Center. The scheme is used to compute the quasisteady (i.e" blade
fixed) and unsteady flowfields of a rotating helicopter rotor (with
out fuselage) in forward flight. Viscous effects have not yet been
included in the parallel implementation, so all calculations are per
formed in Euler mode for a nonlifting test case.

The flow is computed about a two-bladed symmetric untwisted
operational load survey (OL8) helicopter blade rotating with tip
Mach number M1ip = 0.665 and moving forward with a forward
flight advance ratio of f1. = 0.258. The OLS blade has a sectional
airfoil thickness to chord ratio of9.71% and is a t-scale model of
the main rotor for the U.S. Army's AH-l helicopter, A 135 x 50 x 35
C-H type grid is used (shown in Fig, 2). The grid extends out to
2 rotor radii from the hub in the plane of the rotor and 1.5 rotor
radii above and below the plane. The computed results with the
TURNS code for this particular test case have been evaluated in
other studies by Strawn et al.,32 so this investigation will focus on
only the numerical and parallel performance of the method.

Results from this case only are reported here, but the scheme was
also tested under a variety of conditions (i.e., subsonic and transonic
flow), including two-dimensional test problems. These results are
reported in Ref. 33.

Quasisteady
The nonlinear convergence with the inexact Newton scheme for

a quasisteady calculation with blade azimuth angle at Vr = 0 deg is
shown in Figs. 3 and 4, Figures 3a and 4a show the convergence
of the L2 norm of the residual (lIf(q)1I2) vs time steps (nonlinear
iterations), and Figs. 3b and 4b show the convergence vs wallclock
time on 19 SP2 processors. The results in Fig. 3 use the nonlinear
convergence criterion in relation (8) with 11 = 0.95 (i.e., multiple
iterations of the Krylov method applied at each nonlinear iteration
until the criteria is met), whereas Fig. 4 shows the results with only

Fig. 2 135 x 50 x 3S C-H grid.

to"

"10"
E
0 z
~ 10-5

1ij
:>

~
OJ
cr, "10""
1ij
.0
0
(5

'10-'

'1-=::;:::-HYbridLD:SGS--
0---0 Nwtn-OSOHlin(3,1)
t:>---D Nwtn-OSOmin(5,1)

I.:":~::2'_!':hVli!::!3MFlES(5) _
<>---~ Nwln-GMFlES(3)

1500 2000
Time stepJ;l

o

a) Nonlinear iterations

E

~
~
...J

iii
::l
'0
'iii
Q)

II:

~
C!)

10"

10"

10"

10"

Hybrid LU-SGS
0--0 Nwtn-QSOmin(3.1)
0--0 Nwtn-OSOmin(5.1)
_-0 Nwln-GMRES(3)
If!----l!I Nwtn-GMRES(5)

10"
0 500 1000 1500 2000

Wallclock Time (19 nodes SP2)

b) Wallclock time on 19 IBM SP2 processors

Flg.3 Convergence ofNewton-Krylov method with the nonlinear con·
vergence of relation (8) enforced at each nonlinear iteration.

a single iteration of the Krylov method used at each nonlinear i ter
ation. The inexact Newton cases are compared against the baseline
case by use of the hybrid LU-SGS method only. Other processor
partitions were also tested and, aside from the differences in waIl
clock solution time, the curves are essentially identical to those of
the 19-processor case shown. The maximum residual (lIf(q)II",,)
was also determined and showed similar results.

The hybrid LU-SGS method uses i.weep = 2 because this was
found in Ref. 5 to give nearly identical convergence to the original
LU-8GS method for any number of processors. The iterative meth
ods use Krylov subspace dimensions of 3 and 5 (that is, m = 3, 5 in
GMRES and s =3, 5 in OSOmin) because previous results33 with a
two-dimensional test case showed these values gave slightly better
wallclock times than others. It should be noted, however, that the
overall effect of the Krylov subspace dimension on the wallclock
performance was found to be small. In OSOmin, k is set to 1 so the
total storage costs for the Newton-GMRES and Newton-OSOmin
comparison is essentially the same,

A comparison of Figs. 3 and 4 indicates that the Newton method
is slightly more efficient when only a single iteration of the Krylov
solver is applied at each nonlinear iteration than when multiple iter
ations of the Krylov method coupled with the nonlinear convergence
criteria in relation (8) are used. This is most likely due to the fact
that determination of the linear residual requires an extra matrix
vector multiply at the end of every linear iteration, which is used
to determine only the residual vector to find whether the nonlinear
convergence criteria have been satisfied. It is not required if the num
ber of linear iterations is fixed. Considering that the matrix-vector
multiplies constitute the most expensive operation, this additional
operation at each nonlinear iteration can yield a noticeable reduction
in efficiency. Amore detailed study33 showed no performance gains

1218

0

WISSINK, LYRlNTZIS, AND CHRONOPOULOS

10"

Hybrid LU·SGS
0--0 Nwtn·OSOmln(3,l)

10"
E
z
~ 10·$
i!
:::l

J10"

~
(!)

10"

10"
0 500 1000 1500 2000

C>---{J Nwtn·OSOmln(5,1)
--. Nwtn·GMRES(3)
._Nwtn-GMRES(SI

Time steps

a) Nonlinear iterations

- Hybrid W-SGS
0--0 Nwtn.QSOmin(3,l)
!J--O Nwtn.QSOmin(5.1)10"
--. Nwtn-GMRES(3)
___ Nwtn-GMRES(5)

E

~ 10"
iii
:::l

~ a: 10"

~
.2
(!)

10-7

10"
0 500 1000 1500 2000

Wallclock Time (19 nodes SP2)

b) Wallclock time on 19 IBM SPl processors

FIg. 4 Convergence of Newton-Krylov method with a single iteration
of Krylov solver at each nonlinear iteration.

for various values of 11 and evaluation strategies for the residual. Thus
the one-iteration algorithm is used in subsequent computations.

The Newton-Krylov approach shows improvement in the nonlin
ear convergence rate with increasing Krylov subspace dimension,
but the effect on wallclock solution time is small because the time
per nonlinear iteration increases by approximately the same factor
as the reduction in number of nonlinear iterations. For the forced
nonlinear convergence case in Fig. 3, the Newton-Krylov methods
show slightly worse efficiency than hybrid LU-SGS methods. How
ever, with the single-iteration case in Fig. 4, the efficiency is slightly
worse in the initial nonlinear iterations but becomes approximately
the same as that of the hybrid LU-SGS method as the solution con
verges. Both GMRES and OSOmin methods show nearly identical
results with the same Krylov dimension.

Figure 5a shows the result of Newton-GMRES and hybrid
LU-SGS quasisteady calculation carried out over a large number
of nonlinear iterations. Convergence of the hybrid LU-SGS method
stalls after a 4-order-of-magnitude reduction in the residual, whereas
the Newton-Krylov method converges to nearly machine zero. The
Newton-GMRES method with m =3 converges to order 10- 12 and
to order 10-16 with m =5. It should be noted that the standard
LU-SGS algorithm also stalled for this case so the behavior is not a
byproduct ofthe parallel hybrid LU-SGS implementation. Figure 5b
shows the nonlinear convergence vs CPU time comparison on 19
processors. This result implies that the Newton-Krylov method is a
more numerically robust nonlinear solver, although the convergence
of hybrid LU-SGS is probably sufficient for most CFD problems of
interest.

The parallel performance of methods is reported in Table 2.
Shown are the average time per nonlinear iteration, percentage

Table 2 Parallel performance statistics for the baseline (hybrid
LU-SGS), Newton-GMRES, and Newton-OSOmin methods on

different processors of the SPl

Method Time/iteration, s %Communication Speed up

4 Processors
Hybrid LU·SGS 4.07 2.4 I
Nwtn-GMRES(3) 18.78 2.5 I
Nwtn-GMRES(5) 26.16 2.2 1
Nwtn-OSOmin{3,1) 18.58 2.1 1
Nwtn-OSOmin(5,1) 26.35 2.2 1

8 Processors opt=2
Hybrid LU·SGS 2.17 4.6 1.87
Nwtn-GMRES(3) 10.65 4.1 1.76
Nwtn-GMRES(5) 14.92 4.2 1.75
Nwtn-OSOmin{3, I) 10.68 4.2 1.74
Nwtn-OSOmin{5,1) 14.94 4.8 1.76

19 Processors opt =4.75
Hybrid LU·SGS 0.874 5.1 4.66
Nwtn-GMRES(3) 4.14 5.4 4.54
Nwtn-GMRES(5) 5.81 5.4 4.51
Nwtn-OSOmin(3,1) 4.13 5.3 4.50
Nwtn-OSOmin(5,1) 5.82 5.4 4.52

57 Processors opt = 14.25
Hybrid LU·SGS 0.307 8.9 13.25
Nwtn-GMRES(3) 1.45 9.7 12.95
Nwtn-GMRES(5) 2.05 10.1 12.76
Nwtn-OSOmin(3.1) 1.42 9.6 13.08
Nwtn-OSOmin(5,1) 1.97 9.9 13.37

114 Processors opt=28.5
Hybrid LU·SGS 0.173 11.9 23.52
Nwtn-GMRES(3) 0.885 13.5 21.22
Nwtn-GMRES(5) 1.23 13.2 21.26
Nwtn-OSOmin(3, 1) 0.823 12.3 22.58
Nwtn-OSOmin(5,l) 1.19 13.4 22.14

10"

10'"

g
~ 	10'"
~
! 	 10.7

10'"a:J
~

~ 10"

~ :a 10".
.2
<!l10'"

10·'2
0 1000

a) Nonlinear iterations

2000 3000 4000 5000
TIme steps

, - Hybrid LU-SGS
•.-.Nwtn-GMRES(3)
--- Nwtn-GMRES(5)

1000 2000 3000 4000 5000 6000 7000
Wallclock TIme (19 nodes SP2)

b) Wallclock thne on 19 IBM SPl processors

Fig. S Convergence of Newton-Krylov method carried to machine
zero.

C)WISSiNK, LYRINTZ1S, AND CHRONOPOULOS

communication, and parailel up for the baseline and Newton--
Krylov methodg em 4, 8, 19, and 114 IBM SP2 processors, The
percentage communication is determined by the timing of an rou
tines that invoke communication (any MPI routines) and compari-,
son with the total average time per nonlineaJ iteration, Parallel speed
ups are determined by comparison of the average time per nonlinear
iteration with the 4-processor case.

Overali, the methods all demonstrate comparable parallel porfol-'
mance, There are no significant differences in the parallel speed up,
although the baseline method (hybrid LU-SOS) and the Newton~
OSOmin method show slightly better ups than the Newton~
GMRES method on 114 processors. is a noticeable increase
in the percentage of communication for the Newton-Krylov method
on larger numbers of processors. This is probably due to the larger
number of global dot product operations in the Krylov solvers, for
which the communications do not scale as well as the border com
munications as the number of processors grows,

OMRES and OSOmin give similar performances but there are
a few subtle differences, On lower numbers of processors (Le" 4
and 8), the Newton-OSOmin method requires slightly more time
per nonlinear iteration than the Newton-GMRES method because
OSOmin requires slightly more work. However, OSOmin is found
to achieve slightly better parallelism on larger numbers of proces
sors. Hence the time per nonlinear iteration of Newton-OSOmin is
slightly faster than Newton-GMRES on 114 processors.

The measured execution rates of the code on the various SP2 pro
cessors applied to this problem are shown in Fig. 6. The megaflop
(Mflop) rate for each processor partition is measured with IBM's
parallel hardware performance monitor software. The execution rate
on a single processor of the Cray C90 is also shown for compari
son, The C90 version of the code is slightly different in that it uses
a vectorized form of the original LU-SGS operator rather than the
hybrid LU-SGS operator used on the SP2. Also, the rate measured
on the C90 with Cray's hardware performance monitor is slightly
different for each method but is shown as a single averaged point in
Fig. 6 for convenience (actual rates on the C90 are 320 Mflops for
the baseline TURNS code, 340 Mflops for Newton-GMRES, and
360 Mftops for Newton-OSOmin). The Newton-Krylov scheme
shows slightly better Mftop per second rates than the baseline hy
brid LU-SGS scheme, and OSOmin appears to show slightly better
performance than GMRES.

It should be noted that our efforts focused primarily on attaining
efficient parallel performance, and only a small effort was made
to optimize the code for the reduced instruction set cache (RISC)
processors on the SP2. The total execution rate could be enhanced
(perhaps SUbstantially) if further efforts were undertaken to optimize
the single-processor perfonnance of the code. The execution rate is
also expected to improve with larger problem sizes.

Time-Accurate Unsteady
The Newton-Krylov approach allows for a higher degree of time

accuracy for implicit time stepping because a more exact form of

Execution Rate on IBM SP2

.~3500

~ hybrid LUSGS!
~ 0--<) Nwtn-OSOmln(3.1) i3000
~ c.
0
0: 2500:5

~ 2000

.~
S 1500
{il

Jj

1000
~
~ 500

:::!:

0

<>----<> Nwtn-OSOmin(5, 1) I
....... Nwtn-GMRES(3)
..--Nwtn-GMRES 5

<il 1 Processor
CrayC90

48 19 57 114
Processors

Fig.6 Execution rate attained on various SP2 processors for 236 x 103

grid-point problem.

the left-hand-side Jacobian is used, making the left- and the right,
hand sides mOfe consistent. The method is ~tudied here for a time,
accurate computation of a revolution of the OLS blade in
forward flight.

Srinivasan4 has shown that, by three subiterations of the
standard LU·SGS method at each nonlinear iterntion, a time
accurate unsteady solution can be obtained by using a time step
that corresponds to a t degree of blade revolution per time step
(12.1/J =0.25 deg). We seek to match this result with the Kfylov
methods and compare the performance.

First, an unsteady solution is run with a very small time step that
corresponds to to degree azimuth per time step (12.1/1 0.10 deg).
The baseline hybrid LU·SOS method with three subiterations at each
nonlinear iteration is used for this nlll, The time-varying pressure
coefficient is recorded at a representative location on the blade (~
chord and rI R = 0.80). Then cases are run with larger time steps,
and the resulting unsteady pressure coefficients are compared with
the /::,. 1/1 = 0, 10 deg result to determine the error.

Figures 7a and 7b show the pressure coefficient error obtained
with the baseline and the inexact Newton methods with different
time steps. Figure 7a shows the error resulting from time steps of
/::"1fr =0.25 and 0.50 deg with three subiterations of LU-SOS at
each nonlinear iteration (denoted by LUSGS-3). Figure 7b shows
the errors with time steps of 12.1/1 = 0.40 and 0.50 deg obtained with
Newton-OSOmin(3, I) with a single iteration of OSOmin(3,1) at
each nonlinear iteration, It is apparent from the figures that the error
from LUSGS-3 with D.-if' 0,25 deg and Newton-OSOmin with
b"1fr OAO and 0.50 deg is comparable.

With LUSGS-3, in which b,,1/I =0.25 deg is considered the base
line case, Fig. 8 shows a close-up comparison of the errors obtained
with Newton-OSOmin with b,,1fr =0.40 and 0.50 deg. The error

0.06

0.05

0,04
;::

g
w 0.03
0.
Q

0.02
,\
" I I

I

90 180 270 360
b) Blade Azimuth Angle

Flg.7 Unsteady Cp error at ! ChOfd, rlR =0.8. Calculation of I rev by
use of a) three subiteratlons of hybdd LU-SGS and b) one iteration of
OSOmin(3,1) [results identical with those ofGMRES(3)J.

0.06

0.05

0.04

"C
g
UJ 0,03
c.
Q

0.02

0.D1

0.00

a)

Unsteady Cp Error· Baseline
(3 sub-Iler LUoSeS each time stap)

I'
I'

I
I'

I,

I

0 90 180 270 360
Blade Azimuth Angle

Unsteady Cp Error - Newton-Krylov
(1 sub·iter OSOmin(3, 1) each lime stap)

1220 WISSINK, LYRINTZIS, AND CHRONOPOULOS

Table 3 Total solution time for time-accurate unsteady
calculation of a full 360-deg blade revolution on

SP2 19 processors

Method Time step, deg Solution time, s

Hybrid LU-SGS 1:;,"; =0.25 3844
(3 subiterations)

Nwtn-OSOmin(3,l) 1:;,";=0.40 3717
Nwtn-OSOmin(3,I) =0.50 2973

Unsteady Cp Error
LUSGS-3 and Nwtn'()sOmln(3.1)

~ 0.Q1

180 270 360
Blade AzImuth Angle

Q.

Q

Fig. 8 Detailed comparison of unsteady Cp error: LUSGS-3 with
time step A,1/; =0.25 deg vs Newton-OSOmln(3,1) with A,1/; =0.40 and
0.50deg.

with ~1/r =0.40 deg is slightly lower than the baseline, and the
error with ~1/r = 0.50 deg is slightly larger. All are very close, how
ever. Newton-GMRES(3) was also tried and gives results that are
essentially identical to those of Newton-OSOmin(3,1). Different
spanwise locations were also tested (reported in Ref. 33) and show
similar results.

By allowing the use of larger time steps with the same level of
accuracy, the inexact Newton method can yield faster overall so
lution times. Table 3 lists the total time required for completing a
full 360 deg unsteady solution on 19 SP2 processors with three
methods: 1) three subiterations of LU-SGS with a time step of
~1/r =O.25deg,2) Newton-OSOmin(3,l) with ~1/r = 0.40 deg, and
3) Newton-OSOmin(3,l) with ~1/r =0.50 deg. The total time is de
termined from the time per time-step data for each method in Table 2.
With ~ 1/r =0040 deg, the total solution time with Newton-OSOmin
is reduced by approximately 5% over that of the hybrid LU-SGS
alone. With ~ 1/r =0.50 deg, it is reduced by approximately 30%.
Similar results are achieved with Newton-GMRES. Thus the inex
act Newton algorithm is expected to yield wallclock solution time
savings of the order of 10-20% for the same level of time accuracy.

Conclusion
A parallelized Newton-Krylov algorithm is investigated for

structured-grid calculations of the flowfield of a helicopter ro
tor. Two preconditioned conjugate-gradient-like iterative meth
ods are implemented within the baseline TURNS code: the well
known GMRES method and a relatively new s-step modification of
the classical orthomin method called orthogonal s-step Orthomin
(OSOmin). A parallel implementation of the LU-SGS operator is
applied for left preconditioning, and the implementation is matrix
free. The numerical and parallel performance is evaluated for qua
sisteady and unsteady three-dimensional Euler computations of a
nonlifting helicopter blade on the IBM SP2 multiprocessor.

For quasisteady calculations, the Newton-Krylov algorithm
shows some improvement over the baseline hybrid LU-SGS method
in converging the solution to machine zero. The hybrid LU-SGS

method stalls after a residual reduction of ~4 orders of magnitude.
Before stall, the compu tational time required for the two methods
are similar. For time-accurate unsteady calculations, the Newton
Krylov algorithm allows use of larger time steps for the same level
of accuracy and leads to reductions in the total solution time by
10-20%. However, the Krylov methods require considerably more
memory. and the reduction in CPU time may not justify the memory
increase.

The parallel performance of the Krylov methods is good. but
the overall parallel performance of the baseline method was not
enhanced appreciably with their addition. The baseline method
alone demonstrates good parallel performance (up to 114 proces
sors tested) so, despite the high degree of parallelism inherent in the
Krylov methods, their incorporation did not significantly enhance
the overall parallel efficiency of the code. OSOmin and GMRES
gives similar performances but OSOmin gives slightly better paral
lel speed ups on larger processor partitions.

This study was, to our knowledge. the first known application
of Krylov methods for large-scale three-dimensional rotary-wing
flowfield applications, Overall, we did not find substantial gains
in their use for the inviscid calculations presented here. Follow
up work should include a study with a more complex flowfield
(e.g.• high Reynolds number viscous flows) as a number of authors
have demonstrated substantial gains by using Krylov methods for
such cases. Although this work focused on the solution ofthe Euler
equations, the approach is readily adaptable to viscous flows as well.
Future application of the Newton-Krylov approach to multiple grid
solutions (e.g., multiblocked or overset) would be an interesting
extension of the present work.

Acknowledgments
A. M. Wissink was supported by a NASA Graduate Student

Fellowship from the High Performance Computing and Commu
nications Program. Computer time on the IBM SP2 was pro
vided by a grant from the Computational Aerosciences Division at
NASA Ames Research Center. Additional computer time was also
provided by a grant from the Pittsburgh Supercomputing Center.
A. T. Chronopoulos acknowledges supercomputer time provided
by San Diego Supercomputing Center. a Silicon Graphics, Inc.lCray
1996-1997 grant. and U.S. National Science Foundation support un
der Grant CCR-9496327. The authors acknowledge Roger Strawn
for his advice during the course of this work and G. R. Srinivasan
for his assistance with the TURNS code.

References
I Srinivasan, G. R, and Sankar, L. N., "Status of Euler and Navier Stokes

CFD Methods for Helicopter Applications," Proceedings ofthe Second AHS
International Aeromechanics Specialists' Conference, Vol. 2, American He
licopter Society, Alexandria, VA, 1995. pp. 6-1-6·19.

2Srinivasan. G. R. Baeder. J. D., Obayashi, S.• and McCroskey. W. J.,
"F1owfield of a Lifting Rotor in Hover: ANavier--Stokes Simulation:' AIM
Journal. Vol. 30, No. 10, 1992, pp. 2371-2378.

3Srinivasan. G. R. Raghavan. V.• Duque. E. P. N., and McCroskey. W. J.,
"F1owfie1d of a Lifting Rotor in Hover by a Navier-Stokes Method;' Journal
of the American Helicopter Society. Vol. 38, No.3, 1993, pp. 3-13.

4Srinivasan, G. R, and Baeder, J. D., "TURNS: A Free-Wake Euler/
Navier-Stokes Numerical Method for Helicopter Rotors:' AIM Journal,
Vol. 31. No.5. 1993, pp. 959-962.

5Wissink, A. W., Lyrintzis, A. S., and Strawn. R. C., "Parallelization
of a Three-Dimensional Flow Solver for Euler Rotorcraft Aerodynamics
Predictions;' AIM Journal, Vol. 34, No. 11. 1996, pp. 2276-2283.

6Wigton, L. B.• Yu, N. J., and Young, D. P., "GMRES Acceleration of
Computational Fluid Dynamics Codes." Proceedings of the AIM Seventh
Computational Fluid Dynamics Conference. AIAA. New York, 1985. pp.
67-74.

7McHugh. P. R., and Knoll. D. A., "Comparison of Standard and Matrix
Free Implementations of Several Newton-Krylov Solvers," AIM Journal.
Vol. 32. No. 12,1994, pp. 2394-2400.

8Ajmani, K.. Liou. M.-S., and Dyson, R. w.. "Preconditioned Implicit
Solvers for the Navier Stokes Equations on Distributed-Memory Machines."
AIAA Paper 94-0408, Jan. 1994.

9Ajmani. K.. and Liou, M.-S., "Implicit Conjugate-Gradient Solvers on
Distributed-Memory Architectures," Proceedings ofthe AlAA Twelfth Com
putational Fluid Dynamics Conference. AIAA. Washington. DC. 1995. pp.
550-559.

WISSINK, LYRINTZIS, AND CHRONOPOULOS ILL!

lORogers, S. E., "Comparison oflmplici! Schemes forthe Incompressible
Navier-Stokes Equations," AIM Journal, Vol. 33, No. II, 1995, pp. 2066
2072.

II Hixon, R., Tsung, F. L., and Sankar, L. N., "Comparison ofTwo Methods
for Solving Three-Dimensional Unsteady Compressible Viscous Flows,"
AIAA Journal, Vol. 32, No. 10,1994, pp. 1978-1984.

12Cai, X.-C., Keyes, D. E., and Venkatakrishnan, v., "Newton-Krylov
Schwartz: An Implicit Solver for CFD," Inst. for Computer Applications in
Science and Engineering, Rept. 95-87, Hampton, VA, Dec. 1995.

13Neilsen, E. J .. Anderson, W. K., Walters, R. W, and Keyes, D. E.,
"Application of Newton-Krylov Methodology to a Three-Dimensional Un
structured Euler Code," Proceedings of the AIM Twelfth Computational
Fluid Dynamics Conference, AIAA, Washington, DC, 1995, pp. 981
990.

140rkwis, P. D., and McRae, D. S., "Newton's Method Solver for the
Axisymmetric Navier-Stokes Equations," AIM Journal, Vol. 30, No.6,
1992,pp.1507-1514.

IS Keyes, D. E., Kaushik, D. K., and Smith, B. E, "Prospects for CFD on
Petaflops Systems," Inst. for Computer Applications in Science and Engi
neering, Rept. 97-73, Hampton, VA, Dec. 1997.

16Saad, Y., and Shultz, M., "GMRES: A Generalized Minimum Residual
Algorithm for Solving Non-Symmetric Linear Systems," SIAM Journal on
Scientific and Statistical Computing, Vol. 7, No.3, 1986, pp. 856-869.

17Chronopoulos, A. T., and Swanson, C. D., "Parallel Iterative S-Step
Methods for Unsymmetl'ic Linear Systems," Parallel Computing, Vol. 22,
No.5, 1996, pp. 623-641.

18Yoon, S., and Jameson, A., "A Lower-Upper Symmetric Gauss Seidel
Method for the Euler and Navier Stokes Equations," AIM Journal, Vol. 26,
1988,pp.1025-1026.

19Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and
Difference Schemes," Journal of Computational Physics, Vol. 43, No.3,
1981, pp. 357-372.

2oAnderson, W. K., Thomas, J. L., and van Leer, B., "A Comparison of
Finite Volume Flux Vector Splinings for the Euler Equations," AIAA Paper
85-0122, Jan. 1985.

21Candler, G. v., Wright, M. J., and McDonald, J. D., "A Data Parallel
LU-SGS Method for Reacting Flows," AIM Journal, Vol. 32, No. 12, 1994,
pp.2380-2386.

22Hestenes, M. R., and Stiefel, E., "Methods of Conjugate Gradients for
Solving Linear Systems," Journal of Research of the National Bureau of

Standards, Vol. 49, No.6, 1954, pp. 409-435.
23Dembo, R. S., Eisenstat, S. c., and Steighaug, 1'., "Inexact Newton

Methods," SIAM Journal on Numerical Analysis, Vol. 19, No.2, 1982, pp.
400-408.

24Sonneveld, P., "CGS: A Fast Lanzos·Type Solver for Nonsymmetric
Linear Systems," SIAM Journal on Scientific and Statistical Computing,
Vol. 10, No. 1,1989, p. 36.

25Van del' Vorst, H. A., "Bi-CGSTAB: A Fast and Smoothly Converging
Variant ofBi-CG for the Solution of Nonsymmetric Linear Systems," SIAM
Journal on Scientific and Statistical Computing, Vol. 13, No.2, 1992, pp.
631-644.

26Freund, R. W., "A Transpose-Free Quasi-Minimum Residual Alg0l1thm
for Non-Hermitian Linear Systems," SIAM Journal on Scientific and Statis
tical Computing, Vol. 14, No.2, 1993, pp. 470-482.

27Eisenstat, S. C., Elman, H. C., and Schultz, M. H., "Variational Iterative
Methods for Nonsymmetric Systems of Linear Equations," SIAM Journal
on Numerical Analysis, Vol. 20, No.2, 1983, pp. 345-357.

28Axelsson, 0., "A Generalized Conjugate Gradient, Least Squares
Method," Journal ofNumerical Mathematics, Vol. 51, No.2, 1987, pp. 209
227.

29Vinsome, P. K. W., "ORTHOMIN, an Iterative Method for Solving
Sparse Sets of Simultaneous Linear Equations," Society of Petroleum Engi
neers of the American Inst. of Mining, Metallurgical, and Petroleum Engi
neers, Rept. SPE 5729, Richardson, TX, 1976.

30Wissink, A. M., Lyrintzis, A. S., and Chronopoulos, A. T., "Efficient
Iterative Methods Applied to the Solution of Transonic Flows," Journal of
Computational Physics, Vol. 123, No. 31, 1996, pp. 379-396.

31Chronopoulos, A. T., "S-Step Iterative Methods for (Non)Symmetric
(In)Definite Linear Systems," SIAM Journal on Numerical Analysis, Vol.
28, No.6, 1991, pp. 1776-1789.

32Strawn, R. C., Biswas, R., and Lyrintzis, A. S., "Helicopter Noise Pre
dictions Using Kirchhoff Methods," Journal of Computational Acoustics,
Vol. 4, No.3, 1996, pp. 321-338.

33Wissink, A. M., "Efficient Parallel Implicit Methods for Rotary-Wing
Aerodynamics Calculations," Ph.D. Dissertation, Dept. of Aerospace Engi
neering and Mechanics, Univ. of Minnesota, Minneapolis, MN, May 1997.

D. S. McRae
Associate Editor

