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Abstract

An innovative design is proposed for an MIMD distributed shared-memory (DSM) parallel computer capable of achieving
gracious performance with technology expected to become feasible/viable in less than a decade. This New Millennium
Computing Point Design was chosen by NSF, DARPA, and NASA as having the potential to deliver 100 TeraFLOPS and 1
PetaFLOPS performance by the year 2005 and 2007, respectively. Its scalability guarantees a lifetime extending well into the
next century. Our design takes advantage of free-space optical technologies, with simple guided-wave concepts, to produce a 1D
building block (BB) that implements efficiently a large, fully connected system of processors. Designing fully connected, large
systems of electronic processors could be a very beneficial impact of optics on massively parallel processing. A 2D structure
is proposed for the complete system, where the aforementioned 1D BB is extended into two dimensions. This architecture
behaves like a 2D generalized hypercube, which is characterized by outstanding performance and extremely high wiring
complexity that prohibits its electronics-only implementation. With readily available technology, a mesh of clear plastic/glass
bars in our design facilitate point-to-point bit-parallel transmissions that utilize wavelength-division multiplexing (WDM)
and follow dedicated optical paths. Each processor is mounted on a card. Each card contains eight processors interconnected
locally via an electronic crossbar. Taking advantage of higher-speed optical technologies, all eight processors share the same
communications interface to the optical medium using time-division multiplexing (TDM). A case study for 100 TeraFLOPS
performance by the year 2005 is investigated in detail; the characteristics of chosen hardware components in the case study
conform to SIA (Semiconductor Industry Association) projections. An impressive property of our system is that its bisection
bandwidth matches, within an order of magnitude, the performance of its computation engine. Performance results based on
the implementation of various important algorithmic kernels show that our design could have a tremendous, positive impact on
massively parallel computing. 2D and 3D implementations of our design could achieve gracious (i.e., sustained) PetaFLOPS
performance before the end of the next decade. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The demand for ever greater performance by many
computation problems has been the driving force for the
development of computers with thousands of proces-
sors. Two important aspects are expected to dominate
the massively parallel processing field. High-level par-
allel languages supporting a shared address space (for
DSM computers) and point-to-point interconnection
networks with workstation-like nodes. Near PetaFLOPS
(i.e., 1015 floating-point operations per second) per-
formance and more is required by many applications,
such as weather modeling, simulation of physical phe-
nomena, aerodynamics, simulation of neural networks,
simulation of chips, structural analysis, real-time image
processing and robotics, artificial intelligence, seismol-
ogy, animation, real-time processing of large databases,
etc. Dongarra pointed out in 1995 that the world’s top
10 technical computing sites had peak capacity of only
about 850 GigaFLOPS, with each site containing hun-
dreds of computers. The goal of 1 TeraFLOPS (i.e.,
1012 floating-point operations per second) peak perfor-
mance was reached in late 1996 with the installation of
an Intel supercomputer at Sandia Laboratories.

The PetaFLOPS performance objective seems to be
a distant dream primarily because of the, as currently
viewed, unsurmountable difficulty in developing low-
complexity, high-bisection bandwidth, and low-latency
interconnection networks to connect thousands of pro-
cessors (and remote memories in DSM systems). To
quote Dally, “wires are a limiting factor because of
power and delay as well as density” [6]. Several inter-
connection networks have been proposed for the design
of massively parallel computers, including, among oth-
ers, regular meshes and tori [5], enhanced meshes, fat
trees (direct binary), hypercubes [17], and hypercube
variations [15,24,26,27]. The hypercube dominated the
high-performance computing field in the 1980s because
it has good topological properties and rather rich inter-
connectivity that permits efficient emulation of many
topologies frequently employed in the development of
algorithms [17,29]. Nevertheless, these properties come
at the cost of often prohibitively high VLSI (primarily
wiring) complexity due to a dramatic increase in the
number of communication channels with any increase
in the number of PEs (processing elements). Its high
VLSI complexity is undoubtedly its dominant draw-
back, that limits scalability [25] and does not permit the

construction of powerful, massively parallel systems.
The versatility of the hypercube in emulating efficiently
other important topologies constitutes an incentive for
the introduction of hypercube-like interconnection net-
works of lower complexity that, nevertheless, preserve
to a large extent the former’s topological properties
[26,27].

To support scalability, current approaches to mas-
sively parallel processing use bounded-degree networks,
such as meshes ork-ary n-cubes (i.e., tori), with low
node degree (e.g., FLASH [11], Cray Research MPP,
Intel Paragon, and Tera). However, low-degree net-
works result in large diameter, large average internode
distance, and small bisection bandwidth. Relevant ap-
proaches that employ reconfiguration to enhance the
capabilities of the basic mesh architecture (e.g., re-
configurable mesh, mesh with multiple broadcasting,
and mesh with separable broadcast buses) will not be-
come feasible for massively parallel processing in the
foreseeable future because of the requirements for long
clock cycles and precharged switches to facilitate the
transmission of messages over long distances [32].

The high VLSI complexity problem is unbearable for
generalized hypercubes. Contrary to nearest-neighbor
k-aryn-cubes that form rings withk nodes in each di-
mension, generalized hypercubes implement fully con-
nected systems withk nodes in each dimension [2]. The
nD (symmetric) generalized hypercubeGH(n, k) con-
tainskn nodes. The address of a node isxn−1xn−2 · · ·
x1x0, wherexi is a radix-k digit with 0 ≤ xi ≤ k − 1.
This node is a neighbor to the nodes with addresses
xn−1xn−2 · · · x′

i · · · x1x0 for all 0 ≤ i ≤ n − 1 and
x′
i 6= xi . Therefore, two nodes are neighbors if and

only if their n-digit addresses differ in a single digit.
For the sake of simplicity, we restrict our discussion
to symmetric generalized hypercubes where the nodes
have the same number of neighbors in all dimensions.
Therefore, each node hask−1 neighbors in each dimen-
sion for a total ofn(k −1) neighbors per node. ThenD
GH(n, k) has diameter equal to onlyn. Fig. 1 shows
the GH(2, 7) with two dimensions (i.e.,n = 2) and
k = 7. Forn = 2 andk an even number, the diameter
of the generalized hypercube is only 2 and its bisection
width is the immensek3/4. The increased VLSI/wiring
cost of generalized hypercubes results in outstanding
performance that permits optimal emulation of hyper-
cubes andk-aryn-cubes, and efficient implementation
of complex communication patterns.
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Fig. 1. The generalized hypercubeGH(2, 7).

Table 1 compares the numbers of channels in the bi-
nary hypercube (i.e.,m-cube), thek-ary n-cube, and
the generalized hypercubeGH(n, k), all with the same
numberN of processors. We assume bidirectional data
channels for full-duplex communication, and thatN =
kn = 2m (therefore,k = N1/n = 2m/n). For example,
for m = 14 (i.e., for systems withN=16 384 proces-
sors) and 64-bit channels, the numbers of wires for data
transfers are
• 14 680 064 wires for the 14-cube;
• 4 194 304 wires for the 128-ary 2-cube; and
• 266 338 300 wires for theGH(128, 2).

In order to reduce the number of communication
channels in systems similar to the generalized hyper-
cube, the spanning bus hypercube uses a shared bus
for the implementation of each fully connected sub-
system in a given dimension [24]. However, shared
buses result in significant performance degradation be-
cause of the overhead imposed by the protocol that
determines each time ownership of the bus. Similarly,

Table 1
Comparison of interconnection networks, assuming full-duplex bidi-
rectional data channels

Network Number of channels Diameter

m-cube m · 2m m = n · log2k

k-aryn-cube 2· n · 2m

⌈
k

2

⌉
GH(n, k) (k − 1)n · 2m n

hypergraph architectures implement all possible per-
mutations of their nodes in each dimension by em-
ploying crossbar switches [21]. Reconfigurable gen-
eralized hypercubes interconnect all nodes in each di-
mension dynamically via a scalable mesh of very sim-
ple, low-cost programmable switches [28]. However,
all these proposed reductions in hardware complexity
may not be sufficient for very high performance, such
as PetaFLOPS-related, computing. To quote Patterson,
“Currently the most expensive scheme is a crossbar
switch, which provides an explicit path between ev-
ery communicating device. This becomes prohibitively
expensive when connecting thousands of processors”
[14].

To summarize, low-dimensional massively parallel
computers with full connectivity for nodes in each di-
mension, such as generalized hypercubes, are very de-
sirable because of their outstanding topological proper-
ties (e.g., extremely small diameter and average intern-
ode distance, and immense bisection width), but their
electronic implementation is a Herculean task because
of packaging (and primarily wiring) constraints. There-
fore, the introduction of pioneering technologies for the
implementation of such systems could give life, for the
first time, to scalable and feasible computing platforms
capable of very high performance. This is our main ob-
jective. We have chosen a combination of electrical and
free-space optical technologies to satisfy this objective.
Our free-space optics approach results in a dramatic re-
duction in the number of wires. There is another major
drawback for pure electrical implementations of sys-
tems with thousands of processors; processor speeds
increase much faster than memory and interconnection
network speeds, and therefore there is an utmost need
for the development of very advanced memory-latency
hiding mechanisms, namely prefetching, cache coher-
ence, multithreading, and relaxed memory consistency.
However, mitigation of the memory-latency problem is
possible if free-space optical technologies are used for
the implementation of large, almost fully connected,
point-to-point interconnection networks.

Optical technologies have been enlisted before in
the design of parallel computers [1,8,10,21]. However,
past efforts were often plagued by large power con-
sumption (often due to redundant broadcasts), ineffi-
cient reconfiguration schemes with mechanical com-
ponents that did not match electronic speeds, unreli-
ability, strict alignment requirements, large complex-
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ity prohibiting scalability, etc. Also, interconnects with
wavelength selectivity for channel allocation have been
under extensive study recently [1,8,16].

An optical crossbar-like multichannel switch is em-
ployed in [21] to support full connectivity in 1D sub-
systems for the implementation of a “hypermesh”. A
single fiber is used with WDM techniques to imple-
ment permutations among all nodes in the subsystem.
The maximal size of the WDM optical crossbar is lim-
ited to only 16 nodes for the foreseeable future due
to constraints on wavelength tunability with a single
fiber. To build a massively parallel hypermesh machine,
one must use many smaller WDM optical switches ar-
ranged into a chosen network architecture. Such a ma-
chine, however, may be slow in data transfers, routing
may become cumbersome, and the cost and packag-
ing complexity of the interconnection network may
be prohibitively high. On the other hand, our design
is scalable, has very low packaging complexity, uses
fast point-to-point interconnection technology, and is
characterized by low power consumption. The latter
design can implement not only permutations among
the nodes but also more powerful communications op-
erations such as multicasting, broadcasting, all-to-all
personalized, etc. Optical hypermeshes can implement
a class of systems that are a subset of our optics-based
generalized hypercube architecture.

Other proven architectural features, in addition to
the chosen interconnection network technologies, are
required for the success of any proposed system. DSM
systems already dominate the massively parallel pro-
cessing field [4,11] because the simultaneous incor-
poration of the message-passing and shared-memory
communication paradigms introduces versatility in pro-
gramming [4,12]. Around the year 2005, 8- to 16-way
multithreaded microprocessors are expected to be com-
mon [9,13]. A DSM system with thousands of proces-
sors then may be handling simultaneously hundreds of
thousands to a million threads, thus making the prob-
lems of cache coherence, debugging, scheduling, and
performance monitoring extremely difficult to handle
[9]. Hardware/software codesign will be needed to de-
velop relevant solutions for such systems.

To summarize, we strongly believe that free-space
optical technologies will have a very significant influ-
ence on massively parallel processing because of re-
duced packaging complexity that facilitates the con-
struction of powerful systems with increased connec-

tivity. Optical technologies employing simultaneously
TDM and WDM techniques eliminate the need for
wires in the implementation of communications chan-
nels, and could be used to implement densely popu-
lated, fully connected BBs with large numbers of pro-
cessors and small packaging complexity. Ours is a metic-
ulous effort towards formulating a relevant, attainable
objective and presenting a viable solution to fulfill this
objective. This effort covers innovative architectures,
feasibility analysis for corresponding designs, applica-
tions development, and performance evaluation
[30,31].

Our paper is organized as follows. Section 2 presents
the basic architecture of our NSF/DARPA/NASA-
funded New Millennium Computing Point Design. Sec-
tion 3 contains a detailed description of our design
for a system capable of 100 TeraFLOPS by the year
2005. Overall performance characteristics of this sys-
tem and a feasibility analysis are also included. Sec-
tion 4 presents an analysis for the optical component of
the interconnection network. Section 5 contains perfor-
mance results for some important computation-
and/or communication-intensive problems. Finally,
conclusions are presented in Section 6.

2. Basic architecture

Our architecture encompasses a 2D interconnection
network that employs electrical and optical technolo-
gies. Section 2.1 presents the structure of the 1D build-
ing block (BB) and issues related to its implementation.
The 2D complete system is constructed by repeating
this 1D BB in two dimensions, and also incorporat-
ing additional glue logic. Section 2.2 describes the 2D
complete structure.

2.1. 1D building block

Our basic design takes advantage of free-space opti-
cal technologies to produce a 1D fully connected, scal-
able BB capable of implementing bit-parallel commu-
nications channels. The first objective is to produce a
low-cost, powerful, free-space, reliable, point-to-point
communications system of low packaging complexity
that incorporates some guided-wave concepts. Guided,
planar, optical interconnects can produce a robust sys-
tem with built-in optical filtering at the expense of sys-
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Fig. 2. Block diagram for part of the 1D BB.

tem complexity [22]. On the other hand, free-space in-
terconnects are relatively simple to implement. How-
ever, they are more prone to system vibrations and
source/detector misalignment. Misalignment problems
are solved gracefully in our design, as shown in this
section. Free-space interconnects possess an energy-
bandwidth product which is larger than their electronic
counterpart [3].

Part of the BB is schematically shown in Fig. 2. It
is a 1D array of 8-PE cards attached to an inexpen-
sive clear plastic/glass bar that provides alignment for
optical transmissions. Each card carries the entire pro-
cessing and memory power of eight processors fully in-
terconnected via an electronic crossbar. This approach
was chosen because of the high efficiency of small elec-
tronic crossbars. Each card is interfaced with optical
transmitter/receiver modules and attached prismatic el-
ements for inter-card data transfers, and the destination
address for a data transfer is decoded to determine the
prismatic element and associated modules to be used
for the appropriate path.

In an optical cycle, 32 bits of information can be sent
in parallel from one card to another via a card-to-card
(i.e., point-to-point) color-coded interconnect, using 32

Fig. 3. Basic format for 128-bit messages, assuming DSM addresses.

distinct colors (i.e., by the WDM technique); these 32
colors are the same for all of the cards. Actually, each
inter-card channel is 128 bits wide because of the cho-
sen format for messages (shown in Fig. 3), and there-
fore 128-bit information is transmitted each time (i.e.,
during a PE’s cycle) by utilizing four (i.e., 128/32)
optical cycles (i.e., by the TDM technique). All eight
PEs on a card share the same lasers and receivers for
inter-card transmissions, so that a PEPij on a given
card,i, and with positionj on the card, uses the same
color set of 32 wavelengths,λm, however with a differ-
ent RF carrier frequency (i.e., by the TDM technique).
To summarize, the WDM and TDM techniques are used
as follows:
• WDM with 32 wavelengths for bit-parallel transmis-

sions involving 32 bits;
• TDM with four communication cycles to implement

128-bit transmissions, where each of these four cy-
cles is of the aforementioned WDM type implement-
ing 32-bit transmissions; and

• TDM with eight communication cycles, so that the
eight PEs on a card can share the optical transmit/
receive modules assigned for the exchange of infor-
mation with another 8-PE card.
The chosen prismatic element for a data transfer de-

termines a specific optical path via the set of reflec-
tors used between the transmitting and receiving cards.
Since any two cards communicate via dedicated pris-
matic elements, multi-access node communication is
available. Common colors from different cards are de-
tected by different detector arrays at different locations
on the card’s interface. Separation among the messages
sent to a given card from other cards is made by separat-
ing the fields of view, and therefore activating different
detectors on the receiving card. The receiver demul-
tiplexes the information and sends it to the destined
PE on the given card. The receiver may utilize a co-
herent detection system to increase its sensitivity by
employing a distributed optical clock. The clock fre-
quency may be transmitted on a color different from
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the information or may be incorporated in the address
field.

2.2. Complete 2D system

Extension of the 1D fully connected BB into a 2D
configuration is now in order. In addition to interfacing
a horizontal clear plastic bar (used for interconnects in
the first dimension), each 8-PE card now also belongs to
a similar 1D structure in the second dimension. There-
fore, each card also interfaces a vertical plastic bar. The
clear plastic columns are patterned with small metallic
reflectors and prismatic interfaces, as for the horizontal
bars. All in all, the system may be viewed as a 2D array,
with rows and columns containing fully interconnected
PEs. It behaves like a 2D generalized hypercube; each
node of the generalized hypercube contains eight fully
interconnected PEs (they are fully interconnected via
an on-card electronic crossbar network).

Assume, as earlier, 128-bit channels and a commu-
nications frequency for each PE offc MHz. With the
TDM technique applied twice (as described earlier)
each laser source of hue,λm, has to operate at 8×
(128/32)fc = 32fc MHz, in order to facilitate simul-

Fig. 4. Employing TDM and WDM techniques for inter-card transmissions (design for the year 2005 based on SIA projections for semiconductor
components).

taneous inter-card data transfers involving all eight PEs
on the card. For example, according to SIA (Semicon-
ductor Industry Association) projections for the year
2005 [13], fc will be 375 MHz (i.e., frequency for
inter-chip data transfers), and therefore lasers operating
at 32× 375 MHz= 12 GHz will then be needed. Such
lasers and corresponding multiplexers/demultiplexers
already exist [19,20]. A typical clear plastic has a trans-
mission factor of 0.25 dB/cm. A typical coherent detec-
tion system is able to detect−30 dB of optical signals,
which is translated to a maximum optical distance of
30/0.25=120 cm. Assuming that the distance between
adjacent cards on the same side of the bar is about 5 cm
(about 2 in.) and the thickness of the plastic bar is equal
to 2.5 cm, about 40 cards with up to 320 PEs (i.e., 40
cards× 8 PEs/card) can be accommodated in the BB.
Fig. 4 shows an implementation for the card interface
that follows this logic, assuming a 2D system with 40
cards per dimension. This complete system may con-
tain up to 402 × 8 = 12 800 PEs. If the plastic bars are
replaced by more transparent material, such as glass,
the system can accommodate much larger numbers of
PEs. In addition, a DMA controller is part of each PE
in our detailed design, as shown in Fig. 5 for the year
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Fig. 5. PE schematic diagram (design for the year 2005 conforming
to SIA projections).

2005 implementation (the numbers of pins for the chips
conform to SIA projections); large numbers of DMA
controllers are essential for very high, sustained per-
formance. We assume memory modules with two ports
that permit simultaneous load/store by the CPU and the
communication coprocessor.

3. Case study: 100 Tera(FL)OPS performance

Our design is the result of a project funded jointly
by NSF, DARPA, and NASA, under their New Millen-
nium Computing Point Design program that has funded
eight projects nationwide. The objective of this federal
program is the design and feasibility analysis of mas-
sively parallel computers that could deliver 100 Ter-
aFLOPS performance by the year 2005. They believe
that the success of this aggressive program will lead by
the year 2007 to the development of computers capable
of PetaFLOPS (i.e., 1015 floating-point operations per
second) performance. In contrast, the expected evolu-
tion in computer architecture and semiconductor tech-
nology will not make this possible before the year
2015!

Based on SIA projections [13], commodity micro-
processors will be capable of 10 GigaFLOPS by 2005,
and therefore we need at least 10 000 processors for
a system capable of delivering 100 TeraFLOPS peak
performance. We assume 10-way multithreaded pro-
cessors of 10 GigaFLOPS and 1 GHz each (SIA pro-
jections). We can assume CPUs with 10 floating-point
units because of their 1 GHz clock and their 10 GFLOPS
performance. Each processor operates on 64-bit num-
bers.

Table 2
Bandwidth of communication links, including all associated
latenciesa

Type of data transfer Bandwidth

CPU/local-memory 30 GB/s
CPU/RMSC 1.540 GB/s
CPU/RMAC 1.075 GB/s
Memory/memory via DMA 6 GB/s
Bisection bandwidth 31.104 TB/s

aAll CPU to/from memory bandwidths are for single data trans-
fers (RMSC: remote memory on the same card; RMAC: remote mem-
ory on another card).

For such a massively parallel system to be viable, its
physical volume (i.e., size) must be reasonably small,
and its communications and I/O capabilities should
match (within an order of magnitude) the speed of its
computation engine. As emphasized earlier, free-space
optical technologies eliminate the need for wires in
the implementation of communication channels, and
could be used to realize fully connected BBs with large
numbers of processors and small physical volume. Our
design takes advantage of free-space optical technolo-
gies to produce a 1D fully connected and scalable BB,
as described in Section 2. Since the complete system
is a 2D configuration of 8-PE cards, we need a BB
with 36 cards; the four additional cards in each BB of
Section 2 can be used for I/O and/or fault tolerance.
Then, the total number of computing PEs is 362× 8
or 10 368 (for 103.68 TeraFLOPS peak performance).
This BB is actually a fully connected system of 288
computing PEs (i.e., 36 cards× 8 PEs/card) because
the eight PEs on each card are fully interconnected via
an electronic crossbar network, and the bandwidth of
the optical interface is such that all eight PEs on the
card can be involved simultaneously in inter-card data
transfers without any performance degradation (due to
the TDM approach and the bit-parallel communica-
tion channels). Our system is scalable in terms of both
its architecture and the optics technology, and there-
fore further performance improvement is possible, if
desired.

Table 2 summarizes the performance characteristics
of the BB and the bisection bandwidth of the complete
system. It is easy to see the outstanding performance
of the system’s interconnection network. There cannot
be any realistic electronic implementation of an inter-
connection network that matches these characteristics.
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3.1. Feasibility analysis for optical components

Although the required number of 8-PE cards in the
BB is 36 for 100 TeraFLOPS performance, our anal-
ysis here is for 40 cards. The four additional cards in
each BB could be used for other services (e.g., I/O and
fault tolerance), or to increase the size of the proposed
system to 12 800 processors for 128 TeraFLOPS peak
performance.

3.1.1. Optical Interface
The optical interface is composed of prismatic ele-

ments, and two dedicated arrays of laser diodes (LDs)
and detectors arranged underneath each element. The
element is acting like a collimating lens that directs the
light out of 32 lasers to the detector array on the des-
tination card through the appropriate reflectors. The
same optical element focuses the incoming light from
the sender onto the dedicated detector array. Each de-
tector in the 32-element array is equipped with a color
filter that allows only a particular hue to pass through.
In this way, we separate further the 32 bits from one
another. With current technology, each LD or detector
could occupy a square area of 0.5 mm× 0.5 mm (in-
cluding its electrodes), and the entire area occupied by
the 32 LD/detector pair array will be 1 mm× 16 mm.
Since the interface extends throughout the width of the
card (about 20 cm), we may divide the 39 LD/detector
pair arrays into 10 groups. Therefore, the width of the
optical interface, as viewed from above, will be about
4 mm.

3.1.2. Light sources and detectors
The light sources will be LDs made of GaAs at wave-

lengths between 0.8 and 0.9mm. The GaAs technol-
ogy is a mature technology which is able to produce
high-speed lasers at a reasonable cost. The detectors
will make use of silicon technology. Each detector is
equipped with a thin layer which serves as an opti-
cal filter. The filter for an array of detectors is easily
made in an incremental manner. Chromatic dispersion
is negligible at these distances (only 10−11 s for 1 m of
propagation).

3.1.3. Optical/electrical power consumption
Our analysis here is very conservative, even with cur-

rent optical components. Each LD puts out an average

of 250mW of optical power. This power is smaller or
larger for short or long data transmissions, respectively.
Each card transmits information to each of the 39 other
cards in the BB via 32 dedicated LDs, and radiates, on
the average, 39× 32× 250mW = 312 mW of optical
power. The electrical-to-optical power conversion ra-
tio is normally 30%, thus the RMS (root-mean-square)
value of the electrical power consumption for each card
is about 1 W. Expected improvements in optoelectronic
devices will further enhance these numbers.

4. Analysis of the optical interconnection network
in the BB

Here we present results of analysis, simulation, and
feasibility study for the optical interconnection net-
work of our design.

4.1. Optical filters

A Fabry–Perot (FP) etalon is used as an optical fil-
ter [23]. In the case of a passive FP filter, the trans-
mission characteristics are wavelength-dependent, as
the filter transmits only frequencies that correspond to
the longitudinal mode frequencies. For a FP filter, the
channel spacing can be as small as 31νFP, where1νFP
is the spectral width of the filter. By usingF = 100
(F is the finesse of the filter), the maximum number
of channels,N , for the FP filter is restricted byN <

π(
√

R/3(1 − R)) with R being the reflectivity of the
mirrors. A filter withR = 99% reflecting mirrors can
be used to select up toN = 104 channels, which is
much larger than the 32 bits (colors) per word used in
our case.

4.2. Simulation of a simple free-space optical
interconnect

First, an alignment tolerance is chosen between the
lenses at the transmitting and the receiving ends. Then,
the displacement as a function of lens separation (d12)
is computed. The tolerance reflects the mechanical ac-
curacy and operational stability that must be achieved
with the mounting of the component. We will use a
Gaussian beam propagation method [23] to account
for the beam divergence. The overlap integral between
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the optical beam and the aperture of the collection lens
is assessed to determine the cross talk. A second over-
lap integral between the Gaussian beam focused by the
collection lens and the detector aperture determines the
power delivered to the detector. The collected power
and cross talk give values for the received signal con-
trast that affects the bit error rate, the signal-packing
density, and the optical power required for the laser
diode.s

4.2.1. Bit error rate and signal-packing density
The bit error rate (BER) indicates the required source

power and signal-to-noise levels necessary to achieve
a desired signal fidelity, and represents an important
measure of system performance. Unlike optical com-
munication links where BER< 10−9 at GHz-transmis-
sion rates, here we choose BER< 10−17. The require-
ments for achieving this BER can be determined from
communication theory [18]. With Gaussian statistics
we find that the probability of error (PE) is given by

PE∼= 1

(2πQ)1/2
e(−Q2/2),

whereQ is a normalized number that quantifies the
quality of the current signal.

In order to achieve a BER of 10−17, we needQ =
8.5. The average optical power,P , required from a
source to drive a receiver at a desiredQ and BER is
given by

P = 1 − r

1 + r
Q

hc

λe
〈i2

NA〉1/2
(

N

η

)
,

wherer is the ratio of currents when the detector is
in the low-illumination state and the high-illumination
state,〈i2

NA〉1/2 the RMS current noise generated by the
detector and preamplifier circuit,η the product of the
quantum efficiency of the detector and the efficiency
of the optical system,N the system fanout, andhc/λe

is the voltage source equivalent of the optical field;
hc/λ the photon energy ande is the electron charge.
Typical experimental quantum efficiencies are on the
order of 0.7–0.8. In addition, the contrast parameterr

will decrease with optical and electrical cross talk and
must also be determined to assess its effects on BER.

Fig. 6. The BER, in the logarithmic scale, as a function of the angular
tilt for the most distant data transfers.

4.3. Alignment of the free-space optical system

Alignment of a free-space optical system is critical to
its operation. We carried out a simulation of our optical
system for 10 GHz transmission frequency. The math-
ematics that drive our simulation follow in Sections
4.3.1 and 4.3.2. The major constraint in our system is
the angular tilt of the optical beam with respect to its
original path. A value of 0.1◦ was found to optimize
the system. A larger angular tilt will require an increase
in the lens radius and, consequently, the system dimen-
sions will increase too. On the other hand, we cannot
compensate for the tilt by merely increasing the laser
power because of the exponential behavior of the curve.
In Fig. 6, we show the BER for laser power Plas=5 mW
as a function of the angular tilt. We also show the BER
as a function of the laser power in Fig. 7. Some of the
optimized parameters are: the distance of propagation
is 1 m, the angle of alignment tolerance is 0.1◦, the re-
flective power loss is 0.25 dB/cm, the laser wavelength
is 0.83mm, the detector radius is 10mm, theQ param-
eter of the receiver is 8 for a BER of 10−17, the RMS
current noise generated by the detector and preampli-
fier circuit is 814.6 nA for a bit rate of 10 Gbit/s; the
relative received optical power becomes with the sim-
ulation 0.27.

We analyze below the possible causes for the mis-
alignment and assess the tolerance for each case, based
on an assessment of the BER.
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Fig. 7. The BER, in the logarithmic scale, as a function of the laser
power.

4.3.1. Offsets in an integrated planar-optics
interconnect

We resort to Fig. 8 in assessing the misalignment in
the system. The offset1xi in the beam path at theith
reflection point is

1xi = ti [ tanθ − tanθ0],

whereθ0 is determined by the ideal path that is not
affected by any other offset. The induced transverse
offset1yi which is caused by an angular offsetγ is

1yi = 2ti
tanγ

cosθ
.

Angular offsets also change the path length of the beam
inside the substrate. From Fig. 8, we find that the path
length from the input to theith reflection point is

zi = ti

cosθ cosγ
.

Fig. 8. Section of the substrate showing the path of light between two
successive reflections.

This difference in path length results in a change in
the spot size, caused by diffractive spreading at theith
reflection, and affects the efficiency. The third effect
of angular offsets is a change in the eccentricity and
orientation of the beam shape on the surface of the
optical bar. Referring to Fig. 8, we find that the major
axis of the elliptic spot is

2a = 2s

cosω
, (1)

wheres is the spot size andω = cos−1[ cosθ · cosγ ].
Thus, as1θ or γ increases, cosω decreases and the
major axis and the eccentricity increase. This spreading
of the spot may decrease the efficiency, depending on
the relative sizes of the beam and the device, and on the
intensity distribution of the beam. Whenγ = 0,ω = 0
and the major axis of the ellipse remains on thex-axis.
But if γ 6= 0, then the center of the ellipse moves to the
point (x, y) and the major axis of the ellipse is along
c. This new orientation of the major axis is found by
a rotation ofξ rad, whereξ = tan−1[ tanγ / sinθ ].
Depending on the shape of the element or receiving
port of interest, this rotation of the ellipse may affect
the efficiency.

4.3.2. Efficiency and alignability of the integrated
planar-optical system for the case study

To obtain the efficiency of the system, we need to
know the intensity distribution of the beam. We assume
a circularly symmetric Gaussian beam. The intensity of
such a beam with a total powerP0 can be expressed as

I (x, y) = 2P0

πs2
0

exp

[
−2(x2 + y2)

s2
0

]
.

Here,s0 is the spot size of the beam at the source, andx

andy are the coordinates of the intensity distribution.
Considering the angle of incidence and the offsets in the
integrated planar-optical system (IPOS), we can show
that at theith reflection point the intensity becomes

I (x, y) = 2P0 cosθ

πs2
i

× exp

{
−2[(x − 1h)2 cos2θ + (y − 1y)2]

s2
i

}
.

Here,1h = 1xi + 1x, si is the diverging spot size,
with
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si = s0 + tanβ
ti

cosθ0

andβ is the beam divergence.
At this point the major axis of the beam’s elliptic

profile on the IPOS surface is aligned with thex-axis
of the IPOS and its elements. Whenγ offsets are added,
however, the major axis of the ellipse is rotated away
from thex-axis of the IPOS. In the rotated coordinate
system of the ellipse, the totalx andy transverse offsets,
h andk, respectively, become

1h = 1k sinξ + 1h cosξ,

1k = 1k cosξ − 1h sinξ.

In addition to introducing1yi , the offset also changes
the angle of propagation of the beam. The new angle is
defined in Eq. (1). Usingw, h, andk, we get the final
form of the intensity distribution

I (x, y) = 2P0 cosω

πs2
i

× exp

{
−2[(x − h)2 cos2ω + (y − k)2]

s2
i

}
,

wherex andy now refer to the directions of the major
and minor axes, respectively, of the elliptic spot.

We find the efficiency at the output port by setting
i = N and integrating (A9) over the area of the element
or port and then dividing by the total beam powerP0.
For our case study with circular elements, we obtain

η = 2 cosω

πs2
i

∫ d

−d

exp

[
−2(y − k)2

s2
i

]

×
{∫ (d2−y2)1/2

−(d2−y2)1/2

× exp

[
−2(x − h)2 cos2ω

s2
i

]
dx

}
dy.

One can perform the integration onx analytically and
the integration ony numerically. This value is then used
in assessing the BER.

To conclude, free-space optical systems are usually
limited by system alignment and stability. We analyzed
such a free-space optical system and found that the
limiting factor is the angular tilt of the optical path.
Owing to the highly dense interconnection scheme in

our design, we were able to achieve very high bit rates
with very moderate and practical angular tilt values.

5. Performance evaluation

Performance evaluation results are presented here
for our case-study system capable of 100 TeraOPS, fo-
cusing on its communications capabilities and its im-
plementing frequently used computation- and/or
communication-intensive algorithmic kernels.

5.1. Data communications

Our general-purpose MIMD system targets the ma-
jority of the computation- and communication-intensive
applications. The communications capabilities of its
optical interconnection network resemble those of the
extremely powerful 2D generalized hypercube, which
is by far much better than any interconnection network
that has ever been built for massively parallel process-
ing. The generalized hypercube can emulate in optimal
manners (i.e., with dilation and congestion of source
edges equal to 1) the majority of the widely used topolo-
gies, such as binary hypercubes,k-aryn-cubes, etc. In
addition, the incorporation of efficient memory-latency
hiding techniques (e.g., cache coherence and prefetch-
ing) then becomes a viable task because of the system’s
extremely small diameter (i.e., 2), immense bisection
width, and high-speed network. Similar tasks are of ex-
traordinary difficulty for pure electronic designs of the
same size. Our complete DSM design is consistent in
terms of inter-PE data-transfer speeds and dense con-
nectivity patterns throughout, thus supporting scalabil-
ity and ease of mapping application tasks to the system.
Other designs are characterized by limited bandwidth
and substantial latencies that result in unpredictable
performance. In contrast, the very efficient and uni-
form interconnection of resources in our system makes
performance prediction much more accurate. Also, we
expect algorithms for our system to be developed eas-
ily, by assuming an MIMD fully connected architecture
as part of the programming model.

Wide usability of our design is further substantiated
here through additional performance evaluation. Theo-
retical analysis and simulations were used for a highly
accurate performance evaluation of the proposed sys-
tem. For a system to potentially have a niche in the



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

FUTURE795
12 S.G. Ziavras et al. / Future Generation Computer Systems 795 (2000) 1–18

massively parallel processing field, it must provide di-
rect support for some very frequently used commu-
nication operations that are very costly to implement
by repeating some of the basic communication primi-
tives. Such operations are: multicasting, broadcasting,
reduction using associative operators, prefix computa-
tions, and barrier synchronization. Other less frequent
operations are one-to- all personalized (i.e., scattering)
and its dual single-node gather communications, and
total exchange. Our results show that these communi-
cations can be carried out consistently and efficiently
throughout the entire system.

More specifically, for the implementation of one-to-
all broadcasting, all-to-all broadcasting, one-to-all scat-
tering, and all-to-all scattering, the optimal techniques
in [7] were used for the generalized hypercube of 8-PE
cards. A balanced spanning tree rooted at the node with
address 0, which is employed by the latter techniques,
is created at static time. For more than one source
nodes, appropriate transformations are applied at run
time in a distributed fashion in order to generate span-
ning trees rooted at other nodes; a sophisticated algo-
rithm performs the latter transformations in constant
time. For the aforementioned all-to-all communication
operations, messages originating at individual nodes
never compete for the same edge at the same time. We
have also developed algorithms for multicasting that
use the same spanning tree as the basis. For the sake of
brevity, details of these implementations are omitted.

5.2. Implementation of algorithmic kernels

The efficient implementation of application algo-
rithms on the proposed system is vital for its success.
This task benefits tremendously from the versatility of
the communications structure. For a highly accurate
evaluation of the system, its performance is also es-
timated here for the kernels of important algorithms
that were assigned to the New Millennium Computing
Point Design groups, for the evaluation of their designs,
during the PetaFLOPS Architecture Workshop (April
1996).

Such kernels are frequently encountered in scien-
tific codes. In the following, letn = 108 and the arrays
be appropriately dimensioned. The algorithmic kernels
and their expected implementation on our system fol-
low.

5.2.1. Algorithm I: Vector update or SAXPY loop
This algorithmic kernel is

do i = 1, n

c(i) = π ∗ a(i) + b(i)

enddo

whereπ = 3.141592653589793.
We assume double-precision (i.e., 8-byte) floating-

point arithmetic for all the kernels. Also, the array data
are uniformly distributed in the PE memories (i.e., each
PE containsd108/10368e = 9646 elements), each
arithmetic operation requires one clock cycle, and the
CPU contains 10 floating-point units (FPUs), supports
memory interleaving, fetches/stores ten 8-byte words
from/to memory per cycle, and overlaps FPU opera-
tions with load/store operations. We can assume 10
FPUs in CPUs because of their 1 GHz clock and their
10 GFLOPS performance. All these assumptions con-
form to SIA projections. The execution time is given by

T I = 2tm + td + tc︸ ︷︷ ︸
α

+2tm + td︸ ︷︷ ︸
β

+
(⌈

9646

10

⌉
× 2 − 1

)
td︸ ︷︷ ︸

γ

+tm + td︸ ︷︷ ︸
δ

+ 964td︸ ︷︷ ︸
ε

,

wheretm the inverse of the inter-chip communications
frequency, which is 1/375 MHz=2.66 ns [13],tc the
CPU clock-cycle time (i.e., clock period), which is
1/1 GHz=1 ns,td the memory clock-cycle time, which
is 1/500 MHz=2 ns,α represents the time taken to fetch
and decode the first instruction,β the time taken for
the first set of 10 elements froma to reach the CPU,
over the 10-word wide data bus.γ represents the time
taken to fetch the remaining elements froma andb us-
ing memory interleaving (and loading 10 elements at a
time due to the 640-bit data bus). These fetch operations
fully overlap arithmetic CPU operations.δ represents
the time taken by the group of the first 10 stores into the
memory (these values first are stored in the local cache
as they are produced and then written back into the
memory when the data bus becomes available).ε rep-
resents the time taken to complete the remaining stores
in groups of 10 each time using memory interleaving.
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The amount of parallelism available in the program
is 2× 108 operations. The parallel execution timeT I

is 5.80ms and the execution rate (E-R) is 2× 108

operations/5.80ms = 34.48 Tera(FL)OPS (i.e., Tera-
Operations per second). The degradation in E-R, com-
pared to the peak performance of 103.68 TeraOPS, is
due to the heavy amount of load/store operations; de-
spite the application of memory interleaving, since the
number of memory accesses exceeds the number of in-
ternal CPU operations by 50%, it has very significant
effect. With prefetching into the data cache and leav-
ing the results in the cache, the execution rate for this
SAXPY loop approaches the peak rate.

5.2.2. Algorithm II: Large-stride vector fetch and
store

This algorithmic kernel is

do i = 1, n

b(121∗ i) = a(131313∗ i)

enddo

For Algorithm II, assume that each PE sends and re-
ceivesd108/10368e = 9646 elements of the arraya.
We also assume no bulk-data transfers (i.e., no use of
the DMA communications subsystem), simultaneous
load/store by the CPU and the communications co-
processor, and that each message contains an 8-byte
address (i.e., 64 bits long) field and an 8-byte ele-
ment froma (conforming to the format in Fig. 3). That
is, a PE containing a value ofa for a giveni calcu-
lates the address in the global address space of the el-
ementb(121∗ i) and sends the value ofa(131313∗ i)

to the corresponding processor (this global address is
contained in the address field of the message). The
non-involvement of DMA controllers is the result of
the irregular array stride and the rather small number
of array elements per PE compared to the total num-
ber of PEs (with 9646 elements per PE and a total of
10 368 PEs, all source messages for a PE may be going
to distinct PEs).

The amount of parallelism available is 108 opera-
tions. The total execution time is given by

T II = 2tm + td + tc︸ ︷︷ ︸
α

+9646× (2tm + td)︸ ︷︷ ︸
β

+ tPE-to-remote memory︸ ︷︷ ︸
γ

,

whereα represents the time needed to fetch and de-
code the instruction,β the time needed to fetch the el-
ements from the local memory individually (memory
interleaving cannot be applied because of the irregular
array stride), to calculate each time the address of the
next element to fetch, and to prepare the messages by
appending 64-bit destination addresses, all these oper-
ations are performed in parallel.γ represents the time
needed to send the value of an element froma, in this
case the last value, to a remote memory on another
8-PE card. It is derived using the values oftd, tc, and
tm. Previous data transfers overlap local-memory fetch
operations.

The value oftPE-to-remote memoryis 14.89 ns, and there-
fore T II = 70.76ms. Also, the execution rate (E-R) is
(108 elements× 8 Bytes/element)/70.76ms = 11.30
TeraBS (i.e., Tera-Bytes per second). For the sake of
comparison, the maximum network bandwidth for non-
sequential memory accesses is obtained from Table 2
and is equal to 1.075 GigaBS/PE×10 368 PEs= 11.14
TeraBS; however, the latter does not distinguish be-
tween addresses and data in the messages, and therefore
the actual data bandwidth is 11.14/2 = 5.57 TeraBS
for 64-bit data in 128-bit messages. The improvement
of the E-R for this algorithm, when compared to the
aforementioned maximum bandwidth, is due to the
pipelining of multiple messages along the communi-
cation paths.

5.2.3. Algorithm III: Irregular gather/scatter
This algorithmic kernel is

/∗ This loop initializesi dx with pseudo-random num-
ber modn. ∗/

do i = 1, n

i dx(i) = mod(13131313∗ i, n)

enddo
/∗ Tested loop.∗/
do i = 1, n

b(i dx(i)) = a(i)

enddo
For Algorithm III, elements of the arraya are ac-

cessed sequentially. Similarly to Algorithm II, how-
ever, the irregular stride for destination elements of the
arrayb does not permit DMA transfers. Therefore, each
PE fetches elements of the arraya in groups of 10 from
its local memory, but sends out only the value of one
element at a time. The execution time is
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T III = 2tm + td + tc︸ ︷︷ ︸
α

+ 2tm + td︸ ︷︷ ︸
β

+9645tm︸ ︷︷ ︸
γ

+ tPE-to-remote memory,

whereα represents the time needed to fetch and decode
the tested-loop instruction,β the time needed to fetch
the first set of 10 elements ofa from the local memory
(memory interleaving can be used because sequential
elements are fetched). Simultaneously, destination ad-
dresses are produced (the implementation of the opera-
tions in the first loop is also included).γ represents the
time needed for all but the last value to leave the PE.
tPE-to-remote memoryis the time needed for the last value
to reach the memory of its corresponding destination
PE.

This time is equal to 25.75ms. It results in an
execution rate for the tested loop of(108 elements×
8 Bytes/element)/25.75ms = 31.06 TeraBS. Compa-
red to Algorithm II, the much improved execution rate
is the result of accessing sequential elements from the
array a. In fact, this E-R is much better than the
maximum of 5.57 TeraBS for non-sequential local-
memory accesses, because of sequential accesses for
a and the pipelining of messages along communica-
tion paths.

5.2.4. Algorithms IV and V: 3D Jacobi kernels
These algorithmic kernels are typical of many 3D

physical modeling codes. They are

dok = 1, nz
do j = 1, ny

do i = 1, nx
dom = 1, nc

do mp= 1, nc
a(i, j, k, m) = u(mp, m) ∗
(b(i + 1, j, k, mp) + b(i − 1, j, k, mp)
+b(i, j +1, k, mp)+b(i, j −1, k, mp)
+b(i, j, k+1, mp)+b(i, j, k−1, mp))
+ a(i, j, k, m)

enddo
enddo

enddo
enddo

enddo

For Algorithm IV, we execute the 3D Jacobi kernel
with nc = 5 andnx = ny = nz= 1000. For Algorithm

V, we execute the 3D Jacobi kernel withnc = 150 and
nx = ny = nz= 100.

Algorithms IV and V represent 3D grid Jacobi ker-
nels with each(i, j, k) node being a space supern-
ode withnc × nc interior nodes. This computation is
a convolution-and-reduction operation applied for all
values ofmp for a given(i, j, k, m). We can observe
the data reuse, for all values ofm, in the terms multi-
plied byu(mp, m). The corresponding sum ofb terms
is computed only once for each(i, j, k, mp) and is
used in all iterations ofm (i.e., nc times). The num-
ber of iterations involving all three “space” indicesi,
j , andk is larger than the number of PEs for both algo-
rithms, so we distribute the corresponding three outer
loops among all PEs. Therefore, each PE performsθ =
dnx·ny·nz/10368e iterations involving these three outer
loops. The number of these iterations for Algorithms
IV and V is 96 451 and 97, respectively.

For a given(i, j, k), a PE performs the following
operations:
• Five additions involving six elements fromb for any

given value ofmp. Sincempassumesncvalues, these
are 5· nc additions. We assume that the results of
these additions are stored in the local cache in order
to be (re)usednc times.

• For a given value of(m, mp), one multiplication (in-
volving u(mp, m) and one of the aforementioned
summation results) and one addition (involving the
result of the multiplication and the previous value of
a(i, j, k, m)). These operations are performednc2

times, the same as the total number of distinct val-
ues for the pair(m, mp).
Therefore, each PE performs a total of(5·nc+nc2)θ

additions andnc2 · θ multiplications. We can assume
that the values ofb, u, anda are prefetched into the
cache. The values of elements fromb do not change
during the computation and data transfers between pro-
cessors fully overlap computations. To better facilitate
these data transfers, it is wise to choose a 3D grid map-
ping of the arraysa andb onto the processors. This
mapping can be implemented in an optimal manner
because of the GH’s rich interconnection network. For
example, we can view our generalized hypercube of
362 (i.e., 1296) 8-PE cards as a logical 3D cube of size
16× 9× 9. We partition the 3D(i, j, k) grid for map-
ping onto the logical 3D cube. Only local data transfers
between adjacentGH nodes or PEs on the same card
are then needed to get elements ofb corresponding to
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offsets of±1 in the dimensions traversed byi, j , and
k. However, these data transfers are carried out trans-
parently because of predictable data prefetches using
DMA control and a very large number of CPU compu-
tations before external data is used, and therefore they
do not contribute to the total execution time. It is easy
to see that arithmetic operations fully overlap opera-
tions that store the results into the local memory (the
results may first be stored into the local cache), except
for the last set of 10 stores. The execution time of each
algorithm is then given by

T IV or V = 2tm + td + tc︸ ︷︷ ︸
α

+(5nc+ 2nc2)

⌈
θ

10

⌉
tc︸ ︷︷ ︸

β

+ td,

whereα represents fetch and decode time for the first
instruction, andβ the total execution time for arithmetic
operations by each PE. The denominator is the speedup
resulting from the 10 FPUs in each CPU. There is no
overhead for fetching data because of prefetching them
into the cache. The last term represents the time for
storing the last 10 results (the actual number of results
is the remainder ofnc2/10 if different from 0, or 10
otherwise, corresponding to them andmp loops; it is
5 and 10 for Algorithms IV and V, respectively).tm is
not added because of memory interleaving.

Because of the 10 FPUs in each PE and the fact that
nc = 5 for Algorithm IV, operations corresponding to
two consecutive values for the indexm are performed
each time. The execution times areT IV = 723.46ms
andT V = 457.51ms. The amount of parallelism avail-
able in Algorithms IV and V is given bynx·ny·nz(5·nc+
2·nc2). It is 75×109 and 45.75×109 operations for Al-
gorithms IV and V, respectively. Therefore, the execu-
tion rates for Algorithms IV and V are 103.66 TeraOPS
and 100.00 TeraOPS, respectively. Both execution rates
are close to the peak rate of 103.68 TeraOPS because
of data prefetching and fully overlapping computations
and communications.

The expected execution times for all algorithmic ker-
nels are summarized in Table 3. These results further
prove the suitability of our case-study system for 100
Tera(FL)OPS performance.

Table 3
Performance results for algorithmic kernels (Algorithm I: SAXPY
loop; Algorithm II: large-stride vector fetch and store; Algorithm III:
irregular gather/scatter; Algorithm IV: Jacobi 1; Algorithm V: Jacobi
2)

Algorithm Execution time(ms) Execution rate

Algorithm I 5.80 34.48 TeraOPS
Algorithm II 70.76 11.30 TeraBS
Algorithm III 25.75 31.06 TeraBS
Algorithm IV 723.46 103.66 TeraOPS
Algorithm V 457.51 100.00 TeraOPS

5.2.5. Further performance results for altered Jacobi
kernels: Algorithms VI and VII

We have altered the Jacobi kernel of the preceding
subsection to heavily test the vector and, primarily, the
communications capabilities of our design. The new
algorithm is

dok = 1, nz/∗ dimensionz ∗/
do j = 1, ny /∗ dimensiony∗/

it do i = 1, nx /∗ dimensionx∗/
dom = 1, nc /∗ iteration number∗/

do mp= 1, nc /∗ different species∗/
b(i, j, k, mp) = u(mp, m) ∗
(b(i + 1, j, k, mp) + b(i − 1, j, k, mp)
+b(i, j +1, k, mp)+b(i, j −1, k, mp)
+b(i, j, k+1, mp)+b(i, j, k−1, mp))
+ a(i, j, k, mp)

enddo
enddo

enddo
enddo

enddo

For Algorithm VI, we execute the altered 3D Jacobi
kernel withnc = 5 andN = nx = ny = nz = 1000.
For Algorithm VII, we execute the kernel withnc =
150 andN = nx = ny = nz = 100. We cannot as-
sume data reuse and heavy prefetching with these new
kernels because values for the arrayb are produced con-
tinuously. The new Jacobi kernel requires a tremendous
amount of communication operations. Every innermost
iteration requires new data transfers among PEs.

For Algorithm VI, we restructure the loopsj andi

after loop exchange in order to take advantage of the
vector capabilities (i.e., via memory interleaving) of
our design. Assume the 2DN ×N array corresponding
to these two indices, as shown in Fig. 9 (I andJ replace
i andj , respectively).
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Fig. 9. The 2DN × N array corresponding to the loopsj andi in
Algorithm VI.

Assume the following parameters:
• NDIAGS = 2N − 1: the number of diagonals.
• LDIAG: the length of a diagonal.
• (I, J ): indices for traversing diagonals.
• (ISTART,JSTART): starting indices of diagonals.
The average vector length of a diagonal is given by

number of computed points

number of diagonals
= N2

2N − 1
' N

2

The new Jacobi kernel after loop exchange becomes

ISTART=0
JSTART=1
LDIAG=0
dok = 1, N /∗ divided among. . . ∗/

do mp= 1, nc /∗ . . . the processors∗/
dom = 1, nc /∗ serial loop∗/

do41 IDIAGS=1,NDIAGS
if (IDIAGS.LE.N) then/∗ for upper left∗/

ISTART=ISTART+1
LDIAG=LDIAG+1

else/∗ for lower right∗/
JSTART=JSTART+1
LDIAG=LDIAG−1

endif
I=ISTART+1
J=JSTART−1
do42 IPOINT=1, LDIAG /∗ vectorizes∗/

I=I−1
J=J+1
b(I,J,k,mp)=. . .

42continue
41continue

enddo
enddo

enddo

The loopsmand IDIAGS are serial. The loop IPOINT
vectorizes, so vectoring is applied when accessing the
2D arrayb(., ., k, mp)diagonally. We distribute the out-
ermost loopsk and mp among the PEs. However, a
subset of the PEs are used. More specifically, we use
maxk · maxmp = 5000 Pes, out of the 10 368 PEs
which are available. The arraysb(., ., k − 1, mp) and
b(., ., k+1, mp) are received from two other PEs at the
beginning of each iteration of the loopm and the chosen
5000 PEs are synchronized. Because of the transmis-
sion of these large arrays, the DMA controllers of the
PEs are employed. Each PE, except for those corre-
sponding tok = 1 andk = maxk = N , transmit their
arrayb(., ., k, mp) to both neighbors in dimensionk
corresponding tok − 1 andk + 1.

The total execution time is given by

T VI = tVI
comm+ tVI

comp,

where the two terms represent total communication
and computation times, respectively. The time 7tcdnx·
ny/10e = 700ms for arithmetic operations in each it-
eration ofm is fully overlapped by all local memory
accesses (because of memory interleaving with vector-
ing, new data is accessed in 1/td = 2 ns, while the
CPU operates in 1/tc = 1 ns). However, these arith-
metic operations and local-memory accesses are, in
turn, fully overlapped by DMA transfers that fetch data
in advance, as they are produced, for the next iteration.
Therefore, the only component of the computation time
that is not overlapped by DMA transfers is given by

tVI
comp = maxm(2tm + td) = 0.03ms

and corresponds to the time needed to fetch the first set
of fresh data from the memory in each step, for a total
of maxm = ncsteps.

With 64-bit elements and DMA transfers, we have
the very good approximation

tVI
comm = maxm

× (nx · ny) elements× 8 Bytes/element

6 GBytes/s(via DMA)

= 6.66 ms.

Therefore,T VI = 6.66 ms. The amount of parallelism
is 7 · nx · ny · nz· nc · nc or 175× 109 operations, and
therefore the execution rate is 26.27 TeraOPS. This is
a very impressive execution rate considering the heavy
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Table 4
Performance results for the altered Jacobi kernels (Algorithm VI:
altered Jacobi 1; Algorithm VII: altered Jacobi 2)

Algorithm Execution time Execution rate

Algorithm VI 6.66 ms 26.27 TeraOPS (with 5000 PEs)
Algorithm VII 481ms 95.73 TeraOPS (with 10 000 PEs)

amount of communications and the fact that less than
half of the PEs are used.

For Algorithm VII, we parallelize the loopsk andj ,
vectorize the loopmp, and the loopi remains serial.
Therefore, we usemaxk · max j = N2 = 1002 =
10 000 PEs. Each PE corresponds to a specific value for
the pair(k, j) and contains the elementsb(i, j, k, mp)
for i = 1, 2, . . . , 100 andmp = 1, 2, . . . , 150. For
eachb(i, j, k, mp), the PE receives the values of the
four elementsb(i, j, k − 1, mp), b(i, j, k + 1, mp),
b(i, j − 1, k, mp), andb(i, j + 1, k, mp); these val-
ues are to be used in the next iteration ofi. The new
values are sent as they are produced using DMA con-
trol. maxmp = nc = 150 values are sent between
given pairs of PEs. DMA control during each iteration
i then consumes time equal totVII

i,DMA = (ncelements×
8 Bytes/element)/6 GBytes/s = 0.2ms. Again, we have
data reuse for the summations ofb elements for various
values ofm. The computation time for each iterationi

is equal to

tVII
i,comp = (2tm + td) + 7

⌈maxmp

10

⌉
tc

+2 · maxm
⌈maxmp

10

⌉
tc = 4.61ms.

The first term is the time required to fetch the first set of
10 values from the local memory; memory interleav-
ing is then applied, resulting in full overlap of com-
putations and subsequent local-memory accesses. The
second term is the time required to calculate the sum-
mations ofb terms for all values ofmp, while the third
term is the time needed for two arithmetic operations
(i.e., a multiplication and an addition) permp value.
An upper bound on the total execution time isT VII =
max i(tVII

i,comp+ tVII
i,DMA ) = 481ms.

The amount of parallelism isnx·ny·nz(7·nc+2·nc2)

or 4.605× 1010 operations. Therefore, the execution
rate is 95.73 TeraOPS, which is very close to the peak
performance for 10 000 PEs. The actual execution rate
is even better considering that potentially there exists

higher overlap between computations and DMA trans-
fers. Table 4 summarizes the results for the altered
Jacobi kernels.

6. Conclusions

We have proven in this paper the suitability of our
“point design” for very high performance computing.
The complete system is characterized by immense bi-
section bandwidth and other outstanding properties.
Not only can our proposed system graciously achieve
its performance objective, but also its dramatically low
interconnect complexity renders it viable. Such a dra-
matic reduction in the system interconnect complexity
is not possible with any other existing or expected tech-
nology. Performance results for important algorithmic
kernels were also employed to further support our claim
for outstanding performance.
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