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The use of Krylov subspace iterative metbods for tile implicit solution of rotary-wing ftowtields on parallel com· 
puters is explored. A Newton-Krylov scheme is proposed that couples conjul!ate-gradlent-like Iterative methods 
within the baseline structured-grid EulerlNavier-Stokes flow solver, transonic unsteady rotor Naviel'-Stokes. Two 
Krylov methods are studied, generalized minimum residual and orthogonal sostep orthomin. Preconditioning is 
performed with a parallelized form of the 10weI'-upper symmetric Gauss-Seldel operator. The scheme is imple­
mented on the IBM SP2 multiprocessor and applied to three-dimensional computations of a rotor In forward flight. 
The Newton-Krylov scheme is found to be more robust and to attain a higher level ofUme accuracy In implicit time 
stepping, increasing tbe allowable time step. The method yields approximately a 20% reduction In solution time 
with the same level of accuracy In time-accurate calculations but requires more memory than do more traditional 
implicit techniqes. 

T 
Introduction methods make them well suited for CPO calculations on large-scale 

HE accurate numerical simulation of the aerodynamics and massively parallel petaflop computer architectures. 
the aeroacoustics of rotary-wing aircraft is acomplex and chal­ In this paper, we investigate the performance of Krylov subspace 

lenging problem. Three-dimensional unsteady EulerlNavier-Stokes iterative solvers applied to three-dimensional calculations of a rotor 
computational fluid dynamics (CPO) methods are widely used,1-4 in forward flight. Our goal is to provide insight into the perfor­
but their application to large problems is liinited by the amount mance of these methods for typical large-scale rotary-wing aerody­
of computer time they require. Efficient utilization of parallel pro­ namics computations. Two iterative methods are tested: the popular 
cessing is one effective means of speeding up these calculations.s generalized minimum residual (GMRES) methodl6 and a relatively 
Another is the use of more efficient numerical solution methods. new scheme called orthogonal s-step orthominl7 (OSOmin). They 

In recent years, a number of researchers6- 14 have reported bene­ are applied in a matrix-free inexact Newton formulation within the 
fits in the use of conjugate-gradient-Iike Krylov subspace iterative baseline transonic unsteady rotor Navier-Stokes (TURNS) code.2•3 

solvers for nonlinear CFD problems. Krylov methods are used in In an earlier work,S an efficient parallel implementation of the im­
conjunction with more traditional implicit solution methods, which plicit lower-upper symmetric Gauss-Seidel (LU-SGS) operator!8 
act as a preconditioner, to accelerate the nonlinear convergence in in TURNS was introduced. This operator is used here for precondi­
the implicit solution. They are particularly useful for problems for tioning the Krylov methods. The Newton-Krylov scheme is coded 
which traditional methods exhibit slow convergence, which can oc­ with message-passing interface (MPI) message passing and imple­
cur with very fine viscous grids, certain turbulence models, and with mented on the IBM SP2 multiprocessor. All calculations are re­
multiple grids. A large memory requirement is the main drawback stricted to the Euler equations by use of a nonlifting rotor, but the 
associated with Krylov methods. This has limited their application approach is readily extendible to viscous flows. 
mainly to two-dimensional problems in the past, although some 

Baseline Numerical Method three-dimensional calculations have been successfully performed 
recently. I I. 13 The baseline numerical method is the structured-grid Eulerl 

Recent advances in parallel processing technology may encour­ Navier-Stokes solver, TURNS.2•3 The TURNS code was devel­
age more widespread use of conjugate-gradient-like schemes within oped by Srinivasan in conjunction with the U.S. Anny Aeroftight­
the CPO community. The methods are amenable to parallel process­ dynamics Directorate at NASA Ames Research Center. It is used 
ing because most operations are performed on large vectors that can for calculating the flowfield of a helicopter rotor (without fuselage) 
be easily distributed. Further, the large memory capacity available in hover and forward flight conditions. In addition to NASA and the 
on modem distributed-memory parallel machines can effectively lift U,S. Anny, various universities and the four major U.S. helicopter 
many ofthe storage restrictions that have limited their use in the past. companies use the code. The excellent predictive capabilities of 
It is reasonable to postulate that Krylov methods wiIl be applicable the TURNS code for lifting rotors in hover and forward-ftight con­
to relatively large three-dimensional problems in the not-too-distant ditions, in both subsonic and transonic flow regimes. have been 

4future. Keyes et al. 1S pOint out that the scalability ofNewton-Krylov validated against wind-tunnel data in other studies.2­

The goveming equations solved by the TURNS code are the 
three-dimensional unsteady compressible thin-layer Navier-Stokes 
equations, applied in conservative form in a generalized body-fittedJune 1997; revision received 1 February 1999; accepted for 

publication 12 March 1999. This paper is declared a work of the U.S. Gov­ curvilinear coordinate system: 
ernment and is not subject to copyright protection in the United States. 
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I; {(X, y, Z, t), where the coordinate system x, y,:c, t is attached 
to the blade. The TURNS code is run in Euler mode (i.e., a = 0) for 
all calculations presented in this paper. 

The inviscid fluxes are evaluated with Roe's upwind differenc­
ing!9 in all three directions. The use of upwinding obviates the 
need for user-specified artificial dissipation and improves the shock 
capturing in transonic flowfie1ds. The spatial differencing scheme is 
third-order accurate with the higher-order accuracy obtained using 
van Leer's (MUSCL) approach.20 Flux limiters are applied so that 
the scheme is total variation diminishing. 

The implicit operator used in the TURNS code for time stepping 
in both steady and unsteady calculations is the LU-SGS operator of 
Yoon and Jameson. 18 This operator takes the form 

(2) 

where t::.qn = q" + I - q" andf(q") is the spatially differenced right­
hand-side vector: 

(3) 

The factors D. L, and U are diagonal,lower, and upper tridiagonal 
matrices, respectively, determined with a spectral approximation 
for the flux Jacobians. The use of a spectral approximation places 
the largest terms on the diagonal matrix, which ensures diagonal 
dominance and allows the method to converge for any time step. A 
two-step symmetric Gauss-Seidel scheme is used for the solution 
ofEq. (2). 

For unsteady time-accurate calculations with LU-SGS, the fac­
torization error is reduced when subiterations are applied. Bl use of 
the solution at time level n, the initial condition is set q" + .0 = q", 
and LU-SGS is applied to solve the following equation in each inner 
iteration: 

where t::.qn+l.m=qn+l.m+ 1 qn+l.m. In Eq. (4), n refers to the 
nonlinear iteration or time step and m to the subiteration. Three 
subiterations were used for the cases in this work. On comple­
tion of the subiterations, the solution at the next time level is 
q" + I =qn + I.mm... 

Additional algorithm details of the TURNS code are given in 
Ref. 3. 

LU·SGS Parallelization 
An efficient approach for parallelizing the LU-SGS implicit al­

gorithm in TURNS has been introduced by the authors in an earlier 
work.s The approach is based on the data-parallel lower-upper re­
laxation (DP-LUR) operator of Candler et al.21 

DP-LUR is an efficient parallel modification of LU-SGS for data­
parallel-type parallel implementations. The algorithm uses the same 
factorization technique used in the LU-SGS algorithm, based on a 
spectral approximation of the flux Jacobians. However, it replaces 
the symmetric Gauss-Seidel sweeps, which are difficult to paral­
lelize, with a point-relaxation method. Multiple relaxation itera­
tions (generally 3-6) of the point-relaxation method are applied at 
each nonlinear iteration. The relaxation sweeps make the method 
amenable to parallel processing because it can be easily load bal­
anced with only nearest-neighbor communication. Further details 
of DP-LUR are explained in Ref. 21. 

An alternative approach for parallelizing the LU-SGS algorithm, 
which is based on the DP-LUR algorithm but designed specifically 
for multiple-instruction multiple-data parallel implementations (I.e., 
use of message passing), was introduced in an earlier work.s Once 
the computational space has been divided into subdomains, the orig­
inal LU-SGS algorithm is applied simultaneously to each processor 
subdomain. Then border data between the subdomains are commu­
nicated by the relaxation-type approach of DP-LUR. The use of 
multiple relaxation sweeps is retained to enhance the robustness of 
the original algorithm lost in the domain decomposition. Because 
the method combines aspects of both LU-SGS and DP-LUR, it is 
referred to as hybrid LU-SGS. The algorithm is as follows. 

Algorithm 1: Hybrid LU-SGS 

Aq(O) -D- 1 • t::.tf(qn) 

For i = I .... , i,wf>!p' do 
communicate t::.q(i - I) data at processor borders to neighboring 

processors 
set t::.q(i) = t::.q(i -I) at borders 
perform LU·SGS sweeps locally on each processor, computing 

t::.q(i) over each subdomain 
End for 

t::.q" = t::.q(iswe<p) 

On a single processor, the hybrid LU·SGS is identical to the 
original LU-SOS algorithm. On many processors (in the limit as 
the number of processors approaches the number of grid points), 
the algorithm becomes identical to DP-LUR. Like DP-LUR, hybrid 
LU-SGS can be implemented such that it is completely load bal­
anced with only nearest-neighbor communication required between 
the subdomains. Hybrid LU-SGS was found to require fewer re­
laxation iterations at each nonlinear iteration and is consequently 
more computationally efficient for parallel calculations with the 
TURNS code by use of the third·order-accurate upwind.differenced 
method used in this work. The method converges for all cases tested 
with isweep = I, but it experiences a slight reduction in convergence 
over the original LU·SGS algorithm. With isweep =2, however, the 
method shows essentially convergence identical to that of the orig­
inal LU-SGS, even with large numbers of processor subdomains. 
Further details of the hybrid LU-SGS algorithm are given in Ref. 5. 

Inexact Newton's Method 
Fully implicit Newton's method is the most robust technique for 

solving systems of nonlinear equations. To implement Newton's 
method, the fully coupled set of governing equations are linearized 
about time level n, which produces a large linear system at each 
nonlinear iteration: 

(5)[I +MG~r]t::.qn = -t::.tf(q") 

where t::.q" =q" +I -q" andf(q") denotes the spatially differenced 
convective terms given in Eq. (3). If the linear system in Eq. (5) 
is solved exactly at each time level, the method becomes Newton's 
method exactly and is capable of achieving quadratic convergence 
and is completely time accurate with no restriction on the time 
step used for the nonlinear iteration. However, Newton's method 
in its exact form is not applicable to most CFD problems of interest 
because the CPU time and storage required for exactly solving the 
sparse linear system with a direct method is too costly. 

An efficient alternative to the exact method is an inexact Newton 
method. An inexact Newton method refers to use of an approximate 
technique for solution ofthe linear system arising in Eq. (5). In CFD 
applications, this linear system becomes very large and sparse, and 
iterative methods based on the conjugate-gradient (CG) method of 
Hestenes and Stiefel22 have been found to be very successful in de­
termining an approximate solution to this type of system. These CG­
type methods work on the prinCiple. that the residual of the linear 
system is minimized over a Krylov subspace and are therefore com­
monly referred to as Krylov methods. Further discussion of the 
Krylov methods used in this work is deferred to the next section. 

Formation and storage ofthe Jacobian term (af/aq) inEq. (5) can 
be difficult and costly. Krylov solvers have the nice property that the 
Jacobian matrix is used only in matrix-vector multiplies, for which 
the following finite-difference numerical approximation can be used 
(to compute the product of the Jacobian times arbitrary vector w): 

of w ~ f._(;.;:..q...;,.+_s..,;w);,...-...:f:...,;(q:..:.,) (6)
8q s 

The existence of the numerical matrix-vector approximation is im­
portant because it allows the use of nearly consistent left- and right­
hand sides in the solution with a matrix-free approach. That is, the 
large cost of computing and storing the Jacobian at each nonlinear 
iteration is avoided. 

http:MG~r]t::.qn
http:approach.20
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This advantage does not come without other costs, however. The 
numerical derivative requires a function evaluation [i.e.,j(q + £11')] 
at every approximate matrix·-vector multiply, whkh may be less 
efficient than an actual sparse-matrix multiplication. Also, the finite­
difference approximation of the Jacobian is less accurate than an 
exact determination. Nevertheless, the amount of storage saved by 
utilizing the numerical approximation is significant. The matrix·· 
free approach has been successfully appiied in a number of other 

II 13works:I. ­

The choice of c in approximation (6) can affect the nonlinear 
convergence ofihe method and should be chosen carefully. It is de­
sirable to use as small a value as possible to increase the accuracy of 
the finite-difference approximation, but too small a choice wiJl iead 
to numerical roundoff errors. When q and ware comparably scaled, 
c should ideally be near the square root of the machine roundoff, 
.JSmach, which is 10-7_10-8 in double-precision accuracy. The en­
tries in the q vector are nondimensionalized such that each entry 
has a value of approximately unity. The w vector is scaled within 
the Krylov methods such that its root mean square is approximately 
unity, so each entry has a value of approximately 1/.JN (N is the 
dimension of the vector). Thus, a simple yet accurate determination 
of cis 

c = -IN. Cmach (7) 

This choice was also proposed by Cai et al. 12 
An important consideration in the use of approximate iterative 

methods is what level of linear accuracy is required within each 
nonlinear iteration for maintaining convergence in the nonlinear 
solution. Oembo et al.B have proven that the nonlinear iterations 
will converge as long as the linear solution accuracy is at least 

I1I(qn) +j'(q")6.q" 112 ~ 1)1I1(q")112 (8) 

where 0 < 1) ~ 1. That is, the L2 norm of the linear residual is less 
than or equal to that of the nonlinear residual. In enforcing this 
nonlinear convergence criteria, a certain fixed value of 1) is specified 
and, at each nonlinear iteration, linear iterations of the Krylov solver 
are performed until relation (8) is satisfied. A maximum of20 linear 
iterations is specified in the code, but this limit is rarely reached. 

iterative Methods 
Over the past two decades, a number of efficient Krylov subspace 

iterative methods have been developed for solving large sparse lin­
ear systems. These methods are formulated as generalizations of the 
well-known CG method,22 The convergence of CG is ensured only 
for symmetric positive definite linear systems, but most CPO ap­
plications of interest (e.g., transonic flow) generate nonsymmetric 
linear systems. A number of generalizations of the CG have been 
proposed for nonsymmetric systems. These nonsymmetric gener­
alizations can be divided into two main categories, (biorthogonal) 
Lanczos-based methods and Arnoldi-based methods. 

Lanczos-based methods include the CG squared24 method, sta­
bilized variants of the biconjugate-gradient method,25 and methods 
based on the quasi-minimum residual idea.26 The approach used 
in deriving these methods from the CG is to relax the minimization 
property while keeping the efficient three-term-recurrence relations. 
This allows the size of the Krylov subspace to grow (making the 
implicit solution more robust) without an increase in memory. How­
ever, relaxing the mini mization property can cause the linear conver­
gence of the norm of the residual to become erratic, which can nega­
tively affect the nonlinear convergence. Also, biorthogonal Lanczos 
and biconjugate-gradient-type methods require the transpose of the 
Jacobian for matrix-vector multiplies. The computation of A T re­
quires an explicit determination of the Jacobian matrix A, rendering 
them inapplicable with a matrix-free implementation approach. 

Arnoldi-based schemes are formulated with the approach of 
relaxing the three-term-recurrence relations while keeping the 
residual minimization property. Some examples of Arnoldi-based 
schemes include the GMRES method,16 the generalized conjugate 
residual method,27 the generalized conjugate-gradient least-squares 
method,28 and orthomin.29 As a result of keeping the residual min­
imization property, the convergence of these schemes tends to be 
more stable. However, relaxing the three-term recurrences requires 
that all direction vectors in the Krylov subspace be stored so that 

storage costs increase linearly 'vvith th.:; dirnens.loll of the I(r:';tov 
subspace, 

The two iterative methods chosen for this work are Arnoldi· 
based schemes, for three reasons, First, the errqtic convergence 
typically associated with Lanczos.. basec1 schemes is vkwed as a 
deterrent to the acceptance of Krylov methods for a wide range 
of CPO problems. Second, Lanczos .. based schemes cannol be im· 
plemented within the matrix-free approach. Third, separate studies 
by Ajmani and Liou9 and McHugh and Kno!i'7 have determined 
that the GMRES Amoldi-based method was more efficient than 
several LanGzos.. basecl schemes for solution of the Navler--Stokes 
equations. 

The first iterative method applied in this work is the GMRES 
method ofSaad and Shultz. 16 The application of the GMRES method 
within the context of nonlinear CPO problems is described in de.. 
tail in a number of references.6.1O.11.IJ.JO A restarted version of the 
algorithm is used, GMRES(m), where m is the dimension of the 
Krylov subspace. With the restarted version, the Krylov subspace 
size is fixed, and if the linear solution does not satisfy the nonlinear 
convergence requirements in relation (8) after the fixed Krylov di­
mension is reached, the method is restarted with the current solution 
as the initial guess. 

The second iterative method used is the OSOmin method of 
Chronopoulos and Swanson. 17 The so-called s-step class of iterative 
methods is formulated to be more parallelizable implementations of 
standard iterative methods. Some of the advantages associated with 
s-step methods include a higher degree of robustness, better par­
allelization potential, and reduced memory contention for shared­
memory parallel machines (see Ref. 28 for a more general discussion 
of s-step methods). In 1991, Chronopoulos31 introduced an s-step 
version of the classical nonsymmetric orthomin (k) method. This 
version was modified to maintain orthogonality between the dif­
ferent s directions by use of a modified Gram-Schmidt algorithm, 
which allows larger numbers of s steps (up to 16). The resulting 
OSOmin(s, k) method is theoretically proven to maintain the same 
level of robustness as GMRES(m) when s =m (Ref. 28). 

Both the GMRES and the OSOmin methods are proved to 
solve nonsymmetric linear systems with symmetric parts [Le., 
(A + AT) /2] positive definite (i.e., with all positive eigenvalues). 
In an earlier work,3o the authors showed that OSOmin(s, k) outper­
formed GMRES(m) for solution of the steady two-dimensional tran­
sonic small disturbance equation on the vectorized shared-memory 
Cray C90. 

Storage is a major consideration for the solution of three­
dimensional problems, and the predominant total storage costs for 
the baseline TURNS code with and without the Krylov methods 
are shown in Table 1. Note that when k =1 and s =m, the storage 
requirements of the GMRES and the OSOmin methods are approx­
imately the same. 

Preconditioning 
The convergence rate of Krylov solvers is sensitive to the condi­

tion number (Le., eigenvalue spectrum) of the coefficient matrix of 
the linear system. A preconditioner can be used to cluster the eigen­
values and thereby accelerate the solution of the iterative method. 
The proper choice of a preconditioner is essential for efficiency. 

A preconditioner is applied in the following way: A precondition­
ing matrix p-l is added to the left of the original unpreconditioned 
linear system in Eq. (5) and results in the following new linear sys­
tem to be solved at each nonlinear iteration n: 

Table 1 Storage requirements" 

Method Storage 

Baseline TURNS 3N 
TURNS +GMRES(m) 3N + (m+4)· N 
TURNS +OSOmin(s, k) 3N + (s . k +3) . N 

aN = number of gridpoints x 5 (number of dependent variables 
in three dimensions). 

http:references.6.1O.11.IJ.JO
http:orthomin.29


1216 WISSINK, LYRINTZIS, AND CHRONOPOULOS 

For a preconditioner to be effective, it must perform a reasonable 
approximation to the inverse of the linear system and it must be able 
to perform this approximation at low cost (CPU time). 

One of the more popular types of preconditioners is that based 
on incomplete factorizations [e.g., incomplete lower-upper (ILU) 
factorization]. Ajmani et a1.8 found the lower-upper symmetric suc­
cessive overrelaxation (LV-SSOR) method of Yoon and Jameson18 

(of which LV-SGS is a subset) to be more efficient than ILV factor­
ization for inexact Newton solution of transonic and subsonic two­
dimensional Navier-Stokes flows. Considering these results and the 
fact that an effective parallelization strategy exists for LV-SGS (I.e.• 
hybrid LV-SGS). it is an attractive preconditioning choice for our 
application. 

Parallel Implementation 
The flowfield domain is laid out on an array of processors by 

a single-program multiple-data parallel implementation strategy, 
which preserves the original structure of the code. The three­
dimensional flowfield domain is divided in the wraparound and 
spanwise directions to form a two-dimensional array of processor 
subdomains, as shown in Fig. 1. Each processor executes a version 
of the code simultaneously for the portion of the flowfield that it 
holds. Coordinates are assigned to the processors to determine the 
global values of the data each holds. Border data are communicated 
between processors, and a single layer of ghost cells stores this com­
municated data. The MPI software routes communication between 
the processor subdomains. 

There are essentially four main steps of the inexact Newton al­
gorithm: 1) explicit flux evaluation by Roe-upwinded third-order­

accurate spatial discretization to form the right-hand-side vector, 
2) preconditioning by hybrid LU-SGS. 3) implicit solution by the 
Krylov subspace solver, and 4) explicit application of boundary con­
ditions. The communication required in step 1 is straightforward. 
After the flux vectors are determined with the MVSCL routine, they 
are communicated and stored in the ghost layer. Then Roe differenc­
ing is applied (this additional communication step could be avoided 
by use of a ghost layer of two cells, but the present approach was 
easier to implement into the existing code). Preconditioning with 
hybrid LV-SGS in step 2 was explained above. The communica­
tion pattern for this step is nearest neighbor, and communications 
are performed only after the interior domain updates (i.e., after each 
sweep)~ The two Krylov subspace solvers utilized in step 3 perform, 
in addition to matrix-times-vector operations, two main numerical 
operations: SAXPY's and dot products. SAXPY's, or vector up­
dates, are performed locally and require no communication. Global 
dot products are straightforward to parallelize: Local dot products 
are formed at each processor and a global sum operation (MPI­
REDVCE) is used to compute the global product. This operation 
requires log2 p messages, where p is the number of processors (the 
exact number of messages for the reduce operation may depend on 
how the MPI collective communication operations are implemented 
for the particular parallel architecture). Overall, both GMRES and 
OSOmin are quite scalable and easy to parallelize. 

Application of the boundary conditions in step 4 can be done 
locally on each processor, with the exception of the averaging of 
data across the C-plane overlap behind the trailing edge of the rotor 
blades. Processors that contain data on the blade surface do not par­
ticipate in the averaging but spend time invoking the flow-tangency 
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Fig. 1 Partitioning the three-dimensional domain on a two-dimensional array of processors. 
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boundary condition, Thus a good degree of load balance between 
processors is maintained during application of the boundary con-­
ditions, It should be noted here that load balance concerns caused 
us to split the fiowfield subdomains in only two directions rather 
than three. If the domain were broken in the normal direction, in· 
terior proct'-ssors would be required to sit idle dming the commu-­
nication step required for application of the boundary conditions 
at the C plane. This introduces a load imbalance that can signifi­
cantly reduce parallel perf0n11anCe on large numbers of processors, 
Although breaking the domain in all three directions yields square 
subdomains, thereby minimizing the amount of datu communicated, 
the inefficiency caused by the idle processors during the boundary­
condition application is expected to outweigh the efficiency gained 
by use of square subdomains. 

Computed Resuits 
The paralJelized inexact Newton implementation of the TURNS 

code is tested on the l60-node IBM SP2 at NASA Ames Research 
Center. The scheme is used to compute the quasisteady (i.e" blade­
fixed) and unsteady flowfields of a rotating helicopter rotor (with­
out fuselage) in forward flight. Viscous effects have not yet been 
included in the parallel implementation, so all calculations are per­
formed in Euler mode for a nonlifting test case. 

The flow is computed about a two-bladed symmetric untwisted 
operational load survey (OL8) helicopter blade rotating with tip 
Mach number M1ip = 0.665 and moving forward with a forward­
flight advance ratio of f1. = 0.258. The OLS blade has a sectional 
airfoil thickness to chord ratio of9.71% and is a t-scale model of 
the main rotor for the U.S. Army's AH-l helicopter, A 135 x 50 x 35 
C-H type grid is used (shown in Fig, 2). The grid extends out to 
2 rotor radii from the hub in the plane of the rotor and 1.5 rotor 
radii above and below the plane. The computed results with the 
TURNS code for this particular test case have been evaluated in 
other studies by Strawn et al.,32 so this investigation will focus on 
only the numerical and parallel performance of the method. 

Results from this case only are reported here, but the scheme was 
also tested under a variety of conditions (i.e., subsonic and transonic 
flow), including two-dimensional test problems. These results are 
reported in Ref. 33. 

Quasisteady 
The nonlinear convergence with the inexact Newton scheme for 

a quasisteady calculation with blade azimuth angle at Vr = 0 deg is 
shown in Figs. 3 and 4, Figures 3a and 4a show the convergence 
of the L2 norm of the residual (lIf(q)1I2) vs time steps (nonlinear 
iterations), and Figs. 3b and 4b show the convergence vs wallclock 
time on 19 SP2 processors. The results in Fig. 3 use the nonlinear 
convergence criterion in relation (8) with 11 = 0.95 (i.e., multiple 
iterations of the Krylov method applied at each nonlinear iteration 
until the criteria is met), whereas Fig. 4 shows the results with only 

Fig. 2 135 x 50 x 3S C-H grid. 
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a single iteration of the Krylov method used at each nonlinear i ter­
ation. The inexact Newton cases are compared against the baseline 
case by use of the hybrid LU-SGS method only. Other processor 
partitions were also tested and, aside from the differences in waIl­
clock solution time, the curves are essentially identical to those of 
the 19-processor case shown. The maximum residual (lIf(q)II",,) 
was also determined and showed similar results. 

The hybrid LU-SGS method uses i.weep = 2 because this was 
found in Ref. 5 to give nearly identical convergence to the original 
LU-8GS method for any number of processors. The iterative meth­
ods use Krylov subspace dimensions of 3 and 5 (that is, m = 3, 5 in 
GMRES and s =3, 5 in OSOmin) because previous results33 with a 
two-dimensional test case showed these values gave slightly better 
wallclock times than others. It should be noted, however, that the 
overall effect of the Krylov subspace dimension on the wallclock 
performance was found to be small. In OSOmin, k is set to 1 so the 
total storage costs for the Newton-GMRES and Newton-OSOmin 
comparison is essentially the same, 

A comparison of Figs. 3 and 4 indicates that the Newton method 
is slightly more efficient when only a single iteration of the Krylov 
solver is applied at each nonlinear iteration than when multiple iter­
ations of the Krylov method coupled with the nonlinear convergence 
criteria in relation (8) are used. This is most likely due to the fact 
that determination of the linear residual requires an extra matrix­
vector multiply at the end of every linear iteration, which is used 
to determine only the residual vector to find whether the nonlinear 
convergence criteria have been satisfied. It is not required if the num­
ber of linear iterations is fixed. Considering that the matrix-vector 
multiplies constitute the most expensive operation, this additional 
operation at each nonlinear iteration can yield a noticeable reduction 
in efficiency. Amore detailed study33 showed no performance gains 
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FIg. 4 Convergence of Newton-Krylov method with a single iteration 
of Krylov solver at each nonlinear iteration. 

for various values of 11 and evaluation strategies for the residual. Thus 
the one-iteration algorithm is used in subsequent computations. 

The Newton-Krylov approach shows improvement in the nonlin­
ear convergence rate with increasing Krylov subspace dimension, 
but the effect on wallclock solution time is small because the time 
per nonlinear iteration increases by approximately the same factor 
as the reduction in number of nonlinear iterations. For the forced 
nonlinear convergence case in Fig. 3, the Newton-Krylov methods 
show slightly worse efficiency than hybrid LU-SGS methods. How­
ever, with the single-iteration case in Fig. 4, the efficiency is slightly 
worse in the initial nonlinear iterations but becomes approximately 
the same as that of the hybrid LU-SGS method as the solution con­
verges. Both GMRES and OSOmin methods show nearly identical 
results with the same Krylov dimension. 

Figure 5a shows the result of Newton-GMRES and hybrid 
LU-SGS quasisteady calculation carried out over a large number 
of nonlinear iterations. Convergence of the hybrid LU-SGS method 
stalls after a 4-order-of-magnitude reduction in the residual, whereas 
the Newton-Krylov method converges to nearly machine zero. The 
Newton-GMRES method with m =3 converges to order 10- 12 and 
to order 10-16 with m =5. It should be noted that the standard 
LU-SGS algorithm also stalled for this case so the behavior is not a 
byproduct ofthe parallel hybrid LU-SGS implementation. Figure 5b 
shows the nonlinear convergence vs CPU time comparison on 19 
processors. This result implies that the Newton-Krylov method is a 
more numerically robust nonlinear solver, although the convergence 
of hybrid LU-SGS is probably sufficient for most CFD problems of 
interest. 

The parallel performance of methods is reported in Table 2. 
Shown are the average time per nonlinear iteration, percentage 

Table 2 Parallel performance statistics for the baseline (hybrid 
LU-SGS), Newton-GMRES, and Newton-OSOmin methods on 

different processors of the SPl 

Method Time/iteration, s %Communication Speed up 

4 Processors 
Hybrid LU·SGS 4.07 2.4 I 
Nwtn-GMRES(3 ) 18.78 2.5 I 
Nwtn-GMRES(5) 26.16 2.2 1 
Nwtn-OSOmin{3,1) 18.58 2.1 1 
Nwtn-OSOmin(5,1) 26.35 2.2 1 

8 Processors opt=2 
Hybrid LU·SGS 2.17 4.6 1.87 
Nwtn-GMRES(3) 10.65 4.1 1.76 
Nwtn-GMRES(5) 14.92 4.2 1.75 
Nwtn-OSOmin{3, I) 10.68 4.2 1.74 
Nwtn-OSOmin{5,1) 14.94 4.8 1.76 

19 Processors opt =4.75 
Hybrid LU·SGS 0.874 5.1 4.66 
Nwtn-GMRES(3) 4.14 5.4 4.54 
Nwtn-GMRES(5) 5.81 5.4 4.51 
Nwtn-OSOmin(3,1) 4.13 5.3 4.50 
Nwtn-OSOmin(5,1) 5.82 5.4 4.52 

57 Processors opt = 14.25 
Hybrid LU·SGS 0.307 8.9 13.25 
Nwtn-GMRES(3) 1.45 9.7 12.95 
Nwtn-GMRES(5) 2.05 10.1 12.76 
Nwtn-OSOmin(3.1) 1.42 9.6 13.08 
Nwtn-OSOmin(5,1) 1.97 9.9 13.37 

114 Processors opt=28.5 
Hybrid LU·SGS 0.173 11.9 23.52 
Nwtn-GMRES(3) 0.885 13.5 21.22 
Nwtn-GMRES(5) 1.23 13.2 21.26 
Nwtn-OSOmin(3, 1) 0.823 12.3 22.58 
Nwtn-OSOmin(5,l) 1.19 13.4 22.14 
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Fig. S Convergence of Newton-Krylov method carried to machine 
zero. 
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communication, and parailel up for the baseline and Newton--
Krylov methodg em 4, 8, 19, and 114 IBM SP2 processors, The 
percentage communication is determined by the timing of an rou­
tines that invoke communication (any MPI routines) and compari-, 
son with the total average time per nonlineaJ iteration, Parallel speed 
ups are determined by comparison of the average time per nonlinear 
iteration with the 4-processor case. 

Overali, the methods all demonstrate comparable parallel porfol-' 
mance, There are no significant differences in the parallel speed up, 
although the baseline method (hybrid LU-SOS) and the Newton~ 
OSOmin method show slightly better ups than the Newton~ 
GMRES method on 114 processors. is a noticeable increase 
in the percentage of communication for the Newton-Krylov method 
on larger numbers of processors. This is probably due to the larger 
number of global dot product operations in the Krylov solvers, for 
which the communications do not scale as well as the border com­
munications as the number of processors grows, 

OMRES and OSOmin give similar performances but there are 
a few subtle differences, On lower numbers of processors (Le" 4 
and 8), the Newton-OSOmin method requires slightly more time 
per nonlinear iteration than the Newton-GMRES method because 
OSOmin requires slightly more work. However, OSOmin is found 
to achieve slightly better parallelism on larger numbers of proces­
sors. Hence the time per nonlinear iteration of Newton-OSOmin is 
slightly faster than Newton-GMRES on 114 processors. 

The measured execution rates of the code on the various SP2 pro­
cessors applied to this problem are shown in Fig. 6. The megaflop 
(Mflop) rate for each processor partition is measured with IBM's 
parallel hardware performance monitor software. The execution rate 
on a single processor of the Cray C90 is also shown for compari­
son, The C90 version of the code is slightly different in that it uses 
a vectorized form of the original LU-SGS operator rather than the 
hybrid LU-SGS operator used on the SP2. Also, the rate measured 
on the C90 with Cray's hardware performance monitor is slightly 
different for each method but is shown as a single averaged point in 
Fig. 6 for convenience (actual rates on the C90 are 320 Mflops for 
the baseline TURNS code, 340 Mflops for Newton-GMRES, and 
360 Mftops for Newton-OSOmin). The Newton-Krylov scheme 
shows slightly better Mftop per second rates than the baseline hy­
brid LU-SGS scheme, and OSOmin appears to show slightly better 
performance than GMRES. 

It should be noted that our efforts focused primarily on attaining 
efficient parallel performance, and only a small effort was made 
to optimize the code for the reduced instruction set cache (RISC) 
processors on the SP2. The total execution rate could be enhanced 
(perhaps SUbstantially) if further efforts were undertaken to optimize 
the single-processor perfonnance of the code. The execution rate is 
also expected to improve with larger problem sizes. 

Time-Accurate Unsteady 
The Newton-Krylov approach allows for a higher degree of time 

accuracy for implicit time stepping because a more exact form of 

Execution Rate on IBM SP2 

.~3500 

~ hybrid LUSGS! 
~ 0--<) Nwtn-OSOmln(3.1) i3000 
~ c. 
0 
0: 2500:5 

~ 2000 

.~ 
S 1500
{il 

Jj 


1000 
~ 
~ 500 

:::!: 

0 

<>----<> Nwtn-OSOmin(5, 1) I 
....... Nwtn-GMRES(3) 
..--Nwtn-GMRES 5 

<il 1 Processor 
CrayC90 

48 19 57 114 
Processors 

Fig.6 Execution rate attained on various SP2 processors for 236 x 103 

grid-point problem. 

the left-hand-side Jacobian is used, making the left- and the right, 
hand sides mOfe consistent. The method is ~tudied here for a time, 
accurate computation of a revolution of the OLS blade in 
forward flight. 

Srinivasan4 has shown that, by three subiterations of the 
standard LU·SGS method at each nonlinear iterntion, a time­
accurate unsteady solution can be obtained by using a time step 
that corresponds to a t degree of blade revolution per time step 
(12.1/J =0.25 deg). We seek to match this result with the Kfylov 
methods and compare the performance. 

First, an unsteady solution is run with a very small time step that 
corresponds to to degree azimuth per time step (12.1/1 0.10 deg). 
The baseline hybrid LU·SOS method with three subiterations at each 
nonlinear iteration is used for this nlll, The time-varying pressure 
coefficient is recorded at a representative location on the blade (~ 
chord and rI R = 0.80). Then cases are run with larger time steps, 
and the resulting unsteady pressure coefficients are compared with 
the /::,. 1/1 = 0, 10 deg result to determine the error. 

Figures 7a and 7b show the pressure coefficient error obtained 
with the baseline and the inexact Newton methods with different 
time steps. Figure 7a shows the error resulting from time steps of 
/::"1fr =0.25 and 0.50 deg with three subiterations of LU-SOS at 
each nonlinear iteration (denoted by LUSGS-3). Figure 7b shows 
the errors with time steps of 12.1/1 = 0.40 and 0.50 deg obtained with 
Newton-OSOmin(3, I) with a single iteration of OSOmin(3,1) at 
each nonlinear iteration, It is apparent from the figures that the error 
from LUSGS-3 with D.-if' 0,25 deg and Newton-OSOmin with 
b"1fr OAO and 0.50 deg is comparable. 

With LUSGS-3, in which b,,1/I =0.25 deg is considered the base­
line case, Fig. 8 shows a close-up comparison of the errors obtained 
with Newton-OSOmin with b,,1fr =0.40 and 0.50 deg. The error 
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Table 3 Total solution time for time-accurate unsteady 
calculation of a full 360-deg blade revolution on 

SP2 19 processors 

Method Time step, deg Solution time, s 

Hybrid LU-SGS 1:;,"; =0.25 3844 
(3 subiterations) 

Nwtn-OSOmin(3,l) 1:;,";=0.40 3717 
Nwtn-OSOmin(3,I) =0.50 2973 

Unsteady Cp Error 
LUSGS-3 and Nwtn'()sOmln(3.1) 

~ 0.Q1 

180 270 360 
Blade AzImuth Angle 

Q. 

Q 

Fig. 8 Detailed comparison of unsteady Cp error: LUSGS-3 with 
time step A,1/; =0.25 deg vs Newton-OSOmln(3,1) with A,1/; =0.40 and 
0.50deg. 

with ~1/r =0.40 deg is slightly lower than the baseline, and the 
error with ~1/r = 0.50 deg is slightly larger. All are very close, how­
ever. Newton-GMRES(3) was also tried and gives results that are 
essentially identical to those of Newton-OSOmin(3,1). Different 
spanwise locations were also tested (reported in Ref. 33) and show 
similar results. 

By allowing the use of larger time steps with the same level of 
accuracy, the inexact Newton method can yield faster overall so­
lution times. Table 3 lists the total time required for completing a 
full 360 deg unsteady solution on 19 SP2 processors with three 
methods: 1) three subiterations of LU-SGS with a time step of 
~1/r =O.25deg,2) Newton-OSOmin(3,l) with ~1/r = 0.40 deg, and 
3) Newton-OSOmin(3,l) with ~1/r =0.50 deg. The total time is de­
termined from the time per time-step data for each method in Table 2. 
With ~ 1/r =0040 deg, the total solution time with Newton-OSOmin 
is reduced by approximately 5% over that of the hybrid LU-SGS 
alone. With ~ 1/r =0.50 deg, it is reduced by approximately 30%. 
Similar results are achieved with Newton-GMRES. Thus the inex­
act Newton algorithm is expected to yield wallclock solution time 
savings of the order of 10-20% for the same level of time accuracy. 

Conclusion 
A parallelized Newton-Krylov algorithm is investigated for 

structured-grid calculations of the flowfield of a helicopter ro­
tor. Two preconditioned conjugate-gradient-like iterative meth­
ods are implemented within the baseline TURNS code: the well­
known GMRES method and a relatively new s-step modification of 
the classical orthomin method called orthogonal s-step Orthomin 
(OSOmin). A parallel implementation of the LU-SGS operator is 
applied for left preconditioning, and the implementation is matrix 
free. The numerical and parallel performance is evaluated for qua­
sisteady and unsteady three-dimensional Euler computations of a 
nonlifting helicopter blade on the IBM SP2 multiprocessor. 

For quasisteady calculations, the Newton-Krylov algorithm 
shows some improvement over the baseline hybrid LU-SGS method 
in converging the solution to machine zero. The hybrid LU-SGS 

method stalls after a residual reduction of ~4 orders of magnitude. 
Before stall, the compu tational time required for the two methods 
are similar. For time-accurate unsteady calculations, the Newton­
Krylov algorithm allows use of larger time steps for the same level 
of accuracy and leads to reductions in the total solution time by 
10-20%. However, the Krylov methods require considerably more 
memory. and the reduction in CPU time may not justify the memory 
increase. 

The parallel performance of the Krylov methods is good. but 
the overall parallel performance of the baseline method was not 
enhanced appreciably with their addition. The baseline method 
alone demonstrates good parallel performance (up to 114 proces­
sors tested) so, despite the high degree of parallelism inherent in the 
Krylov methods, their incorporation did not significantly enhance 
the overall parallel efficiency of the code. OSOmin and GMRES 
gives similar performances but OSOmin gives slightly better paral­
lel speed ups on larger processor partitions. 

This study was, to our knowledge. the first known application 
of Krylov methods for large-scale three-dimensional rotary-wing 
flowfield applications, Overall, we did not find substantial gains 
in their use for the inviscid calculations presented here. Follow­
up work should include a study with a more complex flowfield 
(e.g.• high Reynolds number viscous flows) as a number of authors 
have demonstrated substantial gains by using Krylov methods for 
such cases. Although this work focused on the solution ofthe Euler 
equations, the approach is readily adaptable to viscous flows as well. 
Future application of the Newton-Krylov approach to multiple grid 
solutions (e.g., multiblocked or overset) would be an interesting 
extension of the present work. 

Acknowledgments 
A. M. Wissink was supported by a NASA Graduate Student 

Fellowship from the High Performance Computing and Commu­
nications Program. Computer time on the IBM SP2 was pro­
vided by a grant from the Computational Aerosciences Division at 
NASA Ames Research Center. Additional computer time was also 
provided by a grant from the Pittsburgh Supercomputing Center. 
A. T. Chronopoulos acknowledges supercomputer time provided 
by San Diego Supercomputing Center. a Silicon Graphics, Inc.lCray 
1996-1997 grant. and U.S. National Science Foundation support un­
der Grant CCR-9496327. The authors acknowledge Roger Strawn 
for his advice during the course of this work and G. R. Srinivasan 
for his assistance with the TURNS code. 

References 
I Srinivasan, G. R, and Sankar, L. N., "Status of Euler and Navier Stokes 

CFD Methods for Helicopter Applications," Proceedings ofthe Second AHS 
International Aeromechanics Specialists' Conference, Vol. 2, American He­
licopter Society, Alexandria, VA, 1995. pp. 6-1-6·19. 

2Srinivasan. G. R. Baeder. J. D., Obayashi, S.• and McCroskey. W. J., 
"F1owfield of a Lifting Rotor in Hover: ANavier--Stokes Simulation:' AIM 
Journal. Vol. 30, No. 10, 1992, pp. 2371-2378. 

3Srinivasan. G. R. Raghavan. V.• Duque. E. P. N., and McCroskey. W. J., 
"F1owfie1d of a Lifting Rotor in Hover by a Navier-Stokes Method;' Journal 
of the American Helicopter Society. Vol. 38, No.3, 1993, pp. 3-13. 

4Srinivasan, G. R, and Baeder, J. D., "TURNS: A Free-Wake Euler/ 
Navier-Stokes Numerical Method for Helicopter Rotors:' AIM Journal, 
Vol. 31. No.5. 1993, pp. 959-962. 

5Wissink, A. W., Lyrintzis, A. S., and Strawn. R. C., "Parallelization 
of a Three-Dimensional Flow Solver for Euler Rotorcraft Aerodynamics 
Predictions;' AIM Journal, Vol. 34, No. 11. 1996, pp. 2276-2283. 

6Wigton, L. B.• Yu, N. J., and Young, D. P., "GMRES Acceleration of 
Computational Fluid Dynamics Codes." Proceedings of the AIM Seventh 
Computational Fluid Dynamics Conference. AIAA. New York, 1985. pp. 
67-74. 

7McHugh. P. R., and Knoll. D. A., "Comparison of Standard and Matrix­
Free Implementations of Several Newton-Krylov Solvers," AIM Journal. 
Vol. 32. No. 12,1994, pp. 2394-2400. 

8Ajmani, K.. Liou. M.-S., and Dyson, R. w.. "Preconditioned Implicit 
Solvers for the Navier Stokes Equations on Distributed-Memory Machines." 
AIAA Paper 94-0408, Jan. 1994. 

9Ajmani. K.. and Liou, M.-S., "Implicit Conjugate-Gradient Solvers on 
Distributed-Memory Architectures," Proceedings ofthe AlAA Twelfth Com­
putational Fluid Dynamics Conference. AIAA. Washington. DC. 1995. pp. 
550-559. 



WISSINK, LYRINTZIS, AND CHRONOPOULOS ILL! 

lORogers, S. E., "Comparison oflmplici! Schemes forthe Incompressible 
Navier-Stokes Equations," AIM Journal, Vol. 33, No. II, 1995, pp. 2066­
2072. 

II Hixon, R., Tsung, F. L., and Sankar, L. N., "Comparison ofTwo Methods 
for Solving Three-Dimensional Unsteady Compressible Viscous Flows," 
AIAA Journal, Vol. 32, No. 10,1994, pp. 1978-1984. 

12Cai, X.-C., Keyes, D. E., and Venkatakrishnan, v., "Newton-Krylov­
Schwartz: An Implicit Solver for CFD," Inst. for Computer Applications in 
Science and Engineering, Rept. 95-87, Hampton, VA, Dec. 1995. 

13Neilsen, E. J .. Anderson, W. K., Walters, R. W, and Keyes, D. E., 
"Application of Newton-Krylov Methodology to a Three-Dimensional Un­
structured Euler Code," Proceedings of the AIM Twelfth Computational 
Fluid Dynamics Conference, AIAA, Washington, DC, 1995, pp. 981­
990. 

140rkwis, P. D., and McRae, D. S., "Newton's Method Solver for the 
Axisymmetric Navier-Stokes Equations," AIM Journal, Vol. 30, No.6, 
1992,pp.1507-1514. 

IS Keyes, D. E., Kaushik, D. K., and Smith, B. E, "Prospects for CFD on 
Petaflops Systems," Inst. for Computer Applications in Science and Engi­
neering, Rept. 97-73, Hampton, VA, Dec. 1997. 

16Saad, Y., and Shultz, M., "GMRES: A Generalized Minimum Residual 
Algorithm for Solving Non-Symmetric Linear Systems," SIAM Journal on 
Scientific and Statistical Computing, Vol. 7, No.3, 1986, pp. 856-869. 

17Chronopoulos, A. T., and Swanson, C. D., "Parallel Iterative S-Step 
Methods for Unsymmetl'ic Linear Systems," Parallel Computing, Vol. 22, 
No.5, 1996, pp. 623-641. 

18Yoon, S., and Jameson, A., "A Lower-Upper Symmetric Gauss Seidel 
Method for the Euler and Navier Stokes Equations," AIM Journal, Vol. 26, 
1988,pp.1025-1026. 

19Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and 
Difference Schemes," Journal of Computational Physics, Vol. 43, No.3, 
1981, pp. 357-372. 

2oAnderson, W. K., Thomas, J. L., and van Leer, B., "A Comparison of 
Finite Volume Flux Vector Splinings for the Euler Equations," AIAA Paper 
85-0122, Jan. 1985. 

21Candler, G. v., Wright, M. J., and McDonald, J. D., "A Data Parallel 
LU-SGS Method for Reacting Flows," AIM Journal, Vol. 32, No. 12, 1994, 
pp.2380-2386. 

22Hestenes, M. R., and Stiefel, E., "Methods of Conjugate Gradients for 
Solving Linear Systems," Journal of Research of the National Bureau of 

Standards, Vol. 49, No.6, 1954, pp. 409-435. 
23Dembo, R. S., Eisenstat, S. c., and Steighaug, 1'., "Inexact Newton 

Methods," SIAM Journal on Numerical Analysis, Vol. 19, No.2, 1982, pp. 
400-408. 

24Sonneveld, P., "CGS: A Fast Lanzos·Type Solver for Nonsymmetric 
Linear Systems," SIAM Journal on Scientific and Statistical Computing, 
Vol. 10, No. 1,1989, p. 36. 

25Van del' Vorst, H. A., "Bi-CGSTAB: A Fast and Smoothly Converging 
Variant ofBi-CG for the Solution of Nonsymmetric Linear Systems," SIAM 
Journal on Scientific and Statistical Computing, Vol. 13, No.2, 1992, pp. 
631-644. 

26Freund, R. W., "A Transpose-Free Quasi-Minimum Residual Alg0l1thm 
for Non-Hermitian Linear Systems," SIAM Journal on Scientific and Statis­
tical Computing, Vol. 14, No.2, 1993, pp. 470-482. 

27Eisenstat, S. C., Elman, H. C., and Schultz, M. H., "Variational Iterative 
Methods for Nonsymmetric Systems of Linear Equations," SIAM Journal 
on Numerical Analysis, Vol. 20, No.2, 1983, pp. 345-357. 

28Axelsson, 0., "A Generalized Conjugate Gradient, Least Squares 
Method," Journal ofNumerical Mathematics, Vol. 51, No.2, 1987, pp. 209­
227. 

29Vinsome, P. K. W., "ORTHOMIN, an Iterative Method for Solving 
Sparse Sets of Simultaneous Linear Equations," Society of Petroleum Engi­
neers of the American Inst. of Mining, Metallurgical, and Petroleum Engi­
neers, Rept. SPE 5729, Richardson, TX, 1976. 

30Wissink, A. M., Lyrintzis, A. S., and Chronopoulos, A. T., "Efficient 
Iterative Methods Applied to the Solution of Transonic Flows," Journal of 
Computational Physics, Vol. 123, No. 31, 1996, pp. 379-396. 

31Chronopoulos, A. T., "S-Step Iterative Methods for (Non)Symmetric 
(In)Definite Linear Systems," SIAM Journal on Numerical Analysis, Vol. 
28, No.6, 1991, pp. 1776-1789. 

32Strawn, R. C., Biswas, R., and Lyrintzis, A. S., "Helicopter Noise Pre­
dictions Using Kirchhoff Methods," Journal of Computational Acoustics, 
Vol. 4, No.3, 1996, pp. 321-338. 

33Wissink, A. M., "Efficient Parallel Implicit Methods for Rotary-Wing 
Aerodynamics Calculations," Ph.D. Dissertation, Dept. of Aerospace Engi­
neering and Mechanics, Univ. of Minnesota, Minneapolis, MN, May 1997. 

D. S. McRae 
Associate Editor 


