
J. Parallel Distrib. Comput. 65 (2005) 1022 – 1034
www.elsevier.com/locate/jpdc

Noncooperative load balancing in distributed systems

Daniel Grosua, Anthony T. Chronopoulosb,∗
aDepartment of Computer Science, Wayne State University, 5143 Cass Avenue, Detroit, MI 48202, USA

bDepartment of Computer Science, University of Texas at San Antonio, 6900 N. Loop 1604 West, San Antonio, TX 78249, USA

Received 12 March 2003; received in revised form 12 October 2004; accepted 9 May 2005
Available online 22 June 2005

Abstract

In this paper, we present a game theoretic framework for obtaining a user-optimal load balancing scheme in heterogeneous distributed
systems. We formulate the static load balancing problem in heterogeneous distributed systems as a noncooperative game among users. For
the proposed noncooperative load balancing game, we present the structure of the Nash equilibrium. Based on this structure we derive a
new distributed load balancing algorithm. Finally, the performance of our noncooperative load balancing scheme is compared with that of
other existing schemes. The main advantages of our load balancing scheme are the distributed structure, low complexity and optimality
of allocation for each user.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Distributed systems; Static load balancing; Game theory; Nash equilibrium; Noncooperative games; Performance evaluation

1. Introduction

In recent years, heterogeneous distributed computing sys-
tems have become the main platforms for the execution of
distributed applications. In these systems applications are
submitted by a large number of users that compete for the
shared heterogeneous resources (computers, storage com-
munication links, etc.) [10,12,38]. Thus, a distributed system
can be viewed as a collection of computing and communi-
cation resources shared by active users. When the demand
for computing power increases the load balancing problem
becomes important. The purpose of load balancing is to im-
prove the performance of a distributed system through an ap-
propriate distribution of the application load. A general for-
mulation of this problem is as follows: given a large number
of jobs, find the allocation of jobs to computers optimizing
a given objective function (e.g. total execution time).

There is a large body of literature on load balancing and
all the proposed load balancing schemes can be broadly

∗ Corresponding author. Fax: +1 210 458 4437.
E-mail addresses:dgrosu@cs.wayne.edu(D. Grosu),atc@cs.utsa.edu

(A.T. Chronopoulos).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.05.001

characterized as static and dynamic[5]. Static load balanc-
ing schemes use a priori knowledge of the applications and
statistical information about the system whereas dynamic
load balancing schemes base their decision making process
on the current state of the system. A good load balancing
scheme needs to be general, stable, scalable, and to add a
small overhead to the system. These requirements are in-
terdependent, for example a general load balancing scheme
may add a large overhead to the system, while an applica-
tion specific load balancing scheme may have a very small
overhead. Since the focus of this paper is on the static load
balancing problem, we will not discuss the details related
to dynamic load balancing. For further details on dynamic
load balancing, see [25,37].

The static load balancing problem can be solved by em-
ploying one of the following three approaches:

1. Global approach: In this case there is only one decision
maker that optimizes the response time of the entire sys-
tem over all jobs and the operating point is calledsocial
(overall) optimum. This is the classical approach and has
been studied extensively using different techniques such
as nonlinear optimization[16,17,21,22,29,35,36] and

http://www.elsevier.com/locate/jpdc
mailto:dgrosu@cs.wayne.edu
mailto:atc@cs.utsa.edu

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034 1023

polymatroid optimization[32]. All existing schemes us-
ing the global approach are not based on game theoretic
models.

2. Cooperative approach: In this case there are several deci-
sion makers (e.g. jobs, computers) that cooperate in mak-
ing the decisions such that each of them will operate at
its optimum. Decision makers have complete freedom of
preplay communication to make joint agreements about
their operating points. This situation can be modeled as a
cooperative game and game theory offers a suitable mod-
eling framework[11].

3. Noncooperative approach: In this case there are several
decision makers (e.g users, jobs) that are not allowed to
cooperate in making decisions. Each decision maker op-
timizes its own response time independently of the others
and they all eventually reach an equilibrium. This situa-
tion can be viewed as a noncooperative game among deci-
sion makers. The equilibrium is calledNash equilibrium
[11,28] and it can be obtained by a distributed noncoop-
erative policy. At the Nash equilibrium a decision maker
cannot receive any further benefit by changing its own
decision. If the number of decision makers is not finite
the Nash equilibrium reduces to theWardrop equilibrium
[15].

In this paper, we investigate the noncooperative approach
and propose a new model and a load balancing algorithm
based on a noncooperative game among users.

1.1. Related work

There exist only few studies on game theoretic models
and algorithms for load balancing in distributed systems.
Kameda et al. [15] studied noncooperative games and de-
rived load balancing algorithms for computing the Wardrop
equilibrium in single class and multi-class job distributed
systems. Roughgarden [33] formulated the scheduling prob-
lem as a Stackelberg game. In this type of noncoopera-
tive game one player acts as a leader and the rest as fol-
lowers. He showed that it is NP-hard to compute the opti-
mal Stackelberg strategy and presents efficient algorithms to
compute strategies inducing near-optimal solutions. Grosu
and Chronopoulos [13] formulated the static load balancing
problem in single class job distributed systems as a cooper-
ative game among computers and derived a load balancing
scheme based on the Nash Bargaining Solution [27].

Routing traffic in networks is a closely related problem
that has received more attention. Economides and Silvester
[9] considered a noncooperative routing problem for two
classes of packets. The first class objective is to minimize
its average packet delay, while the other class objective is
to minimize itsblocking probability. They derived a routing
policy for a two server system and presented the strategy
and the performance of each class. They also studied in [8]
the Nash equilibrium of the routing problem for two classes
of users and two servers. Orda et al. [30] studied a nonco-

operative game in a network of parallel links with convex
cost functions. They studied the existence and uniqueness
of the Nash equilibrium. Altman et al.[1] investigated the
same problem in a network of parallel links with linear cost
functions. Korilis et al. [19] considered the capacity alloca-
tion problem in a network shared by noncooperative users.
They studied the structure and the properties of Nash equi-
librium for a routing game with M/M/1-type cost functions
(i.e. functions that characterize the expected delay in a queue
with Poisson arrivals and exponentially distributed process-
ing times [18]). An important line of research was initiated
by Koutsoupias and Papadimitriou [20], who considered a
noncooperative routing game and proposed the ratio between
the worst possible Nash equilibrium and the overall optimum
as a measure of effectiveness of the system. Mavronicolas
and Spirakis [24] derived tight bounds on coordination ratio
in the case of fully mixed strategies where each user assigns
its traffic with nonzero probability to every link. Roughgar-
den and Tardos [34] showed that in a network in which the
link cost functions are linear the flow at Nash equilibrium
has total latency at most4

3 that of the overall optimal flow.
They also showed that if the link cost functions are assumed
to be only continuous and nondecreasing the total latency
may be arbitrarily larger than the minimum possible total
latency.

1.2. Motivation and contribution

Most of the previous studies on static load balancing con-
sidered as their main objective the minimization of overall
expected response time. This is difficult to achieve in dis-
tributed systems where there is no central authority con-
trolling the allocation and users are free to act in a selfish
manner. Our goal is to find a formal framework for charac-
terizing user-optimal allocation schemes in distributed sys-
tems. The framework was provided by noncooperative game
theory which has been applied to routing and flow control
problems in networks. Kameda et al. [15] used this frame-
work and obtained the Wardrop equilibrium for a noncoop-
erative load balancing game among jobs. In this paper, we
formulate the load balancing problem in distributed systems
as anoncooperative game among users. We adopt the Nash
equilibrium as the solution of this game. Nash equilibrium
provides a user-optimal operation point for the distributed
system. We give a characterization of the Nash equilibrium
and a distributed algorithm for computing it. We compare the
performance of our noncooperative load balancing scheme
with that of other existing schemes. Our scheme guarantees
the optimality of allocation for each user (not the overall
system optimum) in the distributed system.

1.3. Organization

The paper is structured as follows. In Section 2, we present
the system model and we introduce our load balancing non-

1024 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034

cooperative game. In Section3, we derive a greedy dis-
tributed algorithm for computing the Nash equilibrium for
our load balancing game. In Section 4, the performance of
our load balancing scheme is compared with those of other
existing schemes. In Section 5, we draw conclusions and
present future directions.

2. Load balancing as a noncooperative game among
users

We consider a distributed system that consists ofn het-
erogeneous computers shared bymusers. Each computer is
modeled as an M/M/1 queueing system (i.e. Poisson arrivals
and exponentially distributed processing times) [18] and is
characterized by its average processing rate�i , i = 1, . . . , n.
Jobs are generated by userj with an average rate�j , and
� =∑m

j=1 �j is the total job arrival rate in the system. The
total job arrival rate� must be less than the aggregate pro-
cessing rate of the system (i.e.� <

∑n
i=1 �i). The system

model is presented in Fig. 1. The problem faced by users is
to decide on how to distribute their jobs to computers such
that they will operate optimally. Thus, userj (j = 1, . . . , m)
must find the fractionsji of its workload that is assigned
to computeri (

∑n
i=1 sji = 1 and 0�sji �1, i = 1, . . . , n)

such that the expected execution time of its jobs is mini-
mized. Oncesji are determined by using the algorithm pro-
posed in this paper, userj sends jobs to computeri at a rate
given bysji�j (in jobs/s). Note thatsji are nondimensional.

We formulate the above problem as a noncooperative
game among users under the assumption that users are ‘self-
ish’. This means that they minimize the expected response
time of their own jobs. In the following, we first present the
notations we use and then define the noncooperative load
balancing game.

Let sji be the fraction of workload that userj sends to
computeri. The vectorsj = (sj1, sj2, . . . , sjn) is called the
load balancing strategyof userj, j = 1, . . . , m. The vector
s= (s1, s2, . . . , sm) is called thestrategy profileof the load
balancing game.

We assume that each computer is modeled as an M/M/1
queueing system and the expected response time at computer
i is given by

Fi(s) = 1

�i −
∑m

j=1 sji�j

. (1)

Thus, the overall expected response time of userj is given
by

Dj(s) =
n∑

i=1

sjiFi(s) =
n∑

i=1

sji

�i −
∑m

k=1 ski�k

. (2)

The goal of userj is to find a feasible load balancing
strategysj such thatDj(s) is minimized. The decision of
userj depends on the load balancing decisions of the other
users sinceDj(s) is a function ofs.

φ1
φ1s11

C

C

Cn

1

.

.

.

User 1

User 2

User m

.

.

.

φm

s12φ
1s

1n φ
1

21s
φ2

s2n 2
φ

s φmmn

s m2
φm

s m
1φ

m

2φ2
s22φ2

Fig. 1. The distributed system model.

Definition 2.1 (Feasible strategy profile). A feasible load
balancing strategy profileis a strategy profiles that satisfies
the following restrictions:

(i) Positivity: sji �0, i = 1, . . . , n, j = 1, . . . , m;
(ii) Conservation:

∑n
i=1 sji = 1, j = 1, . . . , m;

(iii) Stability:
∑m

j=1 sji�j < �i , i = 1, . . . , n.

Now we define our noncooperative load balancing game.

Definition 2.2 (Noncooperative load balancing game).
TheNoncooperative load balancing gameconsists of a set
of players, a set of strategies, and preferences over the set
of strategy profiles:

(i) Players: Them users.
(ii) Strategies: Each user’s set of feasible load balancing

strategies.
(iii) Preferences: Each user’s preferences are represented

by its expected response time (Dj). Each userj prefers
the strategy profiles to the strategy profiles′ if and
only if Dj(s) < Dj (s′).

In order to obtain a load balancing scheme for the dis-
tributed system we need to solve the above game. The most
commonly used solution concept for such games is that of
Nash equilibrium[11], which we consider here.

Definition 2.3 (Nash equilibrium). A Nash equilibriumof
the load balancing game defined above is a strategy profile
s such that for every userj (j = 1, . . . , m):

sj ∈ arg min
s̃j

Dj (s1, . . . , s̃j , . . . , sm). (3)

Nash equilibrium for our load balancing game is a strat-
egy profile with the property that no user can decrease its
expected job execution time by choosing a different load

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034 1025

balancing strategy given the other user’s load balancing
strategies. In other words a strategy profiles is a Nash equi-
librium if no user can benefit by deviating unilaterally from
its load balancing strategy to another feasible one. For our
load balancing game there exists a unique Nash equilibrium
because the expected response time functions are continu-
ous, convex and increasing[30].

Remark. In general Nash equilibria are defined in terms of
mixed strategies which are probability distributions over the
set of pure strategies. In this paper, we are interested only
in pure strategy equilibria. In pure strategy equilibria a user
(player) chooses a unique strategy from the set of available
strategies, whereas in mixed strategy equilibria he chooses
a probability distribution over the set of strategies available
to him [31].

Similar games were studied in the context of flow con-
trol and routing in networks. Orda et al. [30] proved that if
the expected response time functions are continuous, con-
vex and increasing there exists a unique Nash equilibrium
for the game. The closest work to our study is that of
Korilis et al. [19] in which a similar game is studied in
the context of capacity allocation in networks. They studied
the structure and properties of the Nash equilibrium for the
game. Here, we are interested in finding a way to determine
the Nash equilibrium for our load balancing noncooperative
game.

In order to determine a solution for our load balancing
game we consider an alternative definition of the Nash equi-
librium. Nash equilibrium can be defined as a strategy profile
for which every user’s load balancing strategy is abest reply
to the other users strategies. This best reply for a user will
provide a minimum expected response time for that user’s
jobs given the other users’ strategies. This definition gives us
a method to determine the structure of the Nash equilibrium
for our load balancing game. First, we determine the best
reply strategiessj for each userj, then we find a strategy
profile s= (s1, s2, . . . , sm) for which sj is the best reply of
userj, for j = 1, 2, . . . , m.

First, we determine the best reply of userj, j =
1, 2, . . . , m which is the strategy profile that obtains the
minimum expected response time for userj jobs with respect
to the other users strategies. Let�j

i = �i −
∑m

k=1,k �=j ski�k

be theavailable processingrate at processori as seen by
user j. The problem of computing the best reply strategy
of userj (j = 1, . . . , m) reduces to computing the optimal
strategy for a system with one user andn computers having
�j

i (i = 1, . . . , n) as processing rates and�j as the user’s
job arrival rate in the system.

This can be translated into the following optimization
problem(BEST-REPLYj):

min
sj

Dj (s) (4)

subject to the constraints

sji �0, i = 1, . . . , n, (5)

n∑
i=1

sji = 1, (6)

m∑
k=1

ski�k < �i , i = 1, . . . , n. (7)

Remark. The strategies of all the other users are kept fixed,
thus the variables involved in BEST-REPLYj are the load
fractions of userj, i.e. sj = (sj1, sj2, . . . , sjn).

There exist some algorithms for finding the solution for
similar optimization problems using different objective func-
tions based on Lagrange multipliers. One was proposed by
Tantawi and Towsley[36] but it is complex and involves a
numerical method for solving a nonlinear equation. Ni and
Hwang [29] studied a similar problem for a system with pre-
assigned arrival rates at each computer, but they considered
a different objective function from ours. Another one which
inspired our approach was proposed by Tang and Chanson
[35]. They considered a system were there is only one user
that has to assign jobs to computers such that the job exe-
cution time for all jobs is minimized. We extend the work
in [35] considering a different model in which the influence
of the other users’ decisions on the optimum is taken into
account. Thus, we use the same objective function but we
use different constraints. Here, we first characterize the best
reply strategy of each user and then propose an algorithm
for computing this strategy considering our model. The al-
gorithm will be used in Section 3 to devise a distributed
algorithm for computing the Nash equilibrium for our load
balancing game.

The best reply strategy of userj which is the solution of
BEST-REPLYj is given in the following theorem.

Theorem 2.1(BEST-REPLYj solution). Assuming that
computers are ordered in decreasing order of their available
processing rates (�j

1 ��j
2 � · · · ��j

n), the solutionsj of the
optimization problem BEST-REPLYj is given by

sji =




1
�j

(
�j

i −
√

�j
i

∑cj
i=1 �j

i −�j∑cj
i=1

√
�j

i

)
if 1 � i < cj ,

0 if cj � i�n,

(8)

wherecj is the minimum index that satisfies the inequality

√
�j

cj
�
∑cj

k=1 �j
k − �j∑cj

k=1

√
�j

k

. (9)

Proof. In Appendix A. �

1026 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034

Based on the above theorem we derived the following
algorithm for determining userj’s best reply strategy:

BEST-REPLY(�j
1, . . . ,�j

n, �j)

Input: Available processing rates:�j
1,�j

2, . . . ,�j
n;

Total arrival rate:�j

Output: Load fractions:sj1, sj2, . . . , sjn;
1. Sort the computers in decreasing order of

their available processing rates
(�j

1 ��j
2 � · · · ��j

n);

2. t ←
∑n

i=1 �j
i −�j∑n

i=1

√
�j

i

3. while (t �
√

�j
n) do

sjn← 0
n← n− 1

t ←
∑n

i=1 �j
i −�j∑n

i=1

√
�j

i

4. for i = 1, . . . , n do

sji ←
(
�j

i − t

√
�j

i

)
1
�j

The following theorem proves the correctness of this al-
gorithm.

Theorem 2.2. The load balancing strategy{sj1, sj2, . . . ,

sjn} computed by the BEST-REPLY algorithm solves the
optimization problem BEST-REPLYj and is the best reply
strategy of userj.

Proof. In Appendix A. �

Remarks. (1) The execution time of this algorithm is
O(n log n). This is due to the sorting procedure in step 1.
(2) To execute this algorithm each user needs to know the
available processing rate at each computer and its job ar-
rival rate. The available processing rate can be determined
by statistical estimation of the run queue length of each
processor.

Example 1. Let us apply the BEST-REPLY algorithm to a
system of 3 computers and only one user. The computers
have the following available processing rates:�1

1 = 10.0,
�1

2 = 2.0 and�1
3 = 1.0. The total arrival rate is�1 = 6.0.

The computers are already sorted in decreasing order of
their processing rate and we execute Step 2 in which we
computet.

t = 10+ 2+ 1− 6√
10+√2+√1

= 1.255.

The while loop in Step 3 is executed becauset >

√
�1

3. In

this loops13 = 0, n = 2 andt is updated to 1.311 <

√
�1

2
and then the algorithm proceeds to Step 4. In this step the

values of the load fractions are computed:s11 = 0.975 and
s12 = 0.025.

3. A distributed load balancing algorithm

The computation of Nash equilibrium may require some
coordination between the users. In our case this is necessary
in the sense that users need to coordinate in order to obtain
the load information from each computer. From the practical
point of view we need decentralization and this can be ob-
tained by using distributed greedy best reply algorithms[3].
In these algorithms each user updates from time to time its
load balancing strategy by computing the best reply against
the existing load balancing strategies of the other users.

Based on the BEST-REPLY algorithm presented in the
previous section, we devise the following greedy best re-
ply algorithm for computing the Nash equilibrium for our
noncooperative load balancing game. In this algorithm users
are synchronized such that they update their strategies in a
round-robin fashion.

We use the following notations in addition to those of
Section 2:

j—the user number;
l—the iteration number;
s(l)
j —the strategy of userj computed at iterationl;

D
(l)
j —userj’s expected execution time at iterationl;

�—a properly chosen acceptance tolerance;
norm—the L1-norm at iterationl, defined asnorm =∑m

j=1 |D(l−1)
j −D

(l)
j |

Send(j, (p, q, r))—send the message (p, q, r) to userj;
Recv(j, (p, q, r))—receive the message (p, q, r) from
userj;
(wherep is a real number, andq, r are integer numbers).

NASH distributed load balancing algorithm:

Userj, (j = 1, . . . , m) executes:
1. Initialization :

s(0)
j ← 0;

D(0)
j ← 0;

l← 0;
norm← 1;
sum← 0;
tag← CONTINUE;
left = [(j − 2) modm] + 1;
right = [j modm] + 1;

2. while (1) do
if(j = 1) {user 1}

if (l �= 0)
Recv(left, (norm, l, tag));
if (norm < �)

Send(right, (norm, l,
STOP));

exit;

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034 1027

sum← 0;
l← l + 1;

else{the other users}
Recv(left, (sum, l, tag));
if (tag = STOP)

if (j �= m) Send(right, (sum,
l, STOP));

exit;
for i = 1, . . . , n do

Obtain�j
i by inspecting the run queue

of each computer
(�j

i ← �i −
∑m

k=1,k �=j ski�k);

s(l)
j ← BEST− REPLY (�j

1, . . . ,�j
n, �j);

ComputeD
(l)
j ;

sum← sum+ |D(l−1)
j −D

(l)
j |;

Send(right, (sum, l, CONTINUE));
endwhile

The execution of this algorithm is restarted periodically
or when the system parameters are changed. Once the Nash
equilibrium is reached, the users will continue to use the
same strategies and the system remains in equilibrium. This
equilibrium is maintained until a new execution of the algo-
rithm is initiated.

In multiprogrammed heterogeneous distributed systems
[26], the NASH scheme works as follows. Each user has
an associated scheduler agent (process) which makes the
allocation decisions and communicates with the schedul-
ing agents of the other users in the system. The NASH al-
gorithm is executed periodically by this set of scheduling
agents. The scheduling agent estimates the job arrival rate
at the user by considering the number of arrivals over a
fixed interval of time (as presented in [2]). It also queries
the state of each computer in the system and based on
the estimated available processing rate reported by comput-
ers it decides the fractionssij . The estimation of available
processing rate is done using the technique presented in
[2]. Once the fractions are determined the scheduling agent
sends the next job to computerj with probability sij . This
type of allocation based onsij fractions was studied before
in [35].

An important practical question is whether such ‘best re-
ply’ algorithms converge to the Nash equilibrium. The only
known results about the convergence of such algorithms
have been obtained in the context of routing in parallel links.
These studies have been limited to special cases of two paral-
lel links shared by two users [30] or bym�2 users but with
linear cost links [1]. For M/M/1-type cost functions there
is no known proof that such algorithms converge for more
than two users. As shown by several experiments done on
different settings, these algorithms may converge for more
than two users. In the next section, we present such ex-
periments that confirm this hypothesis (also see [4]). The
convergence proof for more than two users is still an open
problem.

4. Experimental results

4.1. Simulation environment

The simulations were carried out using Sim++[7], a sim-
ulation software package written in C++. This package pro-
vides an application programming interface which allows
the programmer to call several functions related to event
scheduling, queueing, preemption and random number gen-
eration. The simulation model consists of a collection of
computers connected by a communication network. Jobs ar-
riving at the system are distributed to the computers ac-
cording to the specified load balancing scheme. Jobs which
have been dispatched to a particular computer arerun-to-
completion (i.e. no preemption) in first-come-first-served
(FCFS) order.

Each computer is modeled as an M/M/1 queueing system
[18]. The main performance metrics used in our simulations
are theexpected response timeand thefairness index. The
fairness index

I (D) = [
∑m

j=1 Dj]2
m
∑m

j=1 D2
j

(10)

was proposed in[14] to quantify the fairness of load bal-
ancing schemes. Here, the parameterD is the vectorD =
(D1, D2, . . . , Dm) whereDj is the expected execution time
of user j’s jobs. This index is a measure of the ‘equality’
of users’ job execution times. If all the users have the same
expected job execution times thenI = 1 and the system is
100% fair to all users and it is load balanced. If the differ-
ences onDj increase,I decreases and the load balancing
scheme favors only some users.

The simulations were run over several thousands of sec-
onds, sufficient to generate a total of 1–2 millions jobs typi-
cally. Each run was replicated five times with different ran-
dom number streams and the results averaged over replica-
tions. The standard error is less than 5% at the 95% confi-
dence level.

4.2. Performance evaluation

For comparison purposes we consider three existing static
load balancing schemes [6,15,16]. A brief description of
these schemes is given below:
• Proportional scheme(PS) [6]. According to this scheme

each user allocates its jobs to computers in proportion
to their processing rate. This allocation seems to be a
natural choice but it may not minimize the user’s expected
response time or the overall expected response time. The
fairness index for this scheme is always 1 as can be easily
seen from Eq. (10).
• Global optimal scheme(GOS) [16]. This scheme mini-

mizes the expected execution time over all jobs executed
by the system. The load fractions (s) are obtained by

1028 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034

solving the following nonlinear optimization problem:

min
s

1

�

m∑
k=1

�jDj (s) (11)

subject to the constraints

sji �0, i = 1, . . . , n, j = 1, . . . , m, (12)

n∑
i=1

sji = 1, j = 1, . . . , m, (13)

m∑
j=1

sji�j < �i , i = 1, . . . , n. (14)

This scheme provides the overall optimum for the ex-
pected execution time but it is not user-optimal and is
unfair.
• Individual optimal scheme(IOS) [15]. In this scheme,

each job optimizes its response time for itself indepen-
dently of others. In general, the Wardrop equilibrium,
which is the solution given by this scheme, is not optimal
and in some cases we expect worse response time than
the other policies [15]. It is based on an iterative proce-
dure that is not very efficient. For a complete description
of IOS algorithm see [15]. The advantage of this scheme
is that it provides a fair allocation.

Remark. Among the schemes described above, the IOS
scheme is the only scheme that is based on game theoretic
concepts. Our scheme (NASH) and PS are the only dis-
tributed schemes considered in this paper. IOS and GOS are
centralized schemes.

We evaluated the schemes presented above under various
system loads and configurations. Also the convergence of
the NASH load balancing algorithm is investigated. In the
following we present and discuss the simulation results.

4.2.1. The convergence of NASH algorithm
An important issue related to the greedy best reply al-

gorithm presented above is the dynamics of reaching the
equilibrium. We consider first the NASH algorithm using
s(0) = 0 as the initialization step. This variant of the algo-
rithm will be called NASH_0. This initialization step is an
obvious choice but it may not lead to a fast convergence to
the equilibrium.

We propose a variant of the algorithm in which the ini-
tialization step is replaced by

1. Initialization:
for i = 1, . . . , n do

s
(0)
j i ← �i∑n

k=1 �k
;

D(0)
j ← 0;

l← 0;
...

1e-05

0.0001

0.001

0.01

0.1

1

20 40 60 80 100 120 140

N
or

m

Number of iterations

NASH_0

NASH_P

Fig. 2. Norm vs. number of iterations.

 50

 100

 150

 200

 250

 5 10 15 20 25 30

N
um

be
r

of
 it

er
at

io
ns

Number of users

NASH_0
NASH_P

Fig. 3. Convergence of best reply algorithms (untilnorm < 10−4).

We call this new version NASH_P. Using this initialization
the starting point will be a proportional allocation of jobs to
computers according to their processing rate. We expect a
better convergence using NASH_P instead of NASH_0. To
study the convergence of these algorithms we consider a sys-
tem with 16 computers shared by 10 users. The norm vs. the
number of iterations is shown in Fig.2. It can be seen that
the NASH_P algorithm significantly outperforms NASH_0
algorithm. The intuitive explanation for this performance is
that the initial proportional allocation is close to the equi-
librium point and the number of iterations needed to reach
the equilibrium is reduced. Using the NASH_P algorithm
the number of iterations needed to reach the equilibrium is
reduced by more than a half compared with NASH_0.

Next, we study the influence of the number of users on
the convergence of both algorithms. In Fig. 3, we present
the number of iterations needed to reach the equilibrium
(norm< 10−4) for a system with 16 computers and a vari-
able number of users (from 4 to 32). It can be observed that
NASH_P significantly outperforms NASH_0 reducing the
number of iterations needed to reach the equilibrium in all
the cases.

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034 1029

Table 1
System configuration

Relative processing rate 1 2 5 10

Number of computers 6 5 3 2
Processing rate (jobs/s) 10 20 50 100

Table 2
Job arrival fractionsqj for each user.

User 1 2 3–6 7 8–10

qj 0.3 0.2 0.1 0.07 0.01

4.2.2. Effect of system utilization
To study the effect of system utilization we simulated a

heterogeneous system consisting of 16 computers with four
different processing rates. This system is shared by 10 users.
In Table 1, we present the system configuration. The first
row contains the relative processing rates of each of the
four computer types. Here, the relative processing rate for
computer Ci is defined as the ratio of the processing rate
of Ci to the processing rate of the slowest computer in the
system. The second row contains the number of computers
in the system corresponding to each computer type. The last
row shows the processing rate of each computer type in the
system. We consider only computers that are at most 10
times faster than the slowest because this is the case in most
of the current heterogeneous distributed systems.

For each experiment the total job arrival rate in the system
� is determined by the system utilization� and the aggre-
gate processing rate of the system.System utilization(�) is
defined as the ratio of the total arrival rate to the aggregate
processing rate of the system

� = �∑n
i=1 �i

. (15)

We choose fixed values for the system utilization and we de-
termined the total job arrival�. For example, if we consider
� = 10% and an aggregate processing rate of 510 jobs/s
then the arrival rate in the system is� = 51 jobs/s. The job
arrival rate for each user�j , j = 1, . . . , 10 is determined
from the total arrival rate as�j = qj�, where the fractions
qj are given in Table2.

In Fig. 4, we present the expected response time of the
system and the fairness index for different values of system
utilization (ranging from 10% to 90%). It can be observed
that at low loads (� from 10% to 40%) all the schemes
except PS yield almost the same performance. The poor
performance of PS scheme is due to the fact that the less
powerful computers are significantly overloaded.

At medium loads (� from 40% to 60%) NASH scheme
performs significantly better than PS and approaches the
performance of GOS. For example at load level of 50% the

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90

E
xp

ec
te

d
re

sp
on

se
 ti

m
e

(s
ec

.)

System utilization (%)

NASH
GOS
IOS
PS

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

10 20 30 40 50 60 70 80 90

F
ai

rn
es

s
in

de
x

I

System utilization (%)

NASH
GOS
IOS
PS

Fig. 4. The expected response time and fairness index vs. system utiliza-
tion.

mean response time of NASH is 30% less than PS and 7%
greater than GOS.

At high loads IOS and PS yield the same expected re-
sponse time which is greater than that of GOS and NASH.
The expected response time of NASH scheme is very close
to that of GOS.

The PS and IOS schemes maintain a fairness index of 1
over the whole range of system loads. It can be shown that
the PS has a fairness index of 1 which is a constant indepen-
dent of the system load. The fairness index of GOS varies
from 1 at low load, to 0.92 at high load. The NASH scheme
has a fairness index close to 1 and each user obtains the
minimum possible expected response time for its own jobs
given what every other user is doing (i.e. it is user-optimal).
The stability of the allocation under noncooperative behav-
ior and decentralization are the main advantages of NASH
scheme.

An interesting issue is the impact of static load balanc-
ing schemes on individual users. In Fig.5, we present the
expected response time for each user considering all static
schemes at medium load (�=60%). The PS and IOS schemes
guarantee equal expected response times for all users but
with the disadvantage of a higher expected execution time
for their jobs. It can be observed that in the case of GOS
scheme there are large differences in users’ expected exe-

1030 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034

Fig. 5. Expected response time for each user.

cution times. NASH scheme provides the minimum possi-
ble expected execution time for each user (according to the
properties of the Nash equilibrium).

4.2.3. Effect of heterogeneity
In a distributed system, heterogeneity usually consists of:

processor speed, memory and I/O. A simple way to char-
acterize system heterogeneity is to use the processor speed.
Furthermore, it is reasonable to assume that a computer with
a high-speed processor will have matching resources (mem-
ory and I/O). One of the common measures of heterogeneity
is thespeed skewnesswhich is defined as the ratio of max-
imum processing rate to minimum processing rate of the
computers in the system. This measure is somehow limited
but for our goals it is satisfactory.

In this section, we investigate the effectiveness of load
balancing schemes by varying the speed skewness. We sim-
ulate a system of 16 heterogeneous computers: 2 fast and
14 slow. The slow computers have a relative processing rate
of 1 and we varied the relative processing rate of the fast
computers from 1 (which corresponds to a homogeneous
system) to 20 (which corresponds to a highly heterogeneous
system). The system utilization was kept constant� = 60%.
The fractions used to determine the job arrival rate of each
user are those presented in Table2.

In Fig. 6, we present the effect of speed skewness on the
expected response time and fairness. It can be observed that
increasing the speed skewness the GOS and NASH schemes
yield almost the same expected response time which means
that in highly heterogeneous systems the NASH scheme is
very effective. NASH scheme has the additional advantage
of decentralization and user-optimality which is very im-
portant in actual distributed systems. PS scheme performs
poorly because it overloads the slowest computers. The IOS
scheme performs well at high-speed skewness approaching
the performance of NASH and GOS, but at low-speed skew-
ness it performs poorly.

At low-speed skewness IOS obtains the same expected re-
sponse time as PS. This is due to the fact that at low-speed
skewness IOS determines the same allocation as PS, over-
loading the slow computers. When the processing rate of the

0.05

0.1

0.15

0.2

0.25

0.3

2 4 6 8 10 12 14 16 18 20

E
xp

ec
te

d
re

sp
on

se
 ti

m
e

(s
ec

.)

Max speed / Min speed

NASH
GOS
IOS
PS

0.8

0.85

0.9

0.95

1

1.05

2 4 6 8 10 12 14 16 18 20

F
ai

rn
es

s
in

de
x

I

Max speed / Min speed

NASH
GOS
IOS
PS

Fig. 6. The effect of heterogeneity on the expected response time and
fairness index.

fastest computer is increased more than 16 times IOS is able
to determine a better allocation than that of PS, allocating
fewer jobs to the slow computers.

The fairness index of NASH is very close to one, which
is the value obtained by PS and IOS. These three schemes
guarantee equal expected response times for all the users in
the system over all range of speed skewness. The fairness
index of GOS is between 0.95 and 1 at low- and high-speed
skewness and between 0.8 and 0.85 at medium speed skew-
ness. These results show that at medium speed skewness
GOS scheme produces an allocation which does not guar-
antee equal expected response times for all the users in the
system.

Remark. In homogeneous systems all the schemes consid-
ered in this paper obtain the same expected response time
and the same fairness index. This is because all comput-
ers in the system have the same processing rate and all the
load balancing schemes presented here will allocate an equal
amount of load to each computer.

4.2.4. Effect of system size
An important issue is to study the influence of system size

on the performance of load balancing schemes. To study this
issue we performed two types of experiments on a simulated
heterogeneous distributed system consisting of two types of

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034 1031

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2 4 6 8 10 12 14 16 18 20

E
xp

ec
te

d
re

sp
on

se
 ti

m
e

(s
ec

.)

Number of computers

NASH
GOS
IOS
PS

0.8

0.85

0.9

0.95

1

1.05

2 4 6 8 10 12 14 16 18 20

F
ai

rn
es

s
in

de
x

I

Number of computers

NASH
GOS
IOS
PS

Fig. 7. The effect of system size on the expected response time and
fairness index.

computers: slow computers (relative processing rate = 1)
and fast computers (relative processing rate = 10). In all
these experiments the system utilization was kept constant,
� = 60%.

In the first type of experiments we gradually increase the
size of the system by adding slow computers, more pre-
cisely we increase the number of computers from 2 (fast
computers only) to 20 (2 fast and 18 slow computers). Fig.
7 shows the expected response time and the fairness index
for all the schemes. The performance of NASH and GOS is
almost the same when we have few computers (2–8). The
PS scheme performs poorly even for a small system. The
expected response time for IOS degrades increasing the sys-
tem size and approaches the expected response time of PS.
This is because when we add slow computers IOS allocates
more jobs to the slow computers in the system overloading
them. NASH guarantees a good performance for medium
and large systems and the same performance as GOS for
small systems. The additional advantage of NASH is that
it is a distributed scheme providing a user-optimal alloca-
tion. The fairness index obtained by NASH is 1 when we
have a small system and between 1 and 0.98 when the size
of the system is between 8 and 20. This means that NASH
allocates jobs to computers such that each user will obtain
the same expected execution time. As seen from the results

 0.05

 0.1

 0.15

 0.2

 0.25

 2 4 6 8 10 12 14 16 18 20

E
xp

ec
te

d
re

sp
on

se
 ti

m
e

(s
ec

.)

Number of computers

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2 4 6 8 10 12 14 16 18 20

F
ai

rn
es

s
in

de
x

I

Number of computers

NASH
GOS
IOS
PS

NASH
GOS
IOS
PS

Fig. 8. The effect of system size on the expected response time and
fairness index.

GOS does not guarantee equal expected execution times for
all the users when the system size increases to more than 8
computers.

In the second type of experiments we gradually increase
the size of the system by adding fast computers, more pre-
cisely we increase the number of computers from 2 (slow
computers only) to 20 (2 slow and 18 fast computers). Fig.
8 shows the expected response time and the fairness index
for all the schemes. The performance of NASH, GOS and
IOS is the same. This is because adding fast computers in
the system makes these schemes allocate no jobs to the two
slow computers. Thus, only the fast computers having the
same speed receive jobs and the system can be considered
as a homogeneous system. In this case all the schemes ex-
cept PS will obtain similar performance. PS does not obtain
the optimum because it allocates some jobs to the two slow
computers increasing the overall expected execution time.
The high value of the expected execution time when the sys-
tem size is two is due to the fact that we have only the slow
computers in the system and they are overloaded. As seen
from the results the fairness index is the same for all the
schemes over all range of system sizes. As explained above
this is because the system behaves similarly to a homoge-
neous system. NASH provides the additional advantage of
being a distributed load balancing scheme.

1032 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034

5. Conclusion

In this paper we have presented a game theoretic frame-
work for obtaining a user-optimal load balancing scheme in
heterogeneous distributed systems. We formulated the load
balancing problem in heterogeneous distributed systems as
a noncooperative game among users. For this game the Nash
equilibrium provides an user-optimal operation point for the
distributed system. For the proposed noncooperative load
balancing game, we presented the structure of the Nash equi-
librium. Based on this structure we derived a new distributed
algorithm for computing it. We compared the performance
of our noncooperative load balancing scheme with other ex-
isting schemes. The main advantages of our load balancing
scheme are the distributed structure, low complexity and op-
timality of allocation for each user.

Future work will address the development of game theo-
retic models for load balancing in the context of uncertainty
as well as game theoretic models for dynamic load balanc-
ing.

Acknowledgments

The authors express their thanks to the editor and the
anonymous referees for their helpful and constructive sug-
gestions, which considerably improved the quality of the
paper.

This research was supported, in part, by research grants
from: NSF CCR-0312323, NASA NAG 2-1383 (1999-
2001), and State of Texas Higher Education Coordinating
Board through the Texas Advanced Research/Advanced
Technology Program ATP 003658-0442-1999.

Appendix A

In this section, we present the proofs of the results used
in the paper.

Proof of Theorem 2.1. We begin with the observation that
at the Nash equilibrium the stability condition (7) is always
satisfied because of (3) and the fact that the total arrival
rate (�) does not exceed the total processing rate of the
distributed system. Thus we consider OPj problem with only
two restrictions, (5) and (6).

We first show thatDj(s) is a convex function insj and
that the set of feasible solutions defined by the constraints
(5) and (6) is convex.

From (2) it can be easily show that
�Dj (s)
�sji

�0 and

�2
Dj (s)

�(sji)
2 �0 for i = 1, . . . , n. This means that the Hessian

of Dj(s) is positive which implies thatDj(s) is a convex
function of the load fractionssj . The constraints are all
linear and they define a convex polyhedron.

Thus, OPj involves minimizing a convex function over
a convex feasible region and the first-order Kuhn–Tucker
conditions are necessary and sufficient for optimality[23].

Let ��0, �i �0, i = 1, . . . , n denote the Lagrange mul-
tipliers [23]. The Lagrangian is

L(sj1, . . . , sjn, �, �1, . . . , �n)

=
n∑

i=1

sji

�j
i − sji�j

− �

(
n∑

i=1

sji − 1

)
−

n∑
i=1

�i sj i .

(16)

The Kuhn–Tucker conditions imply thatsji , i = 1, . . . , n

is the optimal solution to OPj if and only if there exists
��0, �i �0, i = 1, . . . , n such that

�L

�sji

= 0, (17)

�L

��
= 0, (18)

�i sj i = 0, �i �0, sji �0, i = 1, . . . , n. (19)

These conditions become

�j
i

(�j
i − sji�j)

2
− �− �i = 0, i = 1, . . . , n, (20)

n∑
i=1

sji = 1, (21)

�i sj i = 0, �i �0, sji �0, i = 1, . . . , n. (22)

These are equivalent to

� = �j
i

(�j
i − sji�j)

2
, if sji > 0, 1� i�n, (23)

�� �j
i

(�j
i − sji�j)

2
, if sji = 0, 1� i�n, (24)

n∑
i=1

sji = 1, sji �0, i = 1, . . . , n. (25)

Claim. Obviously, a computer with a higher average pro-
cessing rate should have a higher fraction of jobs assigned
to it. Under the assumption on the ordering of computers
(�j

1 ��j
2 � · · · ��j

n), we have the following order on load
fractions: sj1�sj2� · · · �sjn. This implies that may exist
situations in which the slow computers have no jobs assigned
to them. This means that there exist an indexcj (1�cj �n)
so thatsji = 0 for i = cj , . . . , n.

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034 1033

From (23) and based on the above claims we can obtain
by summation the following equation:

cj−1∑
i=1

√
�j

i =
√

�


cj−1∑

i=1

�j
i −

cj−1∑
i=1

sji�j


 . (26)

Using (24) the above equation becomes

√
� =

∑cj−1
i=1

√
�j

i∑cj−1
i=1 �j

i −
∑cj−1

i=1 sji�j

� 1√
�

cj

i

. (27)

This is equivalent to

√
�

cj

i

cj∑
i=1

√
�j

i �
cj∑

i=1

�j
i − �j . (28)

Thus, the indexcj is the minimum index that satisfies the
above equation and the result follows.�

Proof of Theorem 2.2. The while loop in step 3 finds

the minimum indexcj for which
√

�j
cj

�
∑cj

k=1 �j
k−�j∑cj

k=1

√
�j

k

. In

the same loop,sji are set to zero fori = cj , . . . , n. In

step 4, sji is set equal to 1
�j

(
�j

i −
√

�j
i

∑cj
i=1 �j

i −�j∑cj
i=1

√
�j

i

)
for i = 1, . . . , cj − 1. These are in accordance with
Theorem 2.1. Thus, the allocation {sj1, . . . , sjn} computed
by the BEST-REPLY algorithm is the optimal solution of
BEST-REPLYj . �

References

[1] E. Altman, T. Basar, T. Jimenez, N. Shimkin, Routing in two parallel
links: game-theoretic distributed algorithms, J. Parallel Distributed
Comput. 61 (9) (September 2001) 1367–1381.

[2] L. Anand, D. Ghose, V. Mani, ELISA: an estimated load information
scheduling algorithm for distributed computing systems, Comput.
Math. Appl. 37 (1999) 57–85.

[3] T. Basar, G.J. Olsder, Dynamic Noncooperative Game Theory, SIAM,
Philadelphia, PA, 1998.

[4] T. Boulogne, E. Altman, O. Pourtallier, On the convergence to Nash
equilibrium in problems of distributed computing, Ann. Oper. Res.
109 (1) (January 2002) 279–291.

[5] T. Casavant, J.G. Kuhl, A taxonomy of scheduling in general-purpose
distributed computing systems, IEEE Trans. Software Eng. 14 (2)
(February 1988) 141–154.

[6] Y.C. Chow, W.H. Kohler, Models for dynamic load balancing in a
heterogeneous multiple processor system, IEEE Trans. Comput. C-
28 (5) (May 1979) 354–361.

[7] R.M. Cubert, P. Fishwick, Sim++ Reference Manual, CISE,
University of Florida, July 1995.

[8] A.A. Economides, J. Silvester, A game theory approach to cooperative
and non-cooperative routing problems, in: ITS ’90, Proceedings of
the Telecommunication Symposium 1990, pp. 597–601.

[9] A.A. Economides, J. Silvester, Multi-objective routing in integrated
services networks: a game theory approach, in: INFOCOM ’91,
Proceedings of the 10th Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 3, April 1991, pp.
1220–1227.

[10] R. Freund, H.J. Siegel, Heterogeneous processing, IEEE Comput.
Mag. 26 (6) (June 1993) 13–17.

[11] D. Fudenberg, J. Tirole, Game Theory, The MIT Press, Cambridge,
MA, 1994.

[12] A. Ghafoor, J. Yang, A distributed heterogeneous supercomputing
management system, IEEE Comput. Mag. 26 (6) (June 1993) 78–86.

[13] D. Grosu, A.T. Chronopoulos, M.Y. Leung, Load balancing in
distributed systems: an approach using cooperative games, in:
Proceedings of the International Parallel and Distributed Processing
Symposium, April 2002, pp. 52–61.

[14] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling, Wiley-Interscience, New York, NY, 1991.

[15] H. Kameda, J. Li, C. Kim, Y. Zhang, Optimal Load Balancing in
Distributed Computer Systems, Springer, London, 1997.

[16] C. Kim, H. Kameda, Optimal static load balancing of multi-class
jobs in a distributed computer system, in: Proceedings of the 10th
International Conference on Distributed Computing Systems, May
1990, pp. 562–569.

[17] C. Kim, H. Kameda, An algorithm for optimal static load balancing
in distributed computer systems, IEEE Trans. Comput. 41 (3) (March
1992) 381–384.

[18] L. Kleinrock, Queueing Systems—vol. 1: Theory, Wiley, New York,
1975.

[19] Y.A. Korilis, A.A. Lazar, A. Orda, Capacity allocation under
noncooperative routing, IEEE Trans. Automat. Control 42 (3) (March
1997) 309–325.

[20] E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, in:
Proceedings of the 16th Annual Symposium on Theoretical Aspects
of Computer Science, 1999, pp. 404–413.

[21] H. Lee, Optimal static distribution of prioritized customers to
heterogeneous parallel servers, Comput. Oper. Res. 22 (10)
(December 1995) 995–1003.

[22] J. Li, H. Kameda, Load balancing problems for multiclass jobs in
distributed/parallel computer systems, IEEE Trans. Comput. 47 (3)
(March 1998) 322–332.

[23] D.G. Luenberger, Linear and Nonlinear Programming, Addison-
Wesley, Reading, MA, 1984.

[24] M. Mavronicolas, P. Spirakis, The price of selfish routing, in:
Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing, July 2001, pp. 510–519.

[25] R. Mirchandaney, D. Towsley, J. Stankovic, Adaptive load sharing
in heterogeneous systems, in: Proceedings of the Ninth IEEE
International Conference on Distributed Computing Systems, June
1989, pp. 298–306.

[26] V.K. Naik, S.K. Setia, M.S. Squillante, Processor allocation in
multiprogrammed distributed memory parallel computer systems, J.
Parallel Distributed Comput. 46 (1997) 28–47.

[27] J. Nash, The bargaining problem, Econometrica 18 (2) (April 1950)
155–162.

[28] J. Nash, Non-cooperative games, Ann. Math. 54 (2) (September
1951) 286–295.

[29] L.M. Ni, K. Hwang, Adaptive load balancing in a multiple processor
system with many job classes, IEEE Trans. Software Eng. SE-11 (5)
(May 1985) 491–496.

[30] A. Orda, R. Rom, N. Shimkin, Competitive routing in multiuser
communication networks, IEEE/ACM Trans. Networking 1 (5)
(October 1993) 510–521.

[31] M. Osborne, An Introduction to Game Theory, Oxford University
Press, New York, 2004.

[32] K.W. Ross, D.D. Yao, Optimal load balancing and scheduling in a
distributed computer system, J. Assoc. Comput. Mach. 38 (3) (July
1991) 676–690.

[33] T. Roughgarden, Stackelberg scheduling strategies, in: Proceedings
of the 33rd Annual ACM Symposium on Theory of Computing, July
2001, pp. 104–113.

1034 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022–1034

[34] T. Roughgarden, E. Tardos, How bad is selfish routing?, in:
Proceedings of the 41st IEEE Symposium on Foundations of
Computer Science, November 2000, pp. 93–102.

[35] X. Tang, S.T. Chanson, Optimizing static job scheduling in a network
of heterogeneous computers, in: Proceedings of the International
Conference on Parallel Processing, August 2000, 373–382.

[36] A.N. Tantawi, D. Towsley, Optimal static load balancing in distributed
computer systems, J. Assoc. Comput. Mach. 32 (2) (April 1985) 445
–465.

[37] M.H. Willebeek-LeMair, A.P. Reeves, Strategies for dynamic load
balancing on highly parallel computers, IEEE Trans. Parallel
Distributed Systems 4 (9) (September 1993) 979–993.

[38] J. Yang, I. Ahmad, A. Ghafoor, Estimation of execution times on
heterogeneous supercomputing architectures, in: Proceedings of the
International Conference on Parallel Processing, 1993, pp. 219–226.

Daniel Grosu received his Diploma in En-
gineering (Automatic Control and Industrial
Informatics) from the Technical University
of Iasi, Romania in 1994 and the M.Sc. and
Ph.D. degrees in Computer Science from
The University of Texas at San Antonio in
2002 and 2003, respectively. Currently, he
is an Assistant Professor in the Department
of Computer Science at Wayne State Uni-
versity, Detroit. His research interests in-
clude load balancing, distributed systems,
electronic voting, security and topics at the
border of computer science, game theory and

economics. He has served on the program and steering committees of
several international meetings in parallel and distributed computing. He
is a member of the IEEE, ACM and the SIGACT.

Anthony T. Chronopoulos received his
Ph.D. at the University of Illinois in
Urbana-Champaign in 1987. He is a senior
member of the IEEE and the ACM. He
has published 36 journal and 45 refereed
conference proceedings publications in the
areas of distributed systems, game theory,
networks and security, parallel processing.
He has been awarded 12 federal/state gov-
ernment research grants. His work is cited
in more than 190 nonco-authors’ research
articles. He has advised three Ph.D. students
who are active researchers.

