
110 Int. J. Computational Science and Engineering, Vol. 1, Nos. 2/3/4, 2005

Copyright © 2005 Inderscience Enterprises Ltd.

Scalable loop self-scheduling schemes
for heterogeneous clusters

Anthony T. Chronopoulos*, Satish Penmatsa,
Ning Yu and Du Yu
Department of Computer Science, The University of Texas,
6900 N Loop, 1604 W, San Antonio, Texas 78249, USA
E-mail: antony.tc@gmail.com
E-mail: atc@cs.utsa.edu E-mail: spenmats@cs.utsa.edu
*Corresponding author

Abstract: Heterogeneous cluster systems (e.g., a LAN of computers) can be used for concurrent
processing for some applications. However, a serious difficulty in concurrent programming of a
heterogeneous system is how to deal with scheduling and load balancing of such a system that
may consist of heterogeneous computers. Distributed scheduling schemes suitable for parallel
loops with independent iterations on heterogeneous computer clusters have been proposed and
analysed in the past. Here, we implement the previous schemes in MPI. We present an extension
of these schemes implemented in a hierarchical Master–Slave architecture and include
experimental results and comparisons.

Keywords: scalable; distributed; loops; scheduling schemes.

Reference to this paper should be made as follows: Chronopoulos, A.T., Penmatsa, S., Yu, N.
and Yu, D. (2005) ‘Scalable loop self-scheduling schemes for heterogeneous clusters’,
Int. J. Computational Science and Engineering, Vol. 1, Nos. 2/3/4, pp.110–117.

Biographical notes: A.T. Chronopoulos received his PhD in Computer Science, University of
Illinois, Urbana-Champaign, 1987. He is an Associate Professor in Department of Computer
Science, University of Texas at San Antonio.

S. Penmatsa received his MS in Computer Science, University of Texas at San Antonio, 2003.
He is a PhD candidate in Computer Science and Instructor at the University of Texas at
San Antonio.

N. Yu received his MS in Computer Science, University of Texas San Antonio, 2002. He is a
Network System Administrator at the University of Texas Health Sciences, San Antonio, TX.

D. Yu received her MS in Computer Science, University of Texas San Antonio, 2002. She is a
Network System Administrator at the University of Texas at Dallas, TX.

1 Introduction

LOOPS are one of the largest sources of parallelism in
scientific programs. If the iterations of a loop have no
interdependencies, each iteration can be considered as a
task and can be scheduled independently. A review of
important loop-scheduling algorithms for parallel computers
is presented in Fann et al. (2000) (and references therein),
and some recent results are presented in Bull (1998)
and Hancock et al. (2000). Research results also exist
on scheduling loops and linear algebra data parallel
computations on message passing parallel systems and on
heterogeneous systems. (See Banicescu and Liu, 2000;
Banicescu et al., 2003; Barbosa et al., 2000; Cierniak et al.,
1995; Chronopoulos et al., 2001; Dandamudi, 1997;
Dandamudi and Thyagaraj, 1997; Goumas et al., 2002;
Hummel et al., 1996; Kee and Ha, 1998; Kim and Purtilo,
1996; Markatos and LeBlanc, 1994; Philip and Das, 1997;
Yan et al., 1997; Yang and Chang, 2003; Freeman et al., 2000).

Loops can be scheduled statically at compile-time.
This scheduling has the advantage of minimising the
scheduling-time overhead, but it may cause load
imbalancing when the loop style is not uniformly
distributed. Examples of such scheduling are Block,
Cyclic, etc. (Fann et al., 2000). Dynamic scheduling adapts
the assigned number of iterations whenever it is unknown
in advance how large the loop tasks could be. An important
class of dynamic scheduling schemes is the self-scheduling
schemes (Chronopoulos et al., 2001; Fann et al., 2000).
In these schemes, each idle processor accesses a few loop
iterations to execute next. In UMA (Uniform Memory
Access) parallel system, these schemes can be implemented
using a critical section for the loop iterations and no need
exists for dedicating a processor to do the scheduling. That
is why these schemes are called self-scheduling schemes.

Heterogeneous systems are characterised by
heterogeneity and large number of processors. Some

 Scalable loop self-scheduling schemes for heterogeneous clusters 111

significant distributed schemes that take into account
the characteristics of the different components of the
heterogeneous system were devised, for example:

• tree scheduling

• weighted factoring

• distributed trapezoid self-scheduling.

See Chronopoulos et al. (2001), Hummel et al. (1996),
Kim and Purtilo (1996) and references therein.

1.1 Notations

The following are common notations used throughout the
whole paper:

• PE is a processor in the parallel or heterogeneous
system

• I is the total number of iterations of a parallel loop

• p is the number of slave PEs in the parallel or
heterogeneous system that execute the computational
tasks

• P1, P2, …, Pp represent the p slave PEs in the system

• a few consecutive iterations are called a chunk. Ci is the
chunk-size at the ith scheduling step (where i = 1, 2,…)

• N is the number of scheduling steps

• tj, j = 1, …, p, is the execution time of Pj to finish all
tasks assigned to it by the scheduling scheme

• Tp = maxj=1,…,p(tj) is the parallel execution time of the
loop on p slave PEs.

In Section 2, we review simple loop self-scheduling
schemes. In Section 3, we review distributed self-scheduling
schemes. In Section 4, we describe the hierarchical
distributed schemes. In Section 5, an implementation is
presented. In Section 6, distributed simulations are
presented. In Section 7, conclusions are drawn.

2 Simple loop-scheduling schemes

Self-scheduling is an automatic loop-scheduling method in
which idle PEs request new loop iterations to be assigned to
them. We will study these methods from the perspective of
heterogeneous systems. For this, we use the Master-Slave
architecture model (Figure 1). Idle slave PEs communicate a
request to the master for new loop iterations. The number of
iterations a PE should be assigned is an important issue.
Owing to PEs’ heterogeneity and communication overhead,
assigning the wrong PE a large number of iterations
at the wrong time may cause load imbalancing. Also,
assigning a small number of iterations may cause too much
communication and scheduling overhead.

Figure 1 Self-scheduling schemes: the Master-Slave model

In a generic self-scheduling scheme, at the ith scheduling
step, the master computes the chunk-size Ci and the
remaining number of tasks Ri:

0 1 1, (,),i i i i iR I C f R p R R C− −= = = − (1)

where, f(.,.) is a function possibly of more inputs than just
Ri–1 and p. Then the master assigns to a slave PE Ci tasks.
Imbalance depends on the execution time gap between tj,
for j = 1, …, p. This gap may be large if the first chunk is
too large or (more often) if the last chunk (called the critical
chunk) is too small.

The different ways to compute Ci has given rise to
different scheduling schemes. The most notable examples
are the following:

Trapezoid Self-Scheduling (TSS) (Tzen and Ni, 1993)

Ci = Ci-1 - D, with (chunk) decrement:

()
(1)
F LD
N

 −=  − 
,

where the first and last chunk-sizes (F, L) are user/

compiler-inputs or
2
IF
p

 
=  
 

, L = 1. The number of

scheduling steps assigned:

2
()

IN
F L

 ×=  + 
.

Note that CN = F - (N - 1)D and CN ≥ 1 owing to integer
divisions.

Factoring Self-Scheduling (FSS)

1 /() ,i iC R pα−=   

where, the parameter α is computed (by a probability
distribution) or is suboptimally chosen, α = 2. The
chunk-size is kept the same in each stage (in which
all PEs are assigned one task) before moving to the
next stage. Thus Ri = Ri-1 - pCi (where R0 = I) after each
stage.

Fixed Increase Self-Scheduling (FISS)

Based on the number of iterations, the user or the compiler
selects the number of stages (σ) (Philip and Das, 1997).
Ci = Ci-1 + B, where initially

112 A.T. Chronopoulos, S. Penmatsa, N. Yu and D. Yu

0
IC

X p
 

=  × 

(with X a compiler/user chosen parameter) and the (chunk
increase or ‘bump’)

2 (1 /)
(1)

I XB
p

σ
σ σ

 −=  − 

(where σ, the number of stages, must be a compiler/user
chosen parameter; X = σ + 2 was suggested).

Trapezoid Factoring Self-Scheduling (TFSS)(Chronopoulos
et al., 2001)

This is a scheme that uses stages (as in FSS). In each stage,
the chunks for the PEs are computed by averaging the
chunks of TSS.

We next give an example to illustrate these schemes.

Example 1: We show the chunk-sizes selected by the
self-scheduling schemes discussed above. Table 1 shows the
different chunk-sizes for a problem with I = 1000 and p = 4.

Table 1 Sample chunk-sizes for I = 1000 and p = 4

Scheme Chunk-size

TSS 125 117 109 101 93 85 77 69 61 53 45 37 29 21 13 5
FSS 125 125 125 125 62 62 62 62 32 32 32 32 16 16 16 16

8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1
FISS 50 50 50 50 83 83 83 83 117 117 117 117
TFSS 113 113 113 113 81 81 81 81 49 49 49 49 17 17 17 17

3 Distributed loop-scheduling schemes
for heterogeneous systems

Load balancing in heterogeneous system is a very important
factor in achieving near optimal execution time. To offer
load balancing, loop-scheduling schemes must take into
account the processing speeds of the computers forming
the system. The PE speeds are not precise, since memory,
cache structure and even the program type will affect the
performance of PEs. However, one must run simulations to
obtain estimates of the throughputs, and one must show that
these schemes are quite effective in practice.

In past work (Chronopoulos et al., 2001), we presented
and studied distributed versions for the schemes of the
previous section. In the distributed schemes, when the
master assigns new tasks, it takes into account the available
virtual powers of the slaves (Chronopoulos et al., 2001).
These schemes resemble some past results that existed
for some of these distributed schemes. Notably, the
distributed FSS for the dedicated case (i.e., when available
powers equal virtual powers) is identical to the Weighted
Factoring scheduling scheme (Banicescu et al., 2003;
Hummel et al., 1996). However, in the distributed FSS for
the non-dedicated case, the master uses the available
power of the slaves in assigning the tasks (Chronopoulos

et al., 2001). Thus, distributed FSS differs from the
Adaptive Weighted Factoring (Banicescu and Liu, 2000;
Banicescu et al., 2003), where the master changes the
weight factors according to slaves’ execution times in
the preceding stage.

We next review the distributed TSS (DTSS) scheme.
The distributed versions of the other schemes are similar
and can be found in Chronopoulos et al. (2001).

3.1 Terminology

• Vi = Speed(Pi)/min1≤i≤p{Speed(Pi)}, is the virtual power
of Pi (computed by the master), where Speed(Pi) is the
CPU-Speed of Pi

•
1

p
ii

V V
=

=∑ is the total virtual computing power of the

cluster

• Qi is the number of processes in the run-queue of Pi,
reflecting the total load of Pi

• i
i

i

V
A

Q
 

=  
 

 is the available computing power (ACP) of

Pi (needed when the loop is executed in non-dedicated
mode. In dedicated mode, Qi = 1 and Ai = Vi)

•
1

p
ii

A A
=

=∑ is the total available computing power of

the cluster.

We note that Qi may contain other processes (un)related to
the problem to be scheduled.

The assumption is made that different processes running
on a computer will take an equal share of its computing
resources. Even if this is not entirely true, other factors
being neglected (memory, process priority and program
type), this simple model appears to be useful and efficient
in practice. Note that at the time Ai is computed, the
parallel loop process is already running on the computer.
For example, if a processor Pi with Vi = 2 has an extra
process running, then Ai = 2/2 = 1, which means that
pi behaves just like the slowest processor in the system.
In order to simplify the algorithm for the hierarchical case,
we clarify ‘Receive’ and ‘Send’ (in the Master-Slave tree).

Remark 1: ‘Receive’ (i) for Master means that it receives
(information) from the descendant nodes. (ii) for Slave
means that it receives (information) from the parent node.
We understand ‘Send’ similarly. Also, note that each
message from the slave contains a ‘request’ and the
current Ai.

The DTSS algorithm is described as follows:

Master:

1) (a) Receive all Speed (Pi);

(b) Compute all Vi;

(c) Send all Vi;

 Scalable loop self-scheduling schemes for heterogeneous clusters 113

2) Repeat: (a) Receive one of Ai, sort Ai in decreasing
order and store them in a temporary ACP Status
Array (ACPSA). For each Ai, place a request in a
queue in the sorted order. Calculate A.

(b) If more than 1/2 of Ai changes since the last time,
update ACPSA and set I = remaining iterations.
Use p = A to obtain (new) F, L, N, D as in TSS.

3) (a) While there are unassigned iterations, if a request
arrives (in 2(a)), put it in the queue.

(b) Pick a request from the queue, assign the next
chunk Ci = Ai × (F - D × (Si–1 + (Ai - l)/2)), where:
Si–1 = A1 + … + Ai-1 (see Chronopoulos et al., 2001).

Slave:

1) (a) Send Speed (Pi);

(b) Receive Vi.

2) Obtain the number of processes in the run-queue Qi
and recalculate Ai.

If (Ai ≤ Threshold) repeat 2.

3) Send a request (containing its Ai).

4) Wait for a reply; if more tasks arrive
{compute the new tasks; go to step 3; }

else terminate.

Remark 2: (i) The necessary data is either replicated or
locally generated on all participating slaves. (ii) Since the
run-queue Qi changes as other user application jobs may
start or terminate, step 2 is executed by the slave before
each new request to the master. (iii) The master process runs
on a dedicated processor.

4 Hierarchical distributed schemes

When comparing a centralised scheme using the Master-
Slave model (Figure 1), to a physically distributed scheme,
several issues must be studied: the scalability, the
communication and synchronisation overhead and the fault
tolerance.

All the centralised policies, where a single node
(the master) is in charge of the load distribution, will present
degradation in performance when the problem size
increases. This means that for a large problem (and a large
number of processors), the master becomes a bottleneck.
The access to the synchronised resources (variables) will
take a long time, during which many processors will idle
waiting for service instead of doing useful work. This is an
important problem for a cluster of heterogeneous computers,
where long communication latencies can be encountered.

It is known that distributed (or non-centralised) policies
usually do not perform as well as the centralised policies,
for small problem sizes and small number of processors.
This is because the algorithm and the implementation of
distributed schemes usually add a non-trivial overhead.

4.1 Tree Scheduling (TreeS)

TreeS (Dandamudi and Thyagaraj, 1997; Kim and Purtilo,
1996) is a distributed load-balancing scheme that statically
arranges the processors in a logical communication
topology based on the computing powers of the processors
involved.

When a processor becomes idle, it asks for work from a
single, pre-defined partner (its neighbour on the left).
Half of the work of this processor will then migrate to the
idling processor. Figure 2 shows the communication
topology created by TreeS for a cluster of four processors.
Note that P0 is needed for the initial task allocation and the
final I/O. For example, P0 can be the same as the fastest Pi.

An idle processor will always receive work from the
neighbour located on its left side, and a busy processor will
always send work to the processor on its right. For example,
in Figure 2, when P2 is idle, it will request half of the load
of P1. Similarly, when P3 is idle, it will request half of load
of P2 and so on. The main success of TreeS is the distributed
communication, which leads to good scalability.

Figure 2 The Tree topology for load balancing

Note that in the heterogeneous system, there is still the need
for a central processor that initially distributes the work and
at the end collects the results, unless the problem is of
such a nature that the final results are not needed for I/O.
Thus, the Master-Slave model still has to be used initially
and at the end.

The main disadvantage of this scheme is its sensitivity
to the variation in computing power. The communication
topology is statically created and might not be valid after the
algorithm starts executing. If, for example, a workstation
that was known to be very powerful becomes severely
overloaded by other applications, its role of taking over
the excess work of the slower processors is impaired.
This means that the excess work has to travel more until
reaching an idle processor or that more work will be done
by slow processors, producing a large finish time for the
problem.

114 A.T. Chronopoulos, S. Penmatsa, N. Yu and D. Yu

4.2 A hierarchical DTSS

We see that the logical hierarchical architecture is a good
foundation for scalable systems. In the following, we
propose a new hierarchical method for addressing the
bottleneck problems in the centralised schemes.

4.2.1 Architecture

We use the Master-Slave centralised model (which is
known to be very effective for small problem sizes), but
instead of making one master process responsible for all the
workload distribution, new master processes are introduced.
Thus, the hierarchical structure contains a lower level,
consisting of slave processes, and several superior levels, of
master processes. On top, the hierarchy has an overall
super-master. The level of slaves will use for load balancing
the best-centralised self-scheduling method for the problem
that is to be solved. We used for our experiments the
Distributed Trapezoid Self-Scheduling. We named the new
scheme, Hierarchical DTSS (HDTSS).

Figure 3 shows this design for two levels of master
processes. The slaves are using DTSS when communicating
with their master. We note that the super-master ↔ master
communication applies the master-slave algorithm with
master replaced by super-master and slaves replaced by
masters. We note that the HMasters do not perform any
computation (i.e., they are not slaves). However, they assign
tasks to slaves from the pool of tasks that they obtain
periodically from the super-master. They communicate with
the super-master only when they run out of tasks for their
cluster. The dotted lines surround processes that can be
assigned to the same physical machine, for improved
performance.

Figure 3 Hierarchical DTSS (two levels of masters)

We can describe the algorithm for the HDTSS by making
reference to the (Master–Slave) DTSS Algorithm and the
Remark 1. Let us use the abbreviated notations: HSlave for
a Slave node and HMaster for a Master node in the
hierarchical Master–Slave architecture tree. The HDTSS
algorithm can be concisely described as follows:

SuperMaster: Perform the DTSS-Master steps.

HMaster: Perform the DTSS-Master 1((a) and (c)) and
DTSS-Slave 1 ((a) and (b)).

HSlave: Perform the DTSS-Slave steps.

Remark 3: The HMaster gathers all the messages from
its ancestors/descendants and then sends them to the
descendants/ancestors (merged) in one message.

5 Implementation

The Mandelbrot computation (Mandelbrot, 1988) is a
doubly nested loop without any dependencies. The
computation of one column of the Mandelbrot matrix is
considered the smallest schedulable unit. For the centralised
schemes, the master accepts requests from the slaves and
serves them in the order of their arrival. It replies to each
request with a pair of numbers representing the interval of
iterations the slave should work on.

The slaves will attach (piggyback) to each request,
except for the first one, the result of the computation due to
the previous request. This improves the communication
efficiency. An alternative we tested was to perform the
collection of data at the end of the computation (the slaves
stored locally the results of their requests). This technique
produced longer finishing times because when all the slaves
finished, they seemed to contend for master access in order
to send their results. During this process, they will have to
idle instead of doing useful work. By piggybacking the data
produced by the previous request to the actual request, we
achieve some degree of overlapping of computation and
communication. There will be still some contention for the
master access, but mostly the slaves will work on their
requests, while few slaves communicate data to the master.

The implementation for the Tree Scheduling (TreeS)
(Kim and Purtilo, 1996) is different. The slaves do not
contend for a central processor when making requests
because they have pre-defined partners. But the data still
has to be collected on a single central processor. When we
used the approach described above, of sending all the
results at the end of the computation, we observed a lot of
idling time for the slaves, thus degrading the performance.
We implemented a better alternative: the slaves send their
results to the central coordinator from time to time, at
predefined time intervals. The contention for the master
cannot be totally eliminated, but this appears to be a good
solution.

6 Distributed simulations

We use the Mandelbrot computation (Mandelbrot, 1988) for
a window size of 4000 × 2000, …, 10000 × 5000 on a
system consisting of p (=1, 2, 4, 8, 16, 24) slaves and one
master. We used MPI (Pachecho, 1997). The workstations
were Sun UltraSPARC 10 with memory sizes 128 Mb and
512 Mb and CPU speeds 440 MHz and 502 MHz. In our
experiments, the size of the problem is such that it does not
cause any memory swaps. So the virtual powers depend
only on the CPU speeds. We put an artificial load in the
background (matrix by matrix product) on p/4 of the slaves
which have Vi = 2 and three loads on the other p/4 slaves
which have Vi = 1. The remaining p/2 of the slaves have no

 Scalable loop self-scheduling schemes for heterogeneous clusters 115

load in the background and have Vi = 4. The window size
used for Tables 2–3 and Figures 4–5 is 4000 × 2000. For the
Figures 6–7, the window size ranges from 4000 × 2000 to
10000 × 5000. We ran the simulations when no other user
jobs existed on the workstations.

Table 2 Simple Schemes (MPI), p = 8; PEi: Tcom/Tcomp (SEC)

PE TSS FSS FISS TFSS TreeS

1 0.1/5.8 0.7/4.3 0.1/4.8 0.1/4.9 5.4/6.1
2 0.2/5.5 0.2/4.1 0.5/5.1 1.1/5.5 4.8/6.8
3 0.1/5.6 0.8/5.5 0.9/5.8 0.2/4.5 5.6/6.3
4 0.1/5.8 0.3/4.8 0.8/5.2 0.8/4.9 3.0/6.1
5 0.4/6.5 1.6/7.3 1.9/11.2 0.9/5.1 0.1/8.6
6 0.3/10.5 2.5/9.8 1.3/8.4 1.3/7.6 0.2/8.6
7 0.7/6.6 1.3/7.1 1.7/8.1 2.2/10.8 0.3/9.9
8 0.1/7.4 1.9/10.8 1.7/8.3 1.7/8.9 3.2/7.4
Tp 9.8 14.9 13.4 14.3 10.9

Table 3 Distributed schemes (MPI), p = 8; PEi: Tcom/Tcomp
(SEC)

PE DTSS DFSS DFISS DTFSS TreeS

1 0.1/3.7 0.1/4.1 0.8/3.9 0.8/5.1 0.3/6.6
2 0.1/4.3 0.3/3.9 0.1/3.8 0.2/4.0 0.9/6.7
3 0.1/4.5 0.5/4.4 0.8/4.9 0.9/4.7 0.9/6.7
4 0.1/4.3 0.1/5.3 0.3/4.2 1.1/4.6 0.8/6.8
5 0.3/6.9 0.9/5.9 0.9/5.0 0.9/7.1 0.3/7.1
6 0.1/4.9 1.2/6.4 1.1/7.1 1.2/6.9 0.7/7.1
7 0.1/6.4 1.1/6.3 0.1/5.5 1.3/7.6 0.4/7.2
8 0.2/6.9 0.9/7.6 1.6/6.9 1.1/7.3 0.5/7.9
Tp 9.2 13.7 12.9 13.2 10.5

Figure 4 Speed-up of simple schemes (MPI)

Figure 5 Speed-up of distributed schemes (MPI)

We test the simple schemes (i.e., those described in Section 2)
on a heterogeneous cluster. All slaves (PEs) are treated (by
the schemes) as having the same computing power. For the
TreeS, the master assigns an equal number of tasks to all
slaves in the initial allocation stage. The distributed
schemes take into account Vi or Ai of the slave. For
hierarchical schemes, we implemented only HDTSS, because
DTSS was faster than the other master-slave schemes.

We present two cases, dedicated and non-dedicated.
In the first case, processors are dedicated to running
our program (i.e., Qi = 1). In the second, we started a
resource-expensive process (load) on half of the slaves.
This load is forked by these slaves with their first request
for work to the master. For this we take Qi = 2. For p ≤ 8,
we ran only in dedicated mode and for p > 8, we ran also in
non-dedicated mode.

The times (communication/computation) of the slave
(PEi) are tabulated for p slaves. Tp is the total time measured
on the Master PE. All times are measured in seconds (sec).
We performed the following tests:

• Comparison between different schemes (TSS, FSS,
FISS, TFSS and TreeS), both simple/distributed
in MPI (Pachecho, 1997). Tables 2–3 contain the
communication/computation times (Tcom/Tcomp)
for the various schemes. It can be seen that the slaves’
computation times are more balanced in Table 3 than in
Table 2, as expected. Figures 4–5 contain the speed-ups
of these schemes vs. one slave times. We conclude that
the best-centralised scheme (according to our tests) is
DTSS and compared it to TreeS (not centralised) in
hierarchical implementation.

• Comparison of DTSS, Hierarchical-DTSS and TreeS in
MPI (Figures 6–7). We conclude that for large sizes,
HDTSS is better than DTSS. Also, HDTSS is better
than TreeS.

116 A.T. Chronopoulos, S. Penmatsa, N. Yu and D. Yu

Figure 6 Tcomp, dedicated, p = 32

Figure 7 Tcomp, non-dedicated, p = 32

The TreeS is slower than DTSS in our runs because in all
runs, the results are transmitted to a ‘Master’ computer
(which distributes the initial data and collects the final
results). Also, the TreeS performance is expected to be
higher than presented if two additional computers
(i.e., p + 2 computers are used in HDTSS as Masters) are
also used in the TreeS. Otherwise, the TreeS gives similar
performance results as the DTSS in the dedicated runs.
In the non-dedicated runs, since the Tree cannot adapt to the
load changes, it is expected to be slower than the DTSS.

The speed-ups in Figures 4–5 are low because the run
time on a single slave was made on a fast slave, whereas the
parallel time was taken from a run with p/2 fast, p/4 slower
and p/4 slowest slaves.

7 Conclusion

We studied and implemented (in MPI) loop-scheduling
schemes for heterogeneous systems. Our results show that

the hierarchical schemes are scalable and compare well to
Tree scheduling that is a scalable scheme.

Acknowledgements

This research was supported, in part, by research grants
from: (1) NASA NAG 2-1383 (1999–2001); (2) State of
Texas Higher Education Coordinating Board through the
Texas Advanced Research/Advanced Technology Program
ATP 003658-0442-1999. Some reviewers’ comments
helped enhance the quality of presentation.

References
Banicescu, I. and Liu, Z. (2000) ‘Adaptive factoring: a dynamic

scheduling method tuned to the rate of weight changes’,
Proc. High Performance Computing Symposium, Washington,
USA, pp.122–129.

Banicescu, I., Velusamy, V. and Devaprasad, J. (2003) ‘On the
scalability of dynamic scheduling scientific applications
with adaptive weighted factoring’, Cluster Computing 6,
pp.215–226.

Barbosa, J., Tavares, J. and Padilha, A.J. (2000) ‘Linear algebra
algorithms in a heterogeneous cluster of personal computers’,
Proc. 9th Heterogeneous Computing Workshop (HCW 2000),
May, Cancun, Mexico, pp.147–159.

Bull, J.M. (1998) ‘Feedback guided dynamic loop scheduling:
Algorithms and experiments’, Proc. 4th Intl Euro – Par
Conference, Southampton, UK, pp.377–382.

Chronopoulos, A.T., Andonie, R., Benche, M. and Grosu, D.
(2001) ‘A class of distributed self-scheduling schemes for
heterogeneous clusters’, Proc. 3rd IEEE International
Conference on Cluster Computing (CLUSTER 2001),
October, Newport Beach, California, USA.

Cierniak, M., Li, W. and Zaki, M.J. (1995) ‘Loop scheduling
for heterogeneity’, Proc. 4th IEEE Intl. Symp. on High
Performance Distributed Computing, August, Washington,
DC, USA, pp.78–85.

Dandamudi, S.P. (1997) ‘The effect of scheduling discipline on
dynamic load sharing in heterogeneous distributed systems’,
Proc. MASCOTS'97, January, Haifa, Israel.

Dandamudi, S.P. and Thyagaraj, T.K. (1997) ‘A hierarchical
processor scheduling policy for distributed-memory
multicomputer systems’, Proc. 4th International
Conference on High-Performance Computing, Nagoya,
Japan, pp.218–223.

Fann, Y.W., Yang, C.T., Tseng, S.S. and Tsai, C.J. (2000)
‘An intelligent parallel loop scheduling for parallelizing
compilers’, Journal of Information Science and Engineering,
pp.169–200.

Freeman, T.L., Hancock, D.J., Bull, J.M. and Ford, R.W. (2000)
‘Feedback guided scheduling of nested loops’, Proc. the 5th
Intl Workshop, PARA, Bergen, Norway, pp.149–159.

Goumas, G., Drosinos, N., Athanasaki, M. and Koziris, N. (2002)
‘Compiling tiled iteration spaces for clusters’, Proc. IEEE
International Conference on Cluster Computing, Chicago,
Illinois, pp.360–369.

Hancock, D.J., Bull, J.M., Ford, R.W. and Freeman, T.L. (2000)
‘An investigation of feedback guided dynamic scheduling of
nested loops’, Proc. Intl Workshops on Parallel Processing,
August, Toronto, Canada, pp.315–321.

 Scalable loop self-scheduling schemes for heterogeneous clusters 117

Hummel, S.F., Schmidt, J., Uma, R.N. and Wein, J. (1996) ‘Load-
sharing in heterogeneous systems via weighted factoring’,
Proc. 8th Annual ACM Symp. on Parallel Algorithms and
Architectures, Padua, Italy, pp.318–328.

Kee, Y. and Ha, S. (1998) ‘A robust dynamic load-balancing
scheme for data parallel application on message passing
architecture’, Intl Conf. on Parallel and Distributed
Processing Techniques and Applications (PDPTA'98), Vol. 2,
pp.974–980.

Kim, T.H. and Purtilo, J.M. (1996) ‘Load balancing for parallel
loops in workstation clusters’, Proc. Intl. Conference on
Parallel Processing, Bloomingdale, IL, USA, pp.182–190.

Mandelbrot, B.B. (1988) Fractal Geometry of Nature,
W.H. Freeman & Co., New York, USA.

Markatos, E.P. and LeBlanc, T.J. (1994) ‘Using processor affinity
in loop scheduling on shared-memory multiprocessors’,
IEEE Trans. on Parallel and Distributed Systems, April,
Vol. 5, No. 4, pp.379–400.

Pachecho, P. (1997) Parallel Programming with MPI, Morgan
Kauffman, San Francisco, CA, USA.

Philip, T. and Das, C.R. (1997) ‘Evaluation of loop scheduling
algorithms on distributed memory systems’, Proc. Intl Conf. on
Parallel and Distributed Computing Systems, Nagoya,
Japan.

Tzen, T.H. and Ni, L.M. (1993) ‘Trapezoid self-scheduling: a
practical scheduling scheme for parallel compilers’, IEEE
Trans. on Parallel and Distributed Systems, January, Vol. 4,
No. 1, pp.87–98.

Yan, Y., Jin, C. and Zhang, X. (1997) ‘Adaptively scheduling
parallel loops in distributed shared-memory systems’, IEEE
Trans. on Parallel and Distributed Systems, January, Vol. 8,
No. 1, pp.70–81.

Yang, C.T. and Chang, S.C. (2003) ‘A parallel loop
self-scheduling on extremely heterogeneous pc clusters’,
Proc. Intl Conf. on Computational Science, Melbourne,
Australia, pp.1079–1088.

