Available online at www.sciencedirect.com
Journal of

sanNCE@DlRECT@ Parallel and
Distributed
Computing

J. Parallel Distrib. Comput. 65 (2005) 1022—-1034

www.elsevier.com/locate/jpdc

Noncooperative load balancing in distributed systems
Daniel Grosd, Anthony T. Chronopouldst

@Department of Computer Science, Wayne State University, 5143 Cass Avenue, Detroit, Ml 48202, USA
bDepartment of Computer Science, University of Texas at San Antonio, 6900 N. Loop 1604 West, San Antonio, TX 78249, USA

Received 12 March 2003; received in revised form 12 October 2004; accepted 9 May 2005
Available online 22 June 2005

Abstract

In this paper, we present a game theoretic framework for obtaining a user-optimal load balancing scheme in heterogeneous distributed
systems. We formulate the static load balancing problem in heterogeneous distributed systems as a noncooperative game among users. Fc
the proposed noncooperative load balancing game, we present the structure of the Nash equilibrium. Based on this structure we derive a
new distributed load balancing algorithm. Finally, the performance of our noncooperative load balancing scheme is compared with that of
other existing schemes. The main advantages of our load balancing scheme are the distributed structure, low complexity and optimality
of allocation for each user.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Distributed systems; Static load balancing; Game theory; Nash equilibrium; Noncooperative games; Performance evaluation

1. Introduction characterized as static and dynarfbt. Static load balanc-
ing schemes use a priori knowledge of the applications and

In recent years, heterogeneous distributed computing sys-statistical information about the system whereas dynamic
tems have become the main platforms for the execution of load balancing schemes base their decision making process
distributed applications. In these systems applications areon the current state of the system. A good load balancing
submitted by a large number of users that compete for the scheme needs to be general, stable, scalable, and to add a
shared heterogeneous resources (computers, storage consmall overhead to the system. These requirements are in-
munication links, etc.) [10,12,38]. Thus, a distributed system terdependent, for example a general load balancing scheme
can be viewed as a collection of computing and communi- may add a large overhead to the system, while an applica-
cation resources shared by active users. When the demandion specific load balancing scheme may have a very small
for computing power increases the load balancing problem overhead. Since the focus of this paper is on the static load
becomes important. The purpose of load balancing is to im- balancing problem, we will not discuss the details related
prove the performance of a distributed system through an ap-to dynamic load balancing. For further details on dynamic
propriate distribution of the application load. A general for- load balancing, see [25,37].
mulation of this problem is as follows: given a large number The static load balancing problem can be solved by em-
of jobs, find the allocation of jobs to computers optimizing ploying one of the following three approaches:
a given objective function (e.g. total execution time).

There is a large body of literature on load balancing and 1. Global approachIn this case there is only one decision

tem over all jobs and the operating point is calegtial

"+ Corresponding author. Fax: +1 210458 4437 (overall) optimum This is the classical approach and has
E-mail addressesdgrosu@cs.wayne.edd. Grosu),atc@cs.utsa.edu been studied extensively using different techniques such
(A.T. Chronopoulos). as nonlinear optimizatior{16,17,21,22,29,35,36] and

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.05.001

http://www.elsevier.com/locate/jpdc
mailto:dgrosu@cs.wayne.edu
mailto:atc@cs.utsa.edu

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034 1023

polymatroid optimizatiorf32]. All existing schemes us- operative game in a network of parallel links with convex
ing the global approach are not based on game theoreticcost functions. They studied the existence and uniqueness
models. of the Nash equilibrium. Altman et a]1] investigated the

2. Cooperative approachn this case there are several deci- same problem in a network of parallel links with linear cost
sion makers (e.g. jobs, computers) that cooperate in mak-functions. Korilis et al. [19] considered the capacity alloca-
ing the decisions such that each of them will operate at tion problem in a network shared by noncooperative users.
its optimum. Decision makers have complete freedom of They studied the structure and the properties of Nash equi-
preplay communication to make joint agreements about librium for a routing game with M/M/1-type cost functions
their operating points. This situation can be modeled as a(i.e. functions that characterize the expected delay in a queue
cooperative game and game theory offers a suitable mod-with Poisson arrivals and exponentially distributed process-
eling framework{11]. ing times [18]). An important line of research was initiated

3. Noncooperative approachn this case there are several by Koutsoupias and Papadimitriou [20], who considered a
decision makers (e.g users, jobs) that are not allowed tononcooperative routing game and proposed the ratio between
cooperate in making decisions. Each decision maker op-the worst possible Nash equilibrium and the overall optimum
timizes its own response time independently of the others as a measure of effectiveness of the system. Mavronicolas
and they all eventually reach an equilibrium. This situa- and Spirakis [24] derived tight bounds on coordination ratio
tion can be viewed as a noncooperative game among deci-in the case of fully mixed strategies where each user assigns
sion makers. The equilibrium is calléthsh equilibrium its traffic with nonzero probability to every link. Roughgar-
[11,28] and it can be obtained by a distributed noncoop- den and Tardos [34] showed that in a network in which the
erative policy. At the Nash equilibrium a decision maker link cost functions are linear the flow at Nash equilibrium
cannot receive any further benefit by changing its own has total latency at moé that of the overall optimal flow.
decision. If the number of decision makers is not finite They also showed that if the link cost functions are assumed
the Nash equilibrium reduces to tiééardrop equilibrium to be only continuous and nondecreasing the total latency
[15]. may be arbitrarily larger than the minimum possible total

In this paper, we investigate the noncooperative approachlatency'

and propose a new model and a load balancing algorithm
based on a noncooperative game among users. 1.2. Motivation and contribution

Most of the previous studies on static load balancing con-
sidered as their main objective the minimization of overall
expected response time. This is difficult to achieve in dis-
tributed systems where there is no central authority con-
trolling the allocation and users are free to act in a selfish
manner. Our goal is to find a formal framework for charac-
terizing user-optimal allocation schemes in distributed sys-
. tems. The framework was provided by noncooperative game
systems. Roughgarden [33] formulated the scheduling prOb_theory which has been applied to routing and flow control

Igm as a Stackelberg game. In this type of noncoopera- problems in networks. Kameda et al. [15] used this frame-
tive game one player acts as a leader and the rest as fol-

lowers. He showed that it is NP-hard to compute the opti- work and obtained the Wardrop equilibrium for a noncoop-

mal Stackelberg strategy and presents efficient algorithms toeranve load balancing game among J.Obs.' In_ this paper, we
T . . . formulate the load balancing problem in distributed systems
compute strategies inducing near-optimal solutions. Grosu .
. .~ " as anoncooperative game among usaife adopt the Nash
and Chronopoulos [13] formulated the static load balancing S . . o
Lo . o equilibrium as the solution of this game. Nash equilibrium
problem in single class job distributed systems as a cooper-

. . .~ provides a user-optimal operation point for the distributed
ative game among computers and derived a load balancin system. We give a characterization of the Nash equilibrium
scheme based on the Nash Bargaining Solution [27]. Y : 9 d

Routing traffic in networks is a closely related problem and a distributed algorithm for computing it. We compare the

. . . . erformance of our noncooperative load balancing scheme
that has received more attention. Economides and Silvester : I
. : . with that of other existing schemes. Our scheme guarantees
[9] considered a noncooperative routing problem for two

X 2 ...~ the optimality of allocation for each user (not the overall
classes of packets. The first class objective is to minimize . . -
) ; -~ .. "7 system optimum) in the distributed system.
its average packet delayvhile the other class objective is
to minimize itsblocking probability They derived a routing
policy for a two server system and presented the strategy1.3. Organization
and the performance of each class. They also studied in [8]
the Nash equilibrium of the routing problem for two classes The paper is structured as follows. In Section 2, we present
of users and two servers. Orda et al. [30] studied a nonco-the system model and we introduce our load balancing non-

1.1. Related work

There exist only few studies on game theoretic models
and algorithms for load balancing in distributed systems.
Kameda et al. [15] studied noncooperative games and de-
rived load balancing algorithms for computing the Wardrop
equilibrium in single class and multi-class job distributed

1024 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034

tributed algorithm for computing the Nash equilibrium for

our load balancing game. In Section 4, the performance of

our load balancing scheme is compared with those of other

existing schemes. In Section 5, we draw conclusions and

present future directions. User 2 i 0

cooperative game. In Sectid®, we derive a greedy dis-
Userl% (0]

2. Load balancing as a noncooperative game among
users

erogeneous computers sharednbysers. Each computer is
modeled as an M/M/1 queueing system (i.e. Poisson arrivals
and exponentially distributed processing times) [18] and is
characterized by its average processingate=1, ..., n.
Jobs are generated by ugewith an average rate;, and
o= Z;’.’zl ¢ ; is the total job arrival rate in the system. The
total job arrival rated must be less than the aggregate pro-
cessing rate of the system (i®.<)"/ ; ;). The system
model is presented in Fig. 1. The problem faced by users is
to decide on how to distribute their jobs to computers such
that they will operate optimally. Thus, ugefj = 1, ..., m) (i) Positivity: s;; >0,i =1,....,n, j=1,...,m;
must find the fractions;; of its workload that is assigned (i) Conservation} ;_;s;; =1,j=1,...,m;
to computeri (X', sj; =1and 0<sj;<1,i=1,...,n) (i) Stability Y7 sjid; < gy i =1,...,n.
such that the expected execution time of its jobs is mini-
mized. Once;; are determined by using the algorithm pro-
posed in this paper, usgsends jobs to computérat a rate
given bys;; ¢ ; (in jobs/s). Note that;; are nondimensional.

We formulate the above problem as a noncooperative
game among users under the assumption that users are ‘sel
ish’. This means that they minimize the expected response
time of their own jobs. In the following, we first present the
notations we use and then define the noncooperative load (i) Players The musers.

We consider a distributed system that consists diet-
User m% O

Fig. 1. The distributed system model.

Definition 2.1 (Feasible strategy profi}e A feasible load
balancing strategy profilées a strategy profils that satisfies
the following restrictions:

Now we define our noncooperative load balancing game.

Definition 2.2 (Noncooperative load balancing gajne

The Noncooperative load balancing ganeensists of a set

of players, a set of strategies, and preferences over the set
of strategy profiles:

balancing game. (ii) Strategies Each user’s set of feasible load balancing
Let s;; be the fraction of workload that usg¢rsends to strategies.

computeri. The vectors; = (s;1, 52, ..., 5j») is called the (i) PreferencesEach user’s preferences are represented

load balancing strategef userj, j = 1, ..., m. The vector by its expected response timb (). Each usej prefers

sS=(s1,%,...,S,) is called thestrategy profileof the load the strategy profiles to the strategy profiles’ if and

balancing game. only if D;(s) < D;(s).

We assume that each computer is modeled as an M/M/1

queueing system and the expected response time at computer | - .1+ cbtain a load balancing scheme for the dis-

s given by tributed system we need to solve the above game. The most
Fi(s) = 1) commonly used solution concept for such games is that of
! - ZT:l sjid; : Nash equilibrium11], which we consider here.
Thus, the overall expected response time of yigegiven Definition 2.3 (Nash equilibriun). A Nash equilibriumof
by the load balancing game defined above is a strategy profile
N " ssuch that for every uségr(j =1, ..., m):
Sii
Di() =) sjiFi®=) —i— (2
; ;“f_Zkzlski‘f)k sj € arg rls’linDj(sl,...,§j,...,sm). (3)
]

The goal of usejj is to find a feasible load balancing
strategys; such thatD;(s) is minimized. The decision of Nash equilibrium for our load balancing game is a strat-
userj depends on the load balancing decisions of the otheregy profile with the property that no user can decrease its
users sinceD; (s) is a function ofs. expected job execution time by choosing a different load

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034 1025

balancing strategy given the other user’s load balancing subject to the constraints
strategies. In other words a strategy prodils a Nash equi-

librium if no user can benefit by deviating unilaterally from s;;=0, i=1...,n, (5)
its load balancing strategy to another feasible one. For our

load balancing game there exists a unique Nash equilibrium "

because the expected response time functions are continu- Z sji =1, (6)
ous, convex and increasiiig0]. i=1

Remark. In general Nash equilibria are defined in terms of i skide < i i=1....n. @)

mixed strategies which are probability distributions over the
set of pure strategies. In this paper, we are interested only
in pure strategy equilibria. In pure strategy equilibria a user Remark. The strategies of all the other users are kept fixed,
(player) chooses a unique strategy from the set of availablethus the variables involved in BEST-REPL¥ire the load

k=1

strategies, whereas in mixed strategy equilibria he choosesfractions of usey, i.e. Sj = (51,52 -, Sjn)-
a probability distribution over the set of strategies available
to him [31]. There exist some algorithms for finding the solution for

similar optimization problems using different objective func-

Similar games were studied in the context of flow con- tions based on Lagrange multipliers. One was proposed by
trol and routing in networks. Orda et al. [30] proved that if Tantawi and Towsley36] but it is complex and involves a
the expected response time functions are continuous, connumerical method for solving a nonlinear equation. Ni and
vex and increasing there exists a unique Nash equilibrium Hwang [29] studied a similar problem for a system with pre-
for the game. The closest work to our study is that of assigned arrival rates at each computer, but they considered
Korilis et al. [19] in which a similar game is studied in g different objective function from ours. Another one which
the context of capacity allocation in networks. They studied inspired our approach was proposed by Tang and Chanson
the structure and properties of the Nash equilibrium for the [35]. They considered a system were there is only one user
game. Here, we are interested in finding a way to determinethat has to assign jobs to computers such that the job exe-
the Nash equilibrium for our load balancing noncooperative cution time for all jobs is minimized. We extend the work
game. in [35] considering a different model in which the influence

In order to determine a solution for our load balancing of the other users’ decisions on the optimum is taken into
game we consider an alternative definition of the Nash equi- account. Thus, we use the same objective function but we
librium. Nash equilibrium can be defined as a strategy profile use different constraints. Here, we first characterize the best
for which every user’s load balancing strategy Issst reply reply strategy of each user and then propose an algorithm
to the other users strategies. This best reply for a user will for computing this strategy considering our model. The al-
provide a minimum expected response time for that user’s gorithm will be used in Section 3 to devise a distributed
jobs given the other users’ strategies. This definition gives us algorithm for computing the Nash equilibrium for our load
a method to determine the structure of the Nash equilibrium palancing game.
for our load balancing game. First, we determine the best The best reply strategy of usgwhich is the solution of
reply strategiess; for each usey, then we find a strategy ~ BEST-REPLY; is given in the following theorem.
profiles= (s1, s, ..., s,) for whichs; is the best reply of

userj, forj =1,2,...,m. _ Theorem 2.1(BEST-REPLY solutior). Assuming that
First, we dgter_mme the best rep!y of USErj = computers are ordered in decreasing order of their available
1.2,....m which is the strategy profile that obtains the processing rategu{ > u}> - -- >pu}), the solutiors; of the

minimum expected response time for usfeibs with respect gptimization problem BEST-REPLYis given by
to the other users strategies. Lgt= u; — D ket SkiDr

be theavailable processingate at processaras seen by _ i\
userj. The problem of computing the best reply strategy = _ (/)—1/ - #{% if 1<i <¢j,)
of userj (j = 1,...,m) reduces to computing the optimal /! L] _ ,
strategy for a system with one user andomputers having 0 if c;j<i<n,
Jo : :
#; (=1,....n) as processing rates aldr} as the users wherec; is the minimum index that satisfies the inequality

job arrival rate in the system.
This can be translated into the following optimization ¢
problem(BEST-REPLY)): =l i ©)

L1 V i
min D;(s) (4))
Sj Proof. In Appendix A. O

1026 D. Grosu, A.T. Chronopoulos / J. Parallel

Based on the above theorem we derived the following
algorithm for determining uséis best reply strategy:

BEST-REPLY (i, ..., fin, b;)
Input: Available processing rategy, 5, . ..
Total arrival rateip
Output: Load fractions:s;, s;2, ..., $jn;
1. Sort the computers in decreasing order of
their available processing rates

W =>1> - = um);
2t <« Z?:l ﬂ;_qﬁj

Sl

3. while (7>/u) do

J.
9,“}11

sin <0
n<n-—1
f < Z?:lﬂ,!*(lsj

Sayul

4.fori=1,...,ndo
Sji <= (Mf —f\//4> (1,—1]

The following theorem proves the correctness of this al-
gorithm.

Theorem 2.2. The load balancing strategis;1, sj2, ...,
sjn} computed by the BEST-REPLY algorithm solves the
optimization problem BEST-REPLYand is the best reply
strategy of usey.

Proof. In Appendix A. [

Remarks. (1) The execution time of this algorithm is
O(n log n). This is due to the sorting procedure in step 1.
(2) To execute this algorithm each user needs to know the
available processing rate at each computer and its job ar-
rival rate. The available processing rate can be determined
by statistical estimation of the run queue length of each
processor.

Example 1. Let us apply the BEST-REPLY algorithm to a
system of 3 computers and only one user. The computers
have the following available processing rate%:: 10.0,

13 = 2.0 andyu3 = 1.0. The total arrival rate ig); = 6.0.

The computers are already sorted in decreasing order of

their processing rate and we execute Step 2 in which we
computet.

10+2+1-6

f=—— T "> _ 1255
VI0+ 2+ /1

The while loop in Step 3 is executed because ,/,u%. In

this loops13 = 0, n = 2 andt is updated to B11 < \/;%
and then the algorithm proceeds to Step 4. In this step the

Distrib. Comput. 65 (2005) 1022-1034

values of the load fractions are computed; = 0.975 and
s12 = 0.025.

3. A distributed load balancing algorithm

The computation of Nash equilibrium may require some
coordination between the users. In our case this is necessary
in the sense that users need to coordinate in order to obtain
the load information from each computer. From the practical
point of view we need decentralization and this can be ob-
tained by using distributed greedy best reply algoritfidis
In these algorithms each user updates from time to time its
load balancing strategy by computing the best reply against
the existing load balancing strategies of the other users.

Based on the BEST-REPLY algorithm presented in the
previous section, we devise the following greedy best re-
ply algorithm for computing the Nash equilibrium for our
noncooperative load balancing game. In this algorithm users
are synchronized such that they update their strategies in a
round-robin fashion.

We use the following notations in addition to those of
Section 2:

j—the user number;
|—the iteration number;
Y —the strategy of usgrcomputed at iteratiofy

Dﬁ”—userj 's expected execution time at iteratign
e—a properly chosen acceptance tolerance;
norm—the L-norm at iterationl, defined asnorm =
Z}]ﬂ:l |D;l—l) o D;l)|

Sendj, (p, g, r))—send the messagp, (@, r) to userj;
Rec\Yj, (p, g, r))—receive the message,(q, r) from
userj;

(wherep is a real number, ang, r are integer numbers).

NASH distributed load balancing algorithm:

Userj, (j =1,...,m) executes
1. Initialization :
S(.O)
DO L 0;
l i— 0;
norm < 1;
sum<— 0;
tag < CONTINUE;
left = [(j — 2) modm] + 1,
right = [j modm] + 1,

<~ 0;

2. while (1) do
if(j = 1) {user 3
if (I #0)

Rec\left, (horm [, tag));
if (norm < &)
Send¢ight, (norm I,
STOB);
exit;

D. Grosu, A.T. Chronopoulos / J. Parallel

sum<— 0;
< 1+1

else{the other usels
Recv(eft, (sum I, tag));

if (tag = STOP
if (j #m) Sendfight, (sum
[, STOPR);
exit;
fori=1...,ndo

Obtainu{ by inspecting the run queue
of _each computer
() < 1 = 2t ke Sk PR);
; ; ‘

s « BEST—REPLY (u]..... 0, ¢)):

ComputeDg.”;

sum < sum + |D§.lfl) — D;l)|;

Sendgight, (sum |, CONTINUE));

endwhile

The execution of this algorithm is restarted periodically

Distrib. Comput. 65 (2005) 1022-1034 1027

4. Experimental results
4.1. Simulation environment

The simulations were carried out using Simf#t;, a sim-
ulation software package written in C++. This package pro-
vides an application programming interface which allows
the programmer to call several functions related to event
scheduling, queueing, preemption and random number gen-
eration. The simulation model consists of a collection of
computers connected by a communication network. Jobs ar-
riving at the system are distributed to the computers ac-
cording to the specified load balancing scheme. Jobs which
have been dispatched to a particular computerraneto-
completion(i.e. no preemption) in first-come-first-served
(FCFS) order.

Each computer is modeled as an M/M/1 queueing system
[18]. The main performance metrics used in our simulations
are theexpected response tinaad thefairness indexThe
fairness index

or when the system parameters are changed. Once the Nash

equilibrium is reached, the users will continue to use the

same strategies and the system remains in equilibrium. This

equilibrium is maintained until a new execution of the algo-
rithm is initiated.

In multiprogrammed heterogeneous distributed systems
[26], the NASH scheme works as follows. Each user has

an associated scheduler agent (process) which makes thé

allocation decisions and communicates with the schedul-
ing agents of the other users in the system. The NASH al-
gorithm is executed periodically by this set of scheduling

agents. The scheduling agent estimates the job arrival ratet 00%

at the user by considering the number of arrivals over a
fixed interval of time (as presented in [2]). It also queries

the state of each computer in the system and based on

the estimated available processing rate reported by comput
ers it decides the fractiong;. The estimation of available
processing rate is done using the technique presented
[2]. Once the fractions are determined the scheduling agent
sends the next job to computewith probability s;;. This
type of allocation based af; fractions was studied before

in [35].

An important practical question is whether such ‘best re-
ply’ algorithms converge to the Nash equilibrium. The only
known results about the convergence of such algorithms
have been obtained in the context of routing in parallel links.

m

[>"_4 Dj1?

1(D) = (10)

was proposed iifil4] to quantify the fairness of load bal-
ancing schemes. Here, the paramdeis the vectorD =

D1, Dy, ..., Dy) whereD; is the expected execution time
of userj’s jobs. This index is a measure of the ‘equality’
of users’ job execution times. If all the users have the same
expected job execution times thén= 1 and the system is
fair to all users and it is load balanced. If the differ-
ences onD; increase/| decreases and the load balancing
scheme favors only some users.

The simulations were run over several thousands of sec-
onds, sufficient to generate a total of 1-2 millions jobs typi-
cally. Each run was replicated five times with different ran-

ipdom number streams and the results averaged over replica-

tions. The standard error is less than 5% at the 95% confi-
dence level.

4.2. Performance evaluation

For comparison purposes we consider three existing static
load balancing schemes [6,15,16]. A brief description of
these schemes is given below:

These studies have been limited to special cases of two paral-e Proportional scheméP$S) [6]. According to this scheme

lel links shared by two users [30] or lay> 2 users but with
linear cost links [1]. For M/M/1-type cost functions there
is no known proof that such algorithms converge for more
than two users. As shown by several experiments done on
different settings, these algorithms may converge for more
than two users. In the next section, we present such ex-
periments that confirm this hypothesis (also see [4]). The
convergence proof for more than two users is still an open
problem.

each user allocates its jobs to computers in proportion
to their processing rate. This allocation seems to be a
natural choice but it may not minimize the user’s expected
response time or the overall expected response time. The
fairness index for this scheme is always 1 as can be easily
seen from Eqg. (10).

Global optimal schem¢GOS [16]. This scheme mini-
mizes the expected execution time over all jobs executed
by the system. The load fractions) (are obtained by

1028 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034

solving the following nonlinear optimization problem: 1p

NASH_O0 ——

1
min &];qﬁij(s) (11) o1}

subject to the constraints 0.01 |-

Norm

5;i=0, i=1...,n, j=1...,m, (12)

0.001 |

0.0001 |

n
dYosii=1 j=1...m, (13)
i=1

m

Zsjl(i)]<'ul, i=1,...,

j=1

1e-05 L
(14) 20 40 60 80 100 120 140
Number of iterations

s

This scheme provides the overall optimum for the ex- Fig. 2. Norm vs. number of iterations.
pected execution time but it is not user-optimal and is
unfair.

e Individual optimal schemglOS) [15]. In this scheme, NASH © s
each job optimizes its response time for itself indepen- NASH_P --o--
dently of others. In general, the Wardrop equilibrium, 200 -
which is the solution given by this scheme, is not optimal
and in some cases we expect worse response time than
the other policies [15]. It is based on an iterative proce-
dure that is not very efficient. For a complete description
of 10S algorithm see [15]. The advantage of this scheme
is that it provides a fair allocation.

250 T T T T

150 |-

Number of iterations

100 |-

Remark. Among the schemes described above, the 10S o

scheme is the only scheme that is based on game theoretic
concepts. Our scheme (NASH) and PS are the only dis-

tributed schemes considered in this paper. I0S and GOS are
centralized schemes. Fig. 3. Convergence of best reply algorithms (until-m < 10~4).

Number of users

We evaluated the schemes presented above under various _ .) o
system loads and configurations. Also the convergence of e callthis new version NASH_P. Using this initialization
the NASH load balancing algorithm is investigated. In the the starting point will be a proportional allocation of jobs to

following we present and discuss the simulation results. ~ COmputers according to their processing rate. We expect a
better convergence using NASH_P instead of NASH_0. To

4.2.1. The convergence of NASH algorithm study Fhe convergence of these algorithms we consider a sys-
An important issue related to the greedy best reply al- ©M with 16_ computers shared by 1_0 users. The norm vs. the
gorithm presented above is the dynamics of reaching the "Umber of iterations is shown in Fig. It can be seen that
equilibrium. We consider first the NASH algorithm using the NASH_P algorithm significantly outperforms NASH_0O
s — 0 as the initialization step. This variant of the algo- algorlthm. T_he intuitive explanatlon for. this performance is
rithm will be called NASH_0. This initialization step is an that the initial proportional allocation is close to the equi-
obvious choice but it may not lead to a fast convergence to librium point and the number of iterations needed to reach

the equilibrium. the equilibrium_ is re_duced. Using the NASH_P a_lgo_rithm_

We propose a variant of the algorithm in which the ini- the number of iterations needed to reach_the equilibrium is
tialization step is replaced by reduced by more than.a half compared with NASH_QO.

Next, we study the influence of the number of users on
1. Initialization: the convergence of both algorithms. In Fig. 3, we present
fori=1...,ndo the number of iterations needed to reach the equilibrium

s}?) “«— 2:1 /Jk; (norm < 10~4) for a system with 16 computers and a vari-
DO 0; N able number of users (from 4 to 32). It can be observed that

/ L 0: NASH_P significantly outperforms NASH_O reducing the

number of iterations needed to reach the equilibrium in all
the cases.

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034 1029

Table 1 w w %
System configuration ‘

Relative processing rate 1 2 5 10 E,J:
2
Number of computers 6 5 3 2 f‘gj
Processing rate (jobs/s) 10 20 50 100 i
g
g
Table 2 ol

Job arrival fractiong;; for each user.

User 1 2 3-6 7 8-10
10 20 30 40 50 60 70 80 90
q; 0.3 0.2 0.1 0.07 0.01 System utilization (%)
/ 1.04 - -
NASH ——
GOS --o&
1.02 - 10S -- & 1
PS A

4.2.2. Effect of system utilization
To study the effect of system utilization we simulated a B = T
heterogeneous system consisting of 16 computers with four »
different processing rates. This system is shared by 10 users.
In Table 1, we present the system configuration. The first
row contains the relative processing rates of each of the ool .
four computer types. Here, the relative processing rate for o
computer G is defined as the ratio of the processing rate o2} e i
of C; to the processing rate of the slowest computer in the
system. The second row contains the number of computers °%5 20 2 40 s e 70 8
in the system corresponding to each computer type. The last System utilization (%)
row shows the prqcessmg rate of each computer type in theFig. 4. The expected response time and fairness index vs. system utiliza-
system. We consider only computers that are at most 10,
times faster than the slowest because this is the case in most
of the current heterogeneous distributed systems.
For each experiment the total job arrival rate in the system
@ is determined by the system utilizatipnand the aggre-
gate processing rate of the syste®ystem utilizatiorfp) is
defined as the ratio of the total arrival rate to the aggregate
processing rate of the system

Fairness index |
o]

0.96 |- RN -

mean response time of NASH is 30% less than PS and 7%
greater than GOS.

At high loads 10S and PS yield the same expected re-
sponse time which is greater than that of GOS and NASH.
The expected response time of NASH scheme is very close

0)) to that of GOS.
p= ST (15) The PS and |0S schemes maintain a fairness index of 1
=1 over the whole range of system loads. It can be shown that
We choose fixed values for the system utilization and we de- the PS has a fairness index of 1 which is a constant indepen-
termined the total job arrivab. For example, if we consider dent of the system load. The fairness index of GOS varies
p = 10% and an aggregate processing rate of 510 jobs/sfrom 1 at low load, to 0.92 at high load. The NASH scheme
then the arrival rate in the system/s= 51jobs/s. The job has a fairness index close to 1 and each user obtains the

arrival rate for each usep;, j = 1,...,10 is determined minimum possible expected response time for its own jobs
from the total arrival rate ag ; = g;®, where the fractions given what every other user is doing (i.e. it is user-optimal).
g, are given in Table. The stability of the allocation under noncooperative behav-

In Fig. 4, we present the expected response time of theior and decentralization are the main advantages of NASH
system and the fairness index for different values of system scheme.
utilization (ranging from 10% to 90%). It can be observed An interesting issue is the impact of static load balanc-
that at low loads 4 from 10% to 40%) all the schemes ing schemes on individual users. In Flg. we present the
except PS yield almost the same performance. The poorexpected response time for each user considering all static
performance of PS scheme is due to the fact that the lessschemes at medium load-£60%). The PS and IOS schemes
powerful computers are significantly overloaded. guarantee equal expected response times for all users but

At medium loads 4 from 40% to 60%) NASH scheme with the disadvantage of a higher expected execution time
performs significantly better than PS and approaches thefor their jobs. It can be observed that in the case of GOS
performance of GOS. For example at load level of 50% the scheme there are large differences in users’ expected exe-

1030 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034

0.1

0.3
$ —~
& oos — .
@ [| | | || (] | 8
.g 0.07 GE)
¢ 0.06 L E
2 5
2 005 | 3
8 o
: -
7 0.04 H 3
T 003 i B
i 5
X 0.02 | g

0.01 | ol
0 = 5 1= e 757 — —! — L] | 1

User1 User2 User3 User4 User5 User6 User7 User8 User 9 User 10

Il Il
. . 2 4 6 8 10 12 14 16 18 20
Fig. 5. Expected response time for each user.

1.05

cution times. NASH scheme provides the minimum possi-
ble expected execution time for each user (according to the
properties of the Nash equilibrium).

g 095 - \Q\ R
4.2.3. Effect of heterogeneity 8] o
In a distributed system, heterogeneity usually consists of: § °°f 1
processor speed, memory and I/O. A simple way to char- o
acterize system heterogeneity is to use the processor speed. oss|- S eE e
Furthermore, it is reasonable to assume that a computer with S o e
a high-speed processor will have matching resources (mem- [, ‘ ‘ ‘ 7 ‘ ‘ ! s
2 4 6 8 10 12 14 16 18 20

ory and I/O). One of the common measures of heterogeneity
is thespeed skewnesghich is defined as the ratio of max-
imum processing rate to minimum processing rate of the Fig. 6. The effect of heterogeneity on the expected response time and
computers in the system. This measure is somehow limited faimess index.

but for our goals it is satisfactory.

In this section, we investigate the effectiveness of load fastest computer is increased more than 16 times IOS is able
balancing schemes by varying the speed skewness. We simto determine a better allocation than that of PS, allocating
ulate a system of 16 heterogeneous computers: 2 fast andewer jobs to the slow computers.

14 slow. The slow computers have a relative processing rate The fairness index of NASH is very close to one, which

of 1 and we varied the relative processing rate of the fast is the value obtained by PS and 10S. These three schemes
computers from 1 (which corresponds to a homogeneousguarantee equal expected response times for all the users in
system) to 20 (which corresponds to a highly heterogeneousthe system over all range of speed skewness. The fairness

Max speed / Min speed

system). The system utilization was kept consjaat 60%. index of GOS is between 0.95 and 1 at low- and high-speed
The fractions used to determine the job arrival rate of each skewness and between 0.8 and 0.85 at medium speed skew-
user are those presented in TaBle ness. These results show that at medium speed skewness

In Fig. 6, we present the effect of speed skewness on theGOS scheme produces an allocation which does not guar-
expected response time and fairness. It can be observed thaintee equal expected response times for all the users in the
increasing the speed skewness the GOS and NASH schemesystem.
yield almost the same expected response time which means
that in highly heterogeneous systems the NASH scheme isRemark. In homogeneous systems all the schemes consid-
very effective. NASH scheme has the additional advantage ered in this paper obtain the same expected response time
of decentralization and user-optimality which is very im- and the same fairness index. This is because all comput-
portant in actual distributed systems. PS scheme performsers in the system have the same processing rate and all the
poorly because it overloads the slowest computers. The 10Sload balancing schemes presented here will allocate an equal
scheme performs well at high-speed skewness approachingamount of load to each computer.
the performance of NASH and GOS, but at low-speed skew-
ness it performs poorly. 4.2.4. Effect of system size

At low-speed skewness IOS obtains the same expected re- An important issue is to study the influence of system size
sponse time as PS. This is due to the fact that at low-speedon the performance of load balancing schemes. To study this
skewness 10S determines the same allocation as PS, overissue we performed two types of experiments on a simulated
loading the slow computers. When the processing rate of theheterogeneous distributed system consisting of two types of

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034 1031

0.14 T T T T T T T T . T T -
NASH—%— s "eos o
GOS --o
GOS --©-- - 10S --&--
. L 10S -+~] o
o 0.12 PS el a8 —~ Fe
Q o -
o 3
° o
E o1f & . 2
3 o i
c =4
2 2
g 008 z
o
g g]
3 0.06 g
< i}
w
0.04 .
Il Il Il Il Il Il Il Il
0.02 2 4 6 8 10 12 14 16 18 20

Number of computers

1.05

. 0.95 |- -
0.95 [B

- ~
X ()
S . 2
3 5
3 2 o9} i
E 0.9 - . . .%
L‘E b\ (1
™ 085 NASH —%—
NASH—>— 2 Gos--o- T
085 'Coe am R 10S -t
10S --&F-- \\ PS e
PS ool
S 08 i
o8k T e ! ! ! ! ! ! ! !
- ! ! ! !) . . M 2 4 6 8 10 12 14 16 18 20
2 4 6 8 10 12 14 16 18 20

Number of computers
Number of computers

. . i Fig. 8. The effect of system size on the expected response time and
Fig. 7. The effect of system size on the expected response time andfairness index

fairness index.

computers: slow computers (relative processing rate = 1) GOS does not guarantee equal expected execution times for
and fast computers (relative processing rate = 10). In all all the users when the system size increases to more than 8
these experiments the system utilization was kept constant,computers.
p = 60%. In the second type of experiments we gradually increase
In the first type of experiments we gradually increase the the size of the system by adding fast computers, more pre-
size of the system by adding slow computers, more pre- cisely we increase the number of computers from 2 (slow
cisely we increase the number of computers from 2 (fast computers only) to 20 (2 slow and 18 fast computers). Fig.
computers only) to 20 (2 fast and 18 slow computers). Fig. 8 shows the expected response time and the fairness index
7 shows the expected response time and the fairness indefor all the schemes. The performance of NASH, GOS and
for all the schemes. The performance of NASH and GOS is IOS is the same. This is because adding fast computers in
almost the same when we have few computers (2-8). Thethe system makes these schemes allocate no jobs to the two
PS scheme performs poorly even for a small system. Theslow computers. Thus, only the fast computers having the
expected response time for |OS degrades increasing the syssame speed receive jobs and the system can be considered
tem size and approaches the expected response time of P&s a homogeneous system. In this case all the schemes ex-
This is because when we add slow computers IOS allocatescept PS will obtain similar performance. PS does not obtain
more jobs to the slow computers in the system overloading the optimum because it allocates some jobs to the two slow
them. NASH guarantees a good performance for medium computers increasing the overall expected execution time.
and large systems and the same performance as GOS fomhe high value of the expected execution time when the sys-
small systems. The additional advantage of NASH is that tem size is two is due to the fact that we have only the slow
it is a distributed scheme providing a user-optimal alloca- computers in the system and they are overloaded. As seen
tion. The fairness index obtained by NASH is 1 when we from the results the fairness index is the same for all the
have a small system and between 1 and 0.98 when the sizeschemes over all range of system sizes. As explained above
of the system is between 8 and 20. This means that NASH this is because the system behaves similarly to a homoge-
allocates jobs to computers such that each user will obtainneous system. NASH provides the additional advantage of
the same expected execution time. As seen from the resultdeing a distributed load balancing scheme.

1032 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034

5. Conclusion Thus, OB involves minimizing a convex function over
a convex feasible region and the first-order Kuhn—Tucker
In this paper we have presented a game theoretic frame-conditions are necessary and sufficient for optimgR].
work for obtaining a user-optimal load balancing scheme in Let«>0,%,;>0,i = 1,...,n denote the Lagrange mul-
heterogeneous distributed systems. We formulated the loadipliers [23]. The Lagrangian is
balancing problem in heterogeneous distributed systems as
a noncooperative game among users. For this game the Nash L(si
equilibrium provides an user-optimal operation point for the ! ’n N n
dlstnbgted system. For the proposed noncooperative Ioao_l _ Z S —u (Z sji — 1) _ Z”Iisji-
balancing game, we presented the structure of the Nash equi- = ﬂf — sﬁqu = =
librium. Based on this structure we derived a new distributed (16)
algorithm for computing it. We compared the performance
of our noncooperative load balancing scheme with other ex-
isting schemes. The main advantages of our load balancing
o : The Kuhn
scheme are the distributed structure, low complexity and op-
timality of allocation for each user.
Future work will address the development of game theo-

e Sy 0, -, 1)

—Tucker conditions imply thay;, i =1,...,n
is the optimal solution to OPif and only if there exists
0>0,1;20,i =1,...,n such that

retic models for load balancing in the context of uncertainty oL
as well as game theoretic models for dynamic load balanc- P 0, (17)
ing. Sji
oL
— =0, (18)
0o
Acknowledgments
ﬂiSj,'ZO, n; =0, S./','ZO, i=1...,n. (19)

The authors express their thanks to the editor and the
anonymous referees for their helpful and constructive sug-
gestions, which considerably improved the quality of the
paper. A
This research was supported, in part, by research grants (ﬂ{ - Sji¢j)2
from: NSF CCR-0312323, NASA NAG 2-1383 (1999- ;
2001), and State of Texas Higher Education Coordinating Z 6o =1 1)
Board through the Texas Advanced Research/Advanced o ’

Technology Program ATP 003658-0442-1999.

These conditions become

J
ac =0, i=1....n (20)

i=1

171-Sj,'=0, i’]i>0, SjiZO, i=1,...,n. (22)
Appendix A These are equivalent to
J
In this section, we present the proofs of the results used o= M—’ if s;; >0, 1<i<n, (23)
in the paper. (e —sjid;)?
Proof of Theorem 2.1. We begin with the observation that / :
9 B ifsy =0 1<i<n, (24)

at the Nash equilibrium the stability condition)(is always
satisfied because of (3) and the fact that the total arrival
rate (P) does not exceed the total processing rate of the n
distributed system. Thus we consider Q#oblem with only Z sii=1, ;20 i=1...,n. (25)
two restrictions, (5) and (6). i=1
We first show thatD;(s) is a convex function irs; and
that the set of feasible solutions defined by the constraints Claim. Obviously a computer with a higher average pro-
(5) and (6) is convex. cessing rate should have a higher fraction of jobs assigned
From (2) it can be easily show th ﬁ?_i(s) >0 and to it. Under the assumption on the ord_erlng of computers
) Osji (] =>ub> -+ >p), we have the following order on load
‘ZD—J'(?>0 fori = 1,...,n. This means that the Hessian fractions sj1>s;2> --- >s;,. This implies that may exist
olsji) situations in which the slow computers have no jobs assigned

of D;(s) is positive which implies thaD;(s) is a convex . . .
function of the load fractions;. The constraints are all o them. This means that there exist an indeX1 < c; <)
so thats;; =0fori =c;,...,n.

linear and they define a convex polyhedron.

L ———
() —sjid;)?

D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034 1033

From @3) and based on the above claims we can obtain [10] R. Freund, H.J. Siegel, Heterogeneous processing, IEEE Comput.

by summation the following equation: Mag. 26 (6) (June 1993) 13-17.
[11] D. Fudenberg, J. Tirole, Game Theory, The MIT Press, Cambridge,
¢j—1 ¢j=1 ¢j—1 MA, 1994
Z :“z/ = ﬁ Z 'ulj — Z Sji¢/ . (26) [12] A. Ghafoor, J. Yang, A distributed heterogeneous supercomputing
i1 o1 i1 ’ management system, IEEE Comput. Mag. 26 (6) (June 1993) 78—86.

[13] D. Grosu, A.T. Chronopoulos, M.Y. Leung, Load balancing in

Using @4) the above equation becomes distributed systems: an approach using cooperative games, in:
Proceedings of the International Parallel and Distributed Processing

cj—1 j Symposium, April 2002, pp. 52-61.
«/& _ Z:izl K < 1 (27) [14] R. Jain, The Art of Computer Systems Performance Analysis:
e cj—1 = P Techniques for Experimental Design, Measurement, Simulation, and
Yili KXl Sjiqbf V 1’ Modeling, Wiley-Interscience, New York, NY, 1991.

[15] H. Kameda, J. Li, C. Kim, Y. Zhang, Optimal Load Balancing in
Distributed Computer Systems, Springer, London, 1997.
¢ ¢ [16] C.b Kim, Hd Ka;nedg, Optimal static load balancing of m:(JIti};cIassh
[i C i - i jobs in a distributed computer system, in: Proceedings of the 10t
ll,"/ Z \/:LTI'/g Z /“‘i'l - ¢j' (28) JInternational Conference F:)n Dis)tlributed Computing gystems, May
i=1 i=1 1990, pp. 562-569.
Thus, the inde>c,~ is the minimum index that satisfies the [17] C. Kim, H. Kameda, An algorithm for optimal static load balancing

. in distributed computer systems, IEEE Trans. Comput. 41 (3) (March
above equation and the result followd.] 1992) 381384, P y P @) (

[18] L. Kleinrock, Queueing Systems—uvol. 1: Theory, Wiley, New York,

This is equivalent to

Proof of Theorem 2.2. The while loop in step 3 finds 1975.
.. . . j ZZ'Llﬂ'/i—d’j [19] Y.A. Korilis, A.A. Lazar, A. Orda, Capacity allocation under
the minimum indexc; for which \/uc; < - In noncooperative routing, IEEE Trans. Automat. Control 42 (3) (March

D=1 \/; 1997) 309-325.

the same loops;; are set to zero fof = ¢j,...,n. In [20] E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, in:

. 1] F Zf’il #./_(/)_ Proceedings of the 16th Annual Symposium on Theoretical Aspects
step 4,sj; is set equal t0$ W — A\ 1 ’277111 of Computer Science, 1999, pp. 404-413.

! . YV] [21] H. Lee, Optimal static distribution of prioritized customers to

fori = 1,...,¢; — 1. These are in accordance with heterogeneous parallel servers, Comput. Oper. Res. 22 (10)
Theorem 2.1. Thus, the allocation;{, ..., s;,} computed (December 1995) 995-1003.
by the BEST-REPLY algorithm is the optimal solution of [22] J._ Li_, H. Kameda, Load balancing problems for multiclass jobs in
BEST—REPLYj. 0 distributed/parallel computer systems, |IEEE Trans. Comput. 47 (3)

(March 1998) 322-332.
[23] D.G. Luenberger, Linear and Nonlinear Programming, Addison-

References Wesley, Reading, MA, 1984.

[24] M. Mavronicolas, P. Spirakis, The price of selfish routing, in:
Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing, July 2001, pp. 510-519.

[25] R. Mirchandaney, D. Towsley, J. Stankovic, Adaptive load sharing
in heterogeneous systems, in: Proceedings of the Ninth IEEE
International Conference on Distributed Computing Systems, June

[1] E. Altman, T. Basar, T. Jimenez, N. Shimkin, Routing in two parallel
links: game-theoretic distributed algorithms, J. Parallel Distributed
Comput. 61 (9) (September 2001) 1367-1381.

[2] L. Anand, D. Ghose, V. Mani, ELISA: an estimated load information
scheduling algorithm for distributed computing systems, Comput.
Math. Appl. 37 (1999) 57—85. 1989, PP 298-306. " location |

[3] T. Basar, G.J. Olsder, Dynamic Noncooperative Game Theory, SIAM, [26] VK. . Naik, S.K. Se_tla., M.S. Squillante, Processor allocation in
Philadelphia, PA, 1998. multiprogrammed distributed memory parallel computer systems, J.

[4] T. Boulogne, E. Altman, O. Pourtallier, On the convergence to Nash Parallel Distributed _Clomput. 46 (1997) 28_47' .
equilibrium in problems of distributed computing, Ann. Oper. Res. 271 3. Nash, The bargaining problem, Econometrica 18 (2) (April 1950)

109 (1) (January 2002) 279-291. 155-162. _
[5] T. Casavant, J.G. Kuhl, A taxonomy of scheduling in general-purpose [28] J. Nash, Non-cooperative games, Ann. Math. 54 (2) (September
distributed computing systems, IEEE Trans. Software Eng. 14 (2) 1951) 286-295.
(February 1988) 141-154. [29] L.M. Ni, K. Hwang, Adaptive load balancing in a multiple processor
[6] Y.C. Chow, W.H. Kohler, Models for dynamic load balancing in a system with many job classes, IEEE Trans. Software Eng. SE-11 (5)
heterogeneous multiple processor system, IEEE Trans. Comput. C- (May 1985) 491-496.
28 (5) (May 1979) 354-361. [30] A. Orda, R. Rom, N. Shimkin, Competitive routing in multiuser
[7] R.M. Cubert, P. Fishwick, Sim++ Reference Manual, CISE, communication networks, IEEE/ACM Trans. Networking 1 (5)
University of Florida, July 1995. (October 1993) 510-521.
[8] A.A. Economides, J. Silvester, A game theory approach to cooperative [31] M. Osborne, An Introduction to Game Theory, Oxford University
and non-cooperative routing problems, in: ITS '90, Proceedings of Press, New York, 2004.
the Telecommunication Symposium 1990, pp. 597-601. [32] K.W. Ross, D.D. Yao, Optimal load balancing and scheduling in a
[9] A.A. Economides, J. Silvester, Multi-objective routing in integrated distributed computer system, J. Assoc. Comput. Mach. 38 (3) (July
services networks: a game theory approach, in: INFOCOM 91, 1991) 676—-690.
Proceedings of the 10th Annual Joint Conference of the IEEE [33] T. Roughgarden, Stackelberg scheduling strategies, in: Proceedings
Computer and Communications Societies, vol. 3, April 1991, pp. of the 33rd Annual ACM Symposium on Theory of Computing, July

1220-1227. 2001, pp. 104-113.

1034 D. Grosu, A.T. Chronopoulos / J. Parallel Distrib. Comput. 65 (2005) 1022—-1034

[34] T. Roughgarden, E. Tardos, How bad is selfish routing?, in:
Proceedings of the 41st IEEE Symposium on Foundations of
Computer Science, November 2000, pp. 93-102.

[35] X. Tang, S.T. Chanson, Optimizing static job scheduling in a network
of heterogeneous computers, in: Proceedings of the International
Conference on Parallel Processing, August 2000, 373-382.

[36] A.N. Tantawi, D. Towsley, Optimal static load balancing in distributed
computer systems, J. Assoc. Comput. Mach. 32 (2) (April 1985) 445
—465.

[37] M.H. Willebeek-LeMair, A.P. Reeves, Strategies for dynamic load
balancing on highly parallel computers, IEEE Trans. Parallel
Distributed Systems 4 (9) (September 1993) 979-993.

[38] J. Yang, I. Ahmad, A. Ghafoor, Estimation of execution times on
heterogeneous supercomputing architectures, in: Proceedings of the
International Conference on Parallel Processing, 1993, pp. 219-226.

Daniel Grosu received his Diploma in En-
gineering (Automatic Control and Industrial
Informatics) from the Technical University

of lasi, Romania in 1994 and the M.Sc. and
Ph.D. degrees in Computer Science from
The University of Texas at San Antonio in
2002 and 2003, respectively. Currently, he
is an Assistant Professor in the Department
of Computer Science at Wayne State Uni-
versity, Detroit. His research interests in-
clude load balancing, distributed systems,
electronic voting, security and topics at the
border of computer science, game theory and
economics. He has served on the program and steering committees of
several international meetings in parallel and distributed computing. He
is a member of the IEEE, ACM and the SIGACT.

Anthony T. Chronopoulos received his
Ph.D. at the University of lllinois in
Urbana-Champaign in 1987. He is a senior
member of the IEEE and the ACM. He
has published 36 journal and 45 refereed
conference proceedings publications in the
areas of distributed systems, game theory,
networks and security, parallel processing.
He has been awarded 12 federal/state gov-
ernment research grants. His work is cited
in more than 190 nonco-authors’ research
articles. He has advised three Ph.D. students
who are active researchers.

