
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 3, MARCH 2005 401

An Efficient Network-Switch Scheduling for Real-Time Applications
Caimu Tang, Student Member, IEEE, Anthony T. Chronopoulos, Senior Member, IEEE, and Ece Yaprak, Member, IEEE

Abstract—Bursts consist of a varying number of asynchronous
transfer mode cells corresponding to a datagram. Here, we gen-
eralized weighted fair queueing to a burst-based algorithm with
preemption. The new algorithm enhances the performance of
the switch service for real-time applications, and it preserves the
quality of service guarantees. We study this algorithm theoreti-
cally and via simulations.

Index Terms—Burst preemptive scheduling, fair queueing,
quality of service (QoS).

I. INTRODUCTION

WE are interested in scheduling bursts (of cells) in-
stead of individual cells for asynchronous transfer

mode (ATM) networks. Previous results in cell scheduling
and burst scheduling have been reported in [1], [2], [5], [6],
and references therein. Here, we propose a scheduler called
burst-based weighted fair queueing with preemption (PBWFQ)
for real-time applications, which is an extension of a previously
developed burst-based weighted fair queueing (BWFQ) [7].
Burst-based scheduling offers performance advantages over
nonburst counterparts, as elaborated in [7]. To meet real-time
application requirements, bursts from a low-priority application
have to yield services to bursts from high-priority applications.
PBWFQ introduces preemption in BWFQ (to accommodate
real-time applications) without explicitly introducing priority
queueing, and thus, it is integrated into the fair-queueing
scheduler directly. Buffer management is critical for any
burst-level fair-queueing scheduler based on finishing time
instead of arrival time, due to cell aggregation. This situation
can be mitigated to some degree by limiting the maximal burst
size across all sessions and by admission control. Cell-based
packetized generalized processor sharing (CPGPS), BWFQ,
and PBWFQ are all work-conserving (PBWFQ to be shown
in Section II). This implies that the overall buffer requirement
of each switch remains the same under CPGPS, BWFQ, and
proposed PBWFQ. This claim can be proved for all work-con-
serving disciplines, based on the fact that the added buffer for
some of the active sessions is exactly offset by the reduced
buffer on the rest of the active sessions (details are omitted due
to space limitation). Since we do not include the proof here, we
assume that switches have infinite buffer size. The terminology

Paper approved by T. T. Lee, the Editor for Wireless Communication Theory
of the IEEE Communications Society. Manuscript received June 19, 2003; re-
vised May 31, 2004. The work of A. T. Chronopoulos was supported in part by
the National Science Foundation under Grant CCR-0312323.

C. Tang is with the Computer Science Department, University of Southern
California, Los Angeles, CA 90089 USA (e-mail: caimut@cs.usc.edu).

A. T. Chronopoulos is with the Computer Science Department, University of
Texas at San Antonio, San Antonio, TX 78249 USA (e-mail: atc@cs.utsa.edu).

E. Yaprak is with the College of Engineering, Wayne State University, Detroit,
MI 48202 USA (e-mail: yaprak@eng.wayne.edu).

Digital Object Identifier 10.1109/TCOMM.2005.843434

is similar to the algorithms for scheduling packets (e.g., see
[2]–[4]). In particular, we follow the model and the notation
in [7].

II. PBWFQ

We consider the virtual time function used in WFQ [3]. Let
be the virtual time function, which is defined to be zero

when the server is idle. Let be the bandwidth weight (i.e.,
service rate) for the backlogged session . Rate change (for ses-
sion) is controlled by

where is the set of backlogged sessions at time . We apply
the virtual time function to a burst instead of a single cell. Let
and be the session index and burst number, respectively, and
let be the burst size.

Proposed Algorithm: Starting system busy period (at phys-
ical time)

for arbitrary session index , and
.

Burst arrival

1) Burst start

and

2) For each new cell arrival, the burst size is incremented

3) End of a burst

where is the cell slot.
Burst departure Simple Scheme (BWFQ): For a given ses-

sion , the scheduler serves the bursts according to the ascending
order of the backlogged in the server so far. The results
for the simple scheme have been presented in [7].

Burst departure Preemptive Scheme (PBWFQ): The sched-
uler chooses the burst with the smallest among the back-
logged sessions in the server. If a burst with a smaller virtual
finish time arrives, then the scheduler will preempt the currently
served burst at the closest boundary of a cell, and it will schedule
this burst prior to the session being served.

Remark: In the PBWFQ scheme, starvation will not happen
because the virtual finish time of a burst is based on dynamic pri-
ority. The preempted burst will definitely be scheduled at time

0090-6778/$20.00 © 2005 IEEE

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 3, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

402 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 3, MARCH 2005

where is the preempted burst from session . Therefore,
the session’s throughput is guaranteed.

It is well known that the system busy periods of two work-
conserving schedulers are identical, because the virtual time
function can be reset to zero at the end of a system busy period.
Therefore, we only need to consider the behavior of one system
busy period in order to study the scheduling of the system.

Claim 1: PBWFQ is a work-conserving scheme.
Proof: Let set contain the session indexes that are in

service at time in a BWFQ server. Due to possible preemp-
tion, for a given , the cardinality of does not change under
PBWFQ, because any session being preempted is replaced by
a session which is not in . Since BWFQ is work-conserving
[7], it follows that PBWFQ is also work-conserving.

We next cite two theorems on quality of serive (QoS) of the
simple BWFQ proved in [7].

Theorem 1: For all bursts in the simple BWFQ, we
have

(1)

where is the maximal burst size to the server.
Theorem 2: For any time and session , let and

be the number of cells of session served under
CPGPS and BWFQ, in the interval , respectively. Then we
have .

Since, for a PBWFQ server burst, when preempted can be
treated as two separate bursts, the following theorem can be de-
rived similarly to Theorem 1. Here, we sketch the proof, and a
detailed proof is given in [8].

Theorem 3: If the scheme is preemptive, then for all bursts
, we have

(2)

and the burst service order is the same in both CPGPS and
PBWFQ servers.

Proof: We first show that an equivalent simple-BWFQ pri-
ority queue system can be constructed for the preemptive queue
system by splitting preempted bursts into two parts, with the
first part being scheduled and the second part being preempted.
The proof of the first part of the theorem is via induction on the
preemption instances. The base step has only one splitting. The
induction step can have more than one splitting, and it can trans-
formed to the base-step case. The first part follows by applying
Theorem 2.

Given any two bursts . It follows that
if

because PBWFQ is an approximation to
CPGPS. If , there are two
cases: Case 1 and Case 2 .
If under Case 2, no pre-
emption could occur and the second part holds. Inequality

(under Case 1) is not pos-
sible by noticing the fact that
and . Finally, by noticing the
fact that the last cell from burst finishes before the
services of cells in burst , it can be shown (using a
proof by the process of elimination) that the preemption

cases, under Case 1, and
under Case 2, yield a sit-

uation with a burst split from burst and burst ,
respectively, having a starting time greater than its own fin-
ishing time.

From this theorem, we not only know that the discrepancy be-
tween CPGPS and PBWFQ is bounded by the maximum length
of the bursts, but also that the serving order is preserved. Obvi-
ously, this is a better approximation than is in the BWFQ case.

Theorem 4: Assume the scheme is preemptive, and assume
burst [of size] from session arrives at time with
size . If finishes at under CPGPS, and at time

under PBWFQ, then

where is the sum of lengths of bursts, which arrive after the
arrival of and depart before the departure of under CPGPS
(i.e., all the bursts which preempt under PBWFQ), and is
the bandwidth portion for session .

Proof: Since PBWFQ is work-conserving and preemptive

(3)

Let set , with bandwidth proportion
be the burst set which arrives before arrival of burst and

departs after arrival of , and let set ,
with bandwidth proportion be the burst set which arrives
after the arrival of and departs after departure of . We notice
that the and the bursts in set are preempted
bursts, and the bursts in set cannott preempt burst . Since
the interval

is the rate for burst during time interval , and by
the definition of CPGPS, the following holds:

...

(4)

By (4), we have

(5)

where

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 3, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 3, MARCH 2005 403

TABLE I
SOURCE TRAFFIC PARAMETERS

Notice that in the above. Denote

Let

Since

(6)

we have

(7)

By (3) and (7), we have

because , if we use a normal-
ized bandwidth portion. However, if we do not use a normalized
bandwidth portion, we need to replace the by the bandwidth
percentage available to the session .

III. IMPLEMENTATION AND COMPARISONS

WITH OTHER SCHEMES

At first, we discuss the difference in the virtual time functions
of PBWFQ and self-clocked fair queueing (SCFQ). The virtual
time function used in SCFQ [1], [2] is very attractive, due to
its simplicity. Since PBWFQ is work-conserving, and virtual
time computation is done at the level of cell aggregates (with
much less frequency), and per-cell processing uses cell counting
which can be done fast, a finish-time-based virtual function per-
forms also very well, because the buffer requirement is the same
under both PBWFQ and SCFQ disciplines. Example: Assume
that CPGPS needs to compute the virtual time 1 000 000 (1M)
per second on one output link with a bandwidth of 53 Mb/s.
Since BWFQ or PBWFQ are working on burst level, for ex-
ample, on average, the burst size may be 50 cells. The total vir-
tual function invocations 1) under BWFQ is M K,
and 2) under PBWFQ it might be greater than 20 K; however, it
will be much less than 1 M. A detailed study on the efficiency
of BWFQ is presented in [7]. Our simulation model is based
on a two-level ATM network environment consisting of back-
bone switches and access switches. The simulation is done in

Fig. 1. Cell delay under PBWFQ.

Fig. 2. Session backlog under PBWFQ.

an OPNET simulation environment. The traffic parameters are
given in Table I.

We compare PBWFQ with BWFQ and CPGPS, where
CPGPS has the finest granularity in terms of approximation to
a GPS server. The performance comparison results between
BWFQ and CPGPS is presented in [7]. For lack of space,
we only present the results on cell backlog/delay and session
throughput with one scenario at a subset of the nodes only.
The cell delay, backlog, and session throughput under PBWFQ
are shown in Figs. 1–3. We refer to [7, Figs. 13, 14, and 17
(Figs. 14, 16, and 18)] for the corresponding cell backlog, ses-

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 3, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

404 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 3, MARCH 2005

Fig. 3. Session throughput under PBWFQ.

sion throughput, and delay of BWFQ (CPGPS), respectively.
These comparisons reveal that the backlog variation in PBWFQ
servers is relatively larger than those in CPGPS and BWFQ
servers. It is reasonable because the cells from the same session
are scheduled at closer times in bursts in a PBWFQ server. As
for QoS indexes, the PBWFQ server outperforms both CPGPS
and BWFQ servers.

IV. CONCLUSION

In this letter, a novel scheduling scheme called PBWFQ is
proposed. Since it allows high-priority sessions to preempt low-
priority sessions, it can support real-time applications to meet
the latency requirements. Analytic results, as well as experi-
mental results, show that it can provide service guarantees to
both high-priority and low-priority sessions.

REFERENCES

[1] S. J. Golestani, “Network delay analysis of a class of fair queueing algo-
rithms,” IEEE Trans. Sel. Areas Commun., vol. 13, pp. 1057–1070, Aug.
1995.

[2] P. Goyal and H. M. Vin, “Generalized guaranteed rate scheduling algo-
rithms: A framework,” IEEE/ACM Trans. Netw., vol. 4, pp. 561–571,
Aug. 1997.

[3] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks: The single-node
case,” IEEE/ACM Trans. Netw., vol. 1, pp. 344–357, Jun. 1993.

[4] D. Stiliadis and A. Varma, “Efficient fair queueing algorithms for packet-
switched networks,” IEEE/ACM Trans. Netw., vol. 6, pp. 175–185, Apr.
1998.

[5] G. Xie and S. Lam, “Real-time block transfer under a link-sharing hier-
archy,” IEEE/ACM Trans. Netw., vol. 6, pp. 30–41, Feb. 1998.

[6] T. Mizuike, Y. Ito, D. J. Kennedy, and L. N. Nguyen, “Burst scheduling
algorithms for SS/TDMA systems,” IEEE Trans. Commun., vol. 39, pp.
533–539, Apr. 1991.

[7] A. T. Chronopoulos, C. Tang, and E. Yaprak, “An efficient ATM network
switch scheduling,” IEEE Trans. Broadcast., vol. 49, pp. 278–292, Sep.
2003.

[8] C. Tang, A. T. Chronopoulos, and E. Yaprak, “A cell burst based sched-
uling for ATM networking: Part I,” in Proc. 3rd IEEE Symp. Computers,
Commun., Jun.–Jul. 1998, pp. 455–461.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 3, 2009 at 03:29 from IEEE Xplore. Restrictions apply.

	toc
	An Efficient Network-Switch Scheduling for Real-Time Application
	Caimu Tang, Student Member, IEEE, Anthony T. Chronopoulos, Senio
	I. I NTRODUCTION
	II. PBWFQ
	Proposed Algorithm: Starting system busy period (at physical tim
	Remark: In the PBWFQ scheme, starvation will not happen because
	Claim 1: PBWFQ is a work-conserving scheme.
	Proof: Let set B_{t} contain the session indexes that are in s

	Theorem 1: For all bursts (i, j) in the simple BWFQ, we have $
	Theorem 2: For any time τ and session i, let $NS_{i}(\tau
	Theorem 3: If the scheme is preemptive, then for all bursts $(i,
	Proof: We first show that an equivalent simple-BWFQ priority que

	Theorem 4: Assume the scheme is preemptive, and assume burst A
	Proof: Since PBWFQ is work-conserving and preemptive $$ f_{\rm P

	TABLE I S OURCE T RAFFIC P ARAMETERS
	III. I MPLEMENTATION AND C OMPARISONS W ITH O THER S CHEMES

	Fig.€1. Cell delay under PBWFQ.
	Fig.€2. Session backlog under PBWFQ.
	Fig.€3. Session throughput under PBWFQ.
	IV. C ONCLUSION
	S. J. Golestani, Network delay analysis of a class of fair queue
	P. Goyal and H. M. Vin, Generalized guaranteed rate scheduling a
	A. K. Parekh and R. G. Gallager, A generalized processor sharing
	D. Stiliadis and A. Varma, Efficient fair queueing algorithms fo
	G. Xie and S. Lam, Real-time block transfer under a link-sharing
	T. Mizuike, Y. Ito, D. J. Kennedy, and L. N. Nguyen, Burst sched
	A. T. Chronopoulos, C. Tang, and E. Yaprak, An efficient ATM net
	C. Tang, A. T. Chronopoulos, and E. Yaprak, A cell burst based s

