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Abstract: Heterogeneous cluster systems (e.g., a LAN of computers) can be used for concurrent 
processing for some applications. However, a serious difficulty in concurrent programming of a 
heterogeneous system is how to deal with scheduling and load balancing of such a system that 
may consist of heterogeneous computers. Distributed scheduling schemes suitable for parallel 
loops with independent iterations on heterogeneous computer clusters have been proposed and 
analysed in the past. Here, we implement the previous schemes in MPI. We present an extension 
of these schemes implemented in a hierarchical Master–Slave architecture and include 
experimental results and comparisons. 
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1 Introduction 

LOOPS are one of the largest sources of parallelism in 
scientific programs. If the iterations of a loop have no 
interdependencies, each iteration can be considered as a  
task and can be scheduled independently. A review of 
important loop-scheduling algorithms for parallel computers 
is presented in Fann et al. (2000) (and references therein), 
and some recent results are presented in Bull (1998)  
and Hancock et al. (2000). Research results also exist  
on scheduling loops and linear algebra data parallel 
computations on message passing parallel systems and on 
heterogeneous systems. (See Banicescu and Liu, 2000; 
Banicescu et al., 2003; Barbosa et al., 2000; Cierniak et al., 
1995; Chronopoulos et al., 2001; Dandamudi, 1997; 
Dandamudi and Thyagaraj, 1997; Goumas et al., 2002; 
Hummel et al., 1996; Kee and Ha, 1998; Kim and Purtilo, 
1996; Markatos and LeBlanc, 1994; Philip and Das, 1997; 
Yan et al., 1997; Yang and Chang, 2003; Freeman et al., 2000). 

Loops can be scheduled statically at compile-time.  
This scheduling has the advantage of minimising the 
scheduling-time overhead, but it may cause load 
imbalancing when the loop style is not uniformly 
distributed. Examples of such scheduling are Block,  
Cyclic, etc. (Fann et al., 2000). Dynamic scheduling adapts 
the assigned number of iterations whenever it is unknown  
in advance how large the loop tasks could be. An important 
class of dynamic scheduling schemes is the self-scheduling 
schemes (Chronopoulos et al., 2001; Fann et al., 2000).  
In these schemes, each idle processor accesses a few loop 
iterations to execute next. In UMA (Uniform Memory 
Access) parallel system, these schemes can be implemented 
using a critical section for the loop iterations and no need 
exists for dedicating a processor to do the scheduling. That 
is why these schemes are called self-scheduling schemes. 

Heterogeneous systems are characterised by 
heterogeneity and large number of processors. Some  
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significant distributed schemes that take into account  
the characteristics of the different components of the 
heterogeneous system were devised, for example:  

• tree scheduling 

• weighted factoring 

• distributed trapezoid self-scheduling. 

See Chronopoulos et al. (2001), Hummel et al. (1996),  
Kim and Purtilo (1996) and references therein. 

1.1 Notations 

The following are common notations used throughout the 
whole paper: 

• PE is a processor in the parallel or heterogeneous 
system 

• I is the total number of iterations of a parallel loop 

• p is the number of slave PEs in the parallel or 
heterogeneous system that execute the computational 
tasks 

• P1, P2, …, Pp represent the p slave PEs in the system 

• a few consecutive iterations are called a chunk. Ci is the 
chunk-size at the ith scheduling step (where i = 1, 2,…) 

• N is the number of scheduling steps 

• tj, j = 1, …, p, is the execution time of Pj to finish all 
tasks assigned to it by the scheduling scheme 

• Tp = maxj=1,…,p(tj) is the parallel execution time of the 
loop on p slave PEs. 

In Section 2, we review simple loop self-scheduling 
schemes. In Section 3, we review distributed self-scheduling 
schemes. In Section 4, we describe the hierarchical 
distributed schemes. In Section 5, an implementation is 
presented. In Section 6, distributed simulations are 
presented. In Section 7, conclusions are drawn. 

2 Simple loop-scheduling schemes 

Self-scheduling is an automatic loop-scheduling method in 
which idle PEs request new loop iterations to be assigned to 
them. We will study these methods from the perspective of 
heterogeneous systems. For this, we use the Master-Slave 
architecture model (Figure 1). Idle slave PEs communicate a 
request to the master for new loop iterations. The number of 
iterations a PE should be assigned is an important issue. 
Owing to PEs’ heterogeneity and communication overhead, 
assigning the wrong PE a large number of iterations  
at the wrong time may cause load imbalancing. Also, 
assigning a small number of iterations may cause too much 
communication and scheduling overhead. 
 
 

Figure 1  Self-scheduling schemes: the Master-Slave model 

 

In a generic self-scheduling scheme, at the ith scheduling 
step, the master computes the chunk-size Ci and the 
remaining number of tasks Ri:  

0 1 1, ( , ),i i i i iR I C f R p R R C− −= = = −  (1) 

where, f(.,.) is a function possibly of more inputs than just 
Ri–1 and p. Then the master assigns to a slave PE Ci tasks.  
Imbalance depends on the execution time gap between tj,  
for j = 1, …, p. This gap may be large if the first chunk is 
too large or (more often) if the last chunk (called the critical 
chunk) is too small. 

The different ways to compute Ci has given rise to 
different scheduling schemes. The most notable examples 
are the following: 

Trapezoid Self-Scheduling (TSS) (Tzen and Ni, 1993) 

Ci = Ci-1 - D, with (chunk) decrement:  
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Note that CN = F - (N - 1)D and CN ≥ 1 owing to integer 
divisions. 

Factoring Self-Scheduling (FSS) 

1 /( ) ,i iC R pα−=     

where, the parameter α is computed (by a probability 
distribution) or is suboptimally chosen, α = 2. The  
chunk-size is kept the same in each stage (in which  
all PEs are assigned one task) before moving to the  
next stage. Thus Ri = Ri-1 - pCi (where R0 = I) after each 
stage. 

Fixed Increase Self-Scheduling (FISS) 

Based on the number of iterations, the user or the compiler 
selects the number of stages (σ) (Philip and Das, 1997). 
Ci = Ci-1 + B, where initially  
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(with X a compiler/user chosen parameter) and the (chunk 
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(where σ, the number of stages, must be a compiler/user 
chosen parameter; X = σ + 2 was suggested). 

Trapezoid Factoring Self-Scheduling (TFSS)(Chronopoulos 
et al., 2001) 

This is a scheme that uses stages (as in FSS). In each stage, 
the chunks for the PEs are computed by averaging the 
chunks of TSS. 

We next give an example to illustrate these schemes. 

Example 1: We show the chunk-sizes selected by the  
self-scheduling schemes discussed above. Table 1 shows the 
different chunk-sizes for a problem with I = 1000 and p = 4. 

Table 1 Sample chunk-sizes for I = 1000 and p = 4 

Scheme Chunk-size 

TSS 125 117 109 101 93 85 77 69 61 53 45 37 29 21 13 5 
FSS 125 125 125 125 62 62 62 62 32 32 32 32 16 16 16 16 

8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1 
FISS 50 50 50 50 83 83 83 83 117 117 117 117 
TFSS 113 113 113 113 81 81 81 81 49 49 49 49 17 17 17 17 

3 Distributed loop-scheduling schemes  
for heterogeneous systems 

Load balancing in heterogeneous system is a very important 
factor in achieving near optimal execution time. To offer 
load balancing, loop-scheduling schemes must take into 
account the processing speeds of the computers forming  
the system. The PE speeds are not precise, since memory, 
cache structure and even the program type will affect the 
performance of PEs. However, one must run simulations to 
obtain estimates of the throughputs, and one must show that 
these schemes are quite effective in practice. 

In past work (Chronopoulos et al., 2001), we presented 
and studied distributed versions for the schemes of the 
previous section. In the distributed schemes, when the 
master assigns new tasks, it takes into account the available 
virtual powers of the slaves (Chronopoulos et al., 2001). 
These schemes resemble some past results that existed  
for some of these distributed schemes. Notably, the 
distributed FSS for the dedicated case (i.e., when available 
powers equal virtual powers) is identical to the Weighted 
Factoring scheduling scheme (Banicescu et al., 2003; 
Hummel et al., 1996). However, in the distributed FSS for 
the non-dedicated case, the master uses the available  
power of the slaves in assigning the tasks (Chronopoulos  

et al., 2001). Thus, distributed FSS differs from the 
Adaptive Weighted Factoring (Banicescu and Liu, 2000;  
Banicescu et al., 2003), where the master changes the 
weight factors according to slaves’ execution times in  
the preceding stage. 

We next review the distributed TSS (DTSS) scheme. 
The distributed versions of the other schemes are similar 
and can be found in Chronopoulos et al. (2001). 

3.1 Terminology 

• Vi = Speed(Pi)/min1≤i≤p{Speed(Pi)}, is the virtual power 
of Pi (computed by the master), where Speed(Pi) is the 
CPU-Speed of Pi 

• 
1

p
ii

V V
=

=∑  is the total virtual computing power of the 

cluster 

• Qi is the number of processes in the run-queue of Pi, 
reflecting the total load of Pi 

• i
i

i
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Q
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=  
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 is the available computing power (ACP) of 

Pi (needed when the loop is executed in non-dedicated 
mode. In dedicated mode, Qi = 1 and Ai = Vi) 

• 
1

p
ii

A A
=

=∑  is the total available computing power of 

the cluster. 

We note that Qi may contain other processes (un)related to 
the problem to be scheduled. 

The assumption is made that different processes running 
on a computer will take an equal share of its computing 
resources. Even if this is not entirely true, other factors 
being neglected (memory, process priority and program 
type), this simple model appears to be useful and efficient  
in practice. Note that at the time Ai is computed, the  
parallel loop process is already running on the computer. 
For example, if a processor Pi with Vi = 2 has an extra 
process running, then Ai = 2/2 = 1, which means that  
pi behaves just like the slowest processor in the system.  
In order to simplify the algorithm for the hierarchical case, 
we clarify ‘Receive’ and ‘Send’ (in the Master-Slave tree). 

Remark 1: ‘Receive’ (i) for Master means that it receives 
(information) from the descendant nodes. (ii) for Slave 
means that it receives (information) from the parent node. 
We understand ‘Send’ similarly. Also, note that each 
message from the slave contains a ‘request’ and the  
current Ai. 

The DTSS algorithm is described as follows: 

Master: 

1) (a) Receive all Speed (Pi); 

(b) Compute all Vi; 

(c) Send all Vi; 
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2) Repeat: (a) Receive one of Ai, sort Ai in decreasing 
order and store them in a temporary ACP Status 
Array (ACPSA). For each Ai, place a request in a 
queue in the sorted order. Calculate A. 

(b) If more than 1/2 of Ai changes since the last time, 
update ACPSA and set I = remaining iterations.  
Use p = A to obtain (new) F, L, N, D as in TSS. 

3) (a) While there are unassigned iterations, if a request 
arrives (in 2(a)), put it in the queue. 

(b) Pick a request from the queue, assign the next 
chunk Ci = Ai × (F - D × (Si–1 + (Ai - l)/2)), where:  
Si–1 = A1 + … + Ai-1 (see Chronopoulos et al., 2001). 

Slave: 

1) (a) Send Speed (Pi); 

(b) Receive Vi. 

2) Obtain the number of processes in the run-queue Qi 
and recalculate Ai. 

If (Ai ≤ Threshold) repeat 2. 

3) Send a request (containing its Ai). 

4) Wait for a reply; if more tasks arrive 
{compute the new tasks; go to step 3; } 

else terminate. 

Remark 2: (i) The necessary data is either replicated or 
locally generated on all participating slaves. (ii) Since the 
run-queue Qi changes as other user application jobs may 
start or terminate, step 2 is executed by the slave before 
each new request to the master. (iii) The master process runs 
on a dedicated processor. 

4 Hierarchical distributed schemes 

When comparing a centralised scheme using the Master-
Slave model (Figure 1), to a physically distributed scheme, 
several issues must be studied: the scalability, the 
communication and synchronisation overhead and the fault 
tolerance. 

All the centralised policies, where a single node  
(the master) is in charge of the load distribution, will present 
degradation in performance when the problem size 
increases. This means that for a large problem (and a large 
number of processors), the master becomes a bottleneck. 
The access to the synchronised resources (variables) will 
take a long time, during which many processors will idle 
waiting for service instead of doing useful work. This is an 
important problem for a cluster of heterogeneous computers, 
where long communication latencies can be encountered. 

It is known that distributed (or non-centralised) policies 
usually do not perform as well as the centralised policies, 
for small problem sizes and small number of processors. 
This is because the algorithm and the implementation of 
distributed schemes usually add a non-trivial overhead. 
 

4.1 Tree Scheduling (TreeS) 

TreeS (Dandamudi and Thyagaraj, 1997; Kim and Purtilo, 
1996) is a distributed load-balancing scheme that statically 
arranges the processors in a logical communication 
topology based on the computing powers of the processors 
involved. 

When a processor becomes idle, it asks for work from a 
single, pre-defined partner (its neighbour on the left).  
Half of the work of this processor will then migrate to the 
idling processor. Figure 2 shows the communication 
topology created by TreeS for a cluster of four processors. 
Note that P0 is needed for the initial task allocation and the 
final I/O. For example, P0 can be the same as the fastest Pi. 

An idle processor will always receive work from the 
neighbour located on its left side, and a busy processor will 
always send work to the processor on its right. For example, 
in Figure 2, when P2 is idle, it will request half of the load 
of P1. Similarly, when P3 is idle, it will request half of load 
of P2 and so on. The main success of TreeS is the distributed 
communication, which leads to good scalability. 

Figure 2  The Tree topology for load balancing 

 

Note that in the heterogeneous system, there is still the need 
for a central processor that initially distributes the work and 
at the end collects the results, unless the problem is of  
such a nature that the final results are not needed for I/O. 
Thus, the Master-Slave model still has to be used initially 
and at the end. 

The main disadvantage of this scheme is its sensitivity 
to the variation in computing power. The communication 
topology is statically created and might not be valid after the 
algorithm starts executing. If, for example, a workstation 
that was known to be very powerful becomes severely 
overloaded by other applications, its role of taking over  
the excess work of the slower processors is impaired.  
This means that the excess work has to travel more until 
reaching an idle processor or that more work will be done 
by slow processors, producing a large finish time for the 
problem. 
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4.2 A hierarchical DTSS 

We see that the logical hierarchical architecture is a good 
foundation for scalable systems. In the following, we 
propose a new hierarchical method for addressing the 
bottleneck problems in the centralised schemes. 

4.2.1 Architecture 

We use the Master-Slave centralised model (which is  
known to be very effective for small problem sizes), but 
instead of making one master process responsible for all the  
workload distribution, new master processes are introduced. 
Thus, the hierarchical structure contains a lower level, 
consisting of slave processes, and several superior levels, of 
master processes. On top, the hierarchy has an overall 
super-master. The level of slaves will use for load balancing 
the best-centralised self-scheduling method for the problem 
that is to be solved. We used for our experiments the 
Distributed Trapezoid Self-Scheduling. We named the new 
scheme, Hierarchical DTSS (HDTSS). 

Figure 3 shows this design for two levels of master 
processes. The slaves are using DTSS when communicating 
with their master. We note that the super-master ↔ master 
communication applies the master-slave algorithm with 
master replaced by super-master and slaves replaced by 
masters. We note that the HMasters do not perform any 
computation (i.e., they are not slaves). However, they assign 
tasks to slaves from the pool of tasks that they obtain 
periodically from the super-master. They communicate with 
the super-master only when they run out of tasks for their 
cluster. The dotted lines surround processes that can be 
assigned to the same physical machine, for improved 
performance. 

Figure 3  Hierarchical DTSS (two levels of masters) 

 

We can describe the algorithm for the HDTSS by making 
reference to the (Master–Slave) DTSS Algorithm and the 
Remark 1. Let us use the abbreviated notations: HSlave for 
a Slave node and HMaster for a Master node in the 
hierarchical Master–Slave architecture tree. The HDTSS 
algorithm can be concisely described as follows: 

SuperMaster: Perform the DTSS-Master steps. 

HMaster: Perform the DTSS-Master 1((a) and (c)) and 
DTSS-Slave 1 ((a) and (b)). 

HSlave: Perform the DTSS-Slave steps. 

Remark 3: The HMaster gathers all the messages from  
its ancestors/descendants and then sends them to the 
descendants/ancestors (merged) in one message. 

5 Implementation 

The Mandelbrot computation (Mandelbrot, 1988) is a 
doubly nested loop without any dependencies. The 
computation of one column of the Mandelbrot matrix is 
considered the smallest schedulable unit. For the centralised 
schemes, the master accepts requests from the slaves and 
serves them in the order of their arrival. It replies to each 
request with a pair of numbers representing the interval of 
iterations the slave should work on. 

The slaves will attach (piggyback) to each request, 
except for the first one, the result of the computation due to 
the previous request. This improves the communication 
efficiency. An alternative we tested was to perform the 
collection of data at the end of the computation (the slaves 
stored locally the results of their requests). This technique 
produced longer finishing times because when all the slaves  
finished, they seemed to contend for master access in order 
to send their results. During this process, they will have to 
idle instead of doing useful work. By piggybacking the data 
produced by the previous request to the actual request, we 
achieve some degree of overlapping of computation and 
communication. There will be still some contention for the 
master access, but mostly the slaves will work on their 
requests, while few slaves communicate data to the master. 

The implementation for the Tree Scheduling (TreeS) 
(Kim and Purtilo, 1996) is different. The slaves do not 
contend for a central processor when making requests 
because they have pre-defined partners. But the data still  
has to be collected on a single central processor. When we 
used the approach described above, of sending all the  
results at the end of the computation, we observed a lot of 
idling time for the slaves, thus degrading the performance. 
We implemented a better alternative: the slaves send their 
results to the central coordinator from time to time, at 
predefined time intervals. The contention for the master 
cannot be totally eliminated, but this appears to be a good 
solution. 

6 Distributed simulations 

We use the Mandelbrot computation (Mandelbrot, 1988) for 
a window size of 4000 × 2000, …, 10000 × 5000 on a 
system consisting of p (=1, 2, 4, 8, 16, 24) slaves and one 
master. We used MPI (Pachecho, 1997). The workstations 
were Sun UltraSPARC 10 with memory sizes 128 Mb and 
512 Mb and CPU speeds 440 MHz and 502 MHz. In our 
experiments, the size of the problem is such that it does not 
cause any memory swaps. So the virtual powers depend 
only on the CPU speeds. We put an artificial load in the 
background (matrix by matrix product) on p/4 of the slaves 
which have Vi = 2 and three loads on the other p/4 slaves 
which have Vi = 1. The remaining p/2 of the slaves have no 
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load in the background and have Vi = 4. The window size 
used for Tables 2–3 and Figures 4–5 is 4000 × 2000. For the 
Figures 6–7, the window size ranges from 4000 × 2000 to 
10000 × 5000. We ran the simulations when no other user 
jobs existed on the workstations. 

Table 2 Simple Schemes (MPI), p = 8; PEi: Tcom/Tcomp (SEC) 

PE TSS FSS FISS TFSS TreeS 

1 0.1/5.8 0.7/4.3 0.1/4.8 0.1/4.9 5.4/6.1 
2 0.2/5.5 0.2/4.1 0.5/5.1 1.1/5.5 4.8/6.8 
3 0.1/5.6 0.8/5.5 0.9/5.8 0.2/4.5 5.6/6.3 
4 0.1/5.8 0.3/4.8 0.8/5.2 0.8/4.9 3.0/6.1 
5 0.4/6.5 1.6/7.3 1.9/11.2 0.9/5.1 0.1/8.6 
6 0.3/10.5 2.5/9.8 1.3/8.4 1.3/7.6 0.2/8.6 
7 0.7/6.6 1.3/7.1 1.7/8.1 2.2/10.8 0.3/9.9 
8 0.1/7.4 1.9/10.8 1.7/8.3 1.7/8.9 3.2/7.4 
Tp 9.8 14.9 13.4 14.3 10.9 

Table 3 Distributed schemes (MPI), p = 8; PEi: Tcom/Tcomp 
(SEC) 

PE DTSS DFSS DFISS DTFSS TreeS 

1 0.1/3.7 0.1/4.1 0.8/3.9 0.8/5.1 0.3/6.6 
2 0.1/4.3 0.3/3.9 0.1/3.8 0.2/4.0 0.9/6.7 
3 0.1/4.5 0.5/4.4 0.8/4.9 0.9/4.7 0.9/6.7 
4 0.1/4.3 0.1/5.3 0.3/4.2 1.1/4.6 0.8/6.8 
5 0.3/6.9 0.9/5.9 0.9/5.0 0.9/7.1 0.3/7.1 
6 0.1/4.9 1.2/6.4 1.1/7.1 1.2/6.9 0.7/7.1 
7 0.1/6.4 1.1/6.3 0.1/5.5 1.3/7.6 0.4/7.2 
8 0.2/6.9 0.9/7.6 1.6/6.9 1.1/7.3 0.5/7.9 
Tp 9.2 13.7 12.9 13.2 10.5 

Figure 4  Speed-up of simple schemes (MPI) 

 
 
 

Figure 5  Speed-up of distributed schemes (MPI) 

 

We test the simple schemes (i.e., those described in Section 2) 
on a heterogeneous cluster. All slaves (PEs) are treated (by 
the schemes) as having the same computing power. For the 
TreeS, the master assigns an equal number of tasks to all 
slaves in the initial allocation stage. The distributed 
schemes take into account Vi or Ai of the slave. For 
hierarchical schemes, we implemented only HDTSS, because 
DTSS was faster than the other master-slave schemes. 

We present two cases, dedicated and non-dedicated.  
In the first case, processors are dedicated to running  
our program (i.e., Qi = 1). In the second, we started a 
resource-expensive process (load) on half of the slaves.  
This load is forked by these slaves with their first request 
for work to the master. For this we take Qi = 2. For p ≤ 8, 
we ran only in dedicated mode and for p > 8, we ran also in 
non-dedicated mode. 

The times (communication/computation) of the slave 
(PEi) are tabulated for p slaves. Tp is the total time measured 
on the Master PE. All times are measured in seconds (sec). 
We performed the following tests:  

• Comparison between different schemes (TSS, FSS, 
FISS, TFSS and TreeS), both simple/distributed  
in MPI (Pachecho, 1997). Tables 2–3 contain the 
communication/computation times (Tcom/Tcomp)  
for the various schemes. It can be seen that the slaves’ 
computation times are more balanced in Table 3 than in 
Table 2, as expected. Figures 4–5 contain the speed-ups 
of these schemes vs. one slave times. We conclude that 
the best-centralised scheme (according to our tests) is 
DTSS and compared it to TreeS (not centralised) in 
hierarchical implementation.  

• Comparison of DTSS, Hierarchical-DTSS and TreeS in 
MPI (Figures 6–7). We conclude that for large sizes, 
HDTSS is better than DTSS. Also, HDTSS is better 
than TreeS. 
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Figure 6  Tcomp, dedicated, p = 32 

 

Figure 7  Tcomp, non-dedicated, p = 32 

 

The TreeS is slower than DTSS in our runs because in all 
runs, the results are transmitted to a ‘Master’ computer 
(which distributes the initial data and collects the final 
results). Also, the TreeS performance is expected to be 
higher than presented if two additional computers  
(i.e., p + 2 computers are used in HDTSS as Masters) are 
also used in the TreeS. Otherwise, the TreeS gives similar 
performance results as the DTSS in the dedicated runs.  
In the non-dedicated runs, since the Tree cannot adapt to the 
load changes, it is expected to be slower than the DTSS. 

The speed-ups in Figures 4–5 are low because the run 
time on a single slave was made on a fast slave, whereas the 
parallel time was taken from a run with p/2 fast, p/4 slower 
and p/4 slowest slaves. 

7 Conclusion 

We studied and implemented (in MPI) loop-scheduling 
schemes for heterogeneous systems. Our results show that 

the hierarchical schemes are scalable and compare well to 
Tree scheduling that is a scalable scheme. 
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