
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573
Published online 25 October 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.987

An efficient concurrent
implementation of a neural
network algorithm

R. Andonie1,∗,†, A. T. Chronopoulos2, D. Grosu3 and
H. Galmeanu4

1Computer Science Department, Central Washington University, Ellensburg,
WA 98926, U.S.A.
2Department of Computer Science, The University of Texas at San Antonio, San Antonio,
TX 78249, U.S.A.
3Department of Computer Science, Wayne State University, Detroit, MI 48202, U.S.A.
4Department of Electronics and Computers, Transylvania University, 2200 Brasov, Romania

SUMMARY

The focus of this study is how we can efficiently implement the neural network backpropagation algorithm
on a network of computers (NOC) for concurrent execution. We assume a distributed system with
heterogeneous computers and that the neural network is replicated on each computer. We propose
an architecture model with efficient pattern allocation that takes into account the speed of processors
and overlaps the communication with computation. The training pattern set is distributed among the
heterogeneous processors with the mapping being fixed during the learning process. We provide a heuristic
pattern allocation algorithm minimizing the execution time of backpropagation learning. The computations
are overlapped with communications. Under the condition that each processor has to perform a task directly
proportional to its speed, this allocation algorithm has polynomial-time complexity. We have implemented
our model on a dedicated network of heterogeneous computers using Sejnowski’s NetTalk benchmark for
testing. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: backpropagation; heterogeneous system; pattern allocation; parallel neural computing

∗Correspondence to: Razvan Andonie, Computer Science Department, Central Washington University, Ellensburg, WA 98926,
U.S.A.
†E-mail: andonie@cwu.edu

Contract/grant sponsor: NASA; contract/grant number: NAG 2-1383 (1999–2001)
Contract/grant sponsor: State of Texas Higher Education Coordinating Board through the Texas Advanced Research/Advanced
Technology Program; contract/grant number: ATP 003658-0442-1999
Contract/grant sponsor: NSF; contract/grant numbers: ASC-9634775 and CCR-0312323

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 12 November 2004

Revised 13 April 2005
Accepted 30 April 2005

1560 R. ANDONIE ET AL.

1. INTRODUCTION

Backpropagation is a widely used training algorithm for feedforward neural networks, in spite of the
well-known general inefficiency of this algorithm. Moreover, since it was one of the first general-
purpose neural network learning algorithms, it became a standard and several authors tried to improve
its performance in several ways. This has motivated researchers to study parallel implementations
as a means to reduce the training time. There is no consensus on how to simulate artificial neural
networks on parallel machines. During the last years, researchers have been trying to achieve
maximal performance on their favorite (or available) parallel machine. Backpropagation networks
were implemented on almost all known general-purpose parallel architectures, including: multiple bus
systems [1]; message-passing multicomputers [2]; hypercubes [3]; transputer-based architectures [4];
and LAN’s of workstations [5].

Backpropagation can be parallelized by network partitioning, by pattern partitioning, or by a
combination of these two schemes. In network partitioning, nodes and weights of the neural network
are partitioned among different processors, and thus the computations of node activations, node errors,
and weight changes are parallelized. The idea of pattern partitioning [6] is to distribute the training
examples over the processors, i.e. it slices the training set and it assigns one slice to each processor
while keeping a complete copy of the whole network in each processor node.

The implementation of a neural network on a heterogeneous parallel architecture gives rise to a
complex problem. This problem concerns the optimal mapping of the network and of the training
patterns among the heterogeneous processors. This optimization problem is generally a NP-complete
integer (or mixed) programming problem which can be solved either directly (for instance, by branch-
and-bound), or simplified heuristically to a polynomial problem. The mapping algorithms can be static
or dynamic. In the static case, we assume that the mapping is unchanged throughout the learning
process. In the dynamic case, we assume that the background workload is time varying; hence, it may
be necessary to perform a remapping as workload changes.

Only a few mapping schemes have been reported to implement neural network algorithms on parallel
architectures with heterogeneous processors. Chu and Wah [2] presented an approximation algorithm
for the mapping of large neural networks on multi-computers, given a user-specified error degree that
can be tolerated in the final mapping. Foo et al. [4] optimized pattern partitioning in backpropagation
learning on a heterogeneous array of transputers. They solved the optimization problem in two ways:
by branch-and-bound and by genetic algorithms.

There exist other approaches for optimal data partitioning in distributed systems. Notable are some
works in divisible load theory [7,8] where a divisible load can be arbitrarily partitioned and distributed
to more than one computer to achieve a faster execution time. For non-divisible or discrete loads
there are (non-optimal) strategies that have been used, such as the equal and rectilinear allocation [9].
These strategies have been used for Grid problems but not for neural networks.

In this paper, we implement the backpropagation algorithm using the pattern-partitioning scheme.
We use a manager–worker architecture defined on a network of heterogeneous computers. The com-
puters are assumed to have the capability to perform computation and communication simultaneously,
which is the case in most existing systems. The pattern-partitioning scheme leads to a pattern allocation
problem for mapping the training patterns onto the computers. This allocation problem was first
formulated in [10] and discussed in a different framework in [11]. Our pattern-mapping algorithm
takes into account the CPU speed of the processors and overlaps computation and communication.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

AN EFFICIENT CONCURRENT IMPLEMENTATION 1561

Figure 1. The manager–worker model.

The rest of the paper is organized as follows. In Section 2, we define our dedicated parallel
architecture for backpropagation. Section 3 describes the dynamic programming solution for the
pattern-mapping problem. In Section 4 we present the experimental results obtained on Sejnowski’s
NetTalk benchmark [12]. We compare our mapping algorithm with the equal and proportional pattern
allocation algorithms. The proportional allocation takes into account the CPU speed of the computers
but does not overlap communication with computation as we do. Section 5 concludes with some closing
remarks and open problems.

2. A PARALLEL ARCHITECTURE FOR BACKPROPAGATION LEARNING

One of the most common programming models used in developing concurrent applications on a
network of computers (NOC) is the manager–worker model. In this model we have a control program
called the manager and a number of worker programs. The manager program is responsible for
spawning worker programs, initialization and collection of results. The worker programs perform the
computation on data allocated by the manager or by themselves. The manager–worker model involves
no communication among the workers. Only the manager can communicate with workers by message-
passing. The structure of the manager–worker model is shown in Figure 1.

We now describe the mapping of the backpropagation onto the computers. Backpropagation trains
a given feedforward neural network for a given set of learning patterns. The training of the neural
network can be viewed as discovering values for its weights in order to match the effective outputs of
the network with the desired outputs, for each input pattern.

In backpropagation learning, weights can be updated in the following two ways.

1. In the per-pattern regime the weights are updated after each training pattern is presented.
2. In the set-training regime the weight increments are computed for each training pattern.

The increments are summed for all patterns and the weights are updated with the total increment
after all patterns have been presented once [13].

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

1562 R. ANDONIE ET AL.

bcastt bcastt bcastt bcastt

initt inittinitt

tcomm tcomm

tcommtcomm

tcomm tcomm

P(1)T(1) P(2)T(2)
P(n)T(n)

.

.

.

. . .

(2)(1) (n)
P P1 2 Pn M

Figure 2. The timing diagram for an epoch.

Pattern-partitioning schemes to parallelize backpropagation are applicable only to set-training
updating [3]. Therefore, our pattern-partitioning scheme is based on a set-training regime.

We assume a manager–worker model with n workers (processors). The training set S is partitioned
into n subsets, Si , i = 1, 2, . . . , n. These training subsets are distributed to the n processors.
Each worker process contains a complete copy of the whole neural network.

One epoch of the backpropagation algorithm has the following coarse description.

1. The weight changes and bias for the current epoch are initialized to zero.
2. Each worker process (Pi) carries out the forward and the backward phase for each pattern

assigned to it.
3. Each worker process also accumulates the weight changes and error according to the local

patterns.
4. Each worker process sends the weight changes and errors to the manager. The manager process

computes the sum of all weight changes and of all errors.
5. The manager broadcasts the new weights to all workers. The weights are updated on each worker.

The manager checks if the convergence is reached.

Remark. We do not use a reduce operation for implementing the communication required in item 4
above, because in a LAN the reduction tree must be mapped to a single bus and this is very inefficient.
More importantly, the manager is needed to assign patterns according to our algorithm.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

AN EFFICIENT CONCURRENT IMPLEMENTATION 1563

The timing diagram for an epoch is shown in Figure 2. In this diagram we used the following
notation.

• P1, P2, . . . , Pn are the worker processes.
• M is the manager process.
• tinit(i) is the time taken to initialize the weight changes and error.
• P(i) is the number of patterns allocated to the worker process Pi .
• T (i) is the time taken to perform the forward and backward phase of the algorithm for a single

pattern on the worker processor Pi .
• tcomm is the time taken to send the weight changes and errors from the workers to the manager.
• tbcast is the time taken to broadcast the updated weights.
• Tn is the parallel execution time on n processors.

In order to obtain the minimum epoch time we have to overlap communication time (tcomm) with
computation time and to find a proper pattern distribution among the processors.

3. PATTERN-MAPPING OPTIMIZATION

The allocation of tasks (or jobs) in distributed systems may be considered a special case of task
scheduling, without any precedence relationships among the execution tasks. The purpose of a task
allocation technique is to find some task assignment in which the total cost due to interprocessor
communication and task execution is minimized. The task allocation problem is known to be
NP-complete [14]. Optimal algorithms are obtained in very restricted cases. For instance, simplified
versions of task allocation could be solved by dynamic programming [15], a method which usually
leads to a solution in polynomial time. The intractability of the problem has led to the introduction of
many heuristics.

Our pattern-mapping optimization is a task allocation problem. We have to distribute p patterns
among n heterogeneous processors, minimizing Tn. In other words, we have to minimize Tn for one
epoch, on n heterogeneous processors, considering also the weights transmission from each worker
to the manager. The computations are overlapped with communications, considering the following
strategy: each processor has to perform a task directly proportional to its speed.

We cascade the computation times on the n processors in the following way. The computation time
for one epoch on a faster processor has to overlap (as much as possible) with computation plus message-
passing times on a slower processor. This would make the faster processor to be the last one sending its
weights to the manager after one epoch. This also means that we have to map more patterns to a faster
processor than to a slower one. Hence, we prefer to use the fastest processors over the slowest ones.
Moreover, we actually use a subset of the available n processors. This subset consists of the fastest
processors.

We use the following notation:

• P is a vector of n elements, where P(i) ≥ 0 is the number of patterns assigned to processor i,
1 ≤ i ≤ n, P(1) + · · · + P(n) = p;

• T is a vector of n elements, where T (i) is the backpropagation processing time for one pattern
(and one cycle) assigned to processor i, 1 ≤ i ≤ n.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

1564 R. ANDONIE ET AL.

Since we can label the processors in any order, let us assume from now on, without loss of generality,
that T (1) ≤ T (2) ≤ · · · ≤ T (n). The objective is to find a value for vector P minimizing the parallel
execution time Tn. In this case, it is obviously better to send more work to the faster processors (those
with a low T (i)). We can simplify this optimization problem by considering the following assumption.

Assumption 1. We have

T (i)P ∗(i) ≥ T (i + 1)P ∗(i + 1) + tcomm, 1 ≤ i ≤ n − 1 (1)

We call the vector P∗ (P ∗(i) ≥ 0, 1 ≤ i ≤ n, P ∗(1)+· · ·+P ∗(n) = p) optimal if it maximizes the
number of patterns allocated to the slowest available processor (as can be seen from Figure 2), under
the constrains of Assumption 1.

Assumption 1 reduces the size of the search space, giving us the possibility to find a polynomial
solution to the optimization problem. The optimal solution P∗ is not necessarily an optimal solution
for the general optimization problem (i.e. the pattern-mapping optimization without Assumption 1)
and this can be easily shown by an example (see Example 2).

A similar result can be achieved if, under the same constraints, instead of maximizing the number
of patterns processed by the slowest processor, we minimize the number of patterns processed by the
fastest processor. In this case, the optimization is easier to illustrate. The first processor (the fastest)
has to be the last one sending the weights to the manager. Intuitively, Tn is proportional to T (1)P (1)

(and this means to P(1), since T (1) is constant). Therefore, we have to minimize P(1). The reason for
Assumption 1 is that we always try to have no idle time periods for the fastest processors, by keeping
them busy as much as possible.

We chose to maximize the number of patterns processed by the slowest processor because this can
be easier formulated by a dynamic programming approach.

The next proposition will be used later. For any vector P (P (i) ≥ 0, 1 ≤ i ≤ n, P(1) + · · ·
+ P(n) = p) for which

T (i)P (i) ≥ T (i + 1)P (i + 1) + tcomm, 1 ≤ i ≤ n − 1 (2)

we have the following property (the proof is obvious, since T (1) ≤ T (2) ≤ · · · ≤ T (n)).

Property 1. We have

P(i) ≥ P(i + 1), 1 ≤ i ≤ n − 1 (3)

3.1. Dynamic programming (DP) solution

We maximize the number of patterns allocated to the slowest processor, building a gain array g of n×p

elements, where g(i, j), for 1 ≤ i ≤ n and 1 ≤ j ≤ p, is the maximum number of patterns allocated
to processor i (the slowest) if we distribute j patterns on processors 1, 2, . . . , i.

We initialize the array as follows:

g(1, j) = j, j = 1, . . . , p (4)

g(i, 1) = 0, i = 2, . . . , n (5)

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

AN EFFICIENT CONCURRENT IMPLEMENTATION 1565

Table I. The gain array g for n = 3 and p = 15.

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4
3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2

We have to compute the rest of the elements of g. The optimality principle holds, since Assumption 1
is a recursive relation, and we have

g(i, j) =

0 if g(i − 1, j − 1)T (i − 1)

≤ T (i) + tcomm

max{k|g(i − 1, j − k)T (i − 1) > kT (i) + tcomm} otherwise

(6)

We can complete g line by line or column by column. We can reduce the time to compute the gain
array using the following observation.

If, for some j , we have g(i, j) = 0, then

g(i + 1, j) = 0 (7)

(this is in accordance with Property 1)

g(i + 1, j + 1) = 0 (8)

After completing g, the solution to our optimization problem can be obtained backwards:

P ∗(n) = g(n, p)

P ∗(n − 1) = g(n − 1, p − P ∗(n))
...

In general,

P ∗(i) = g(i, (p − P ∗(n) − P ∗(n − 1) − · · · − P ∗(i + 1))), 1 ≤ i ≤ n − 1 (9)

Example 1. In Table I we present the gain array g for a system of n = 3 processors. The total number
of patterns is p = 15. The execution times for one pattern on each processor are the following:
T (1) = 1, T (2) = 2, T (3) = 3. We assume the communication time: tcomm = 0.5.

The solution found by our allocation method is P ∗(1) = 9, P ∗(2) = 4, P ∗(3) = 2, that gives a total
execution time of 9.5.

If we take p = 7 in the previous example, the DP allocation will give P ∗(3) = 0. This means that
we do not have to use all three available processors. The minimum execution time is achieved when
using only the first two fastest processors.

There are situations in which our algorithm will not produce the optimal solution. We give such an
example below.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

1566 R. ANDONIE ET AL.

Example 2. We consider a system of n = 2 processors. The total number of patterns is p = 7.
The execution times for one pattern on each processor are the following: T (1) = 5, T (2) = 7.
We assume the communication time tcomm = 1. The solution found by our allocation method (under
Assumption 1) is P ∗(1) = 5, P ∗(2) = 2, which gives a total execution time of 26. We can find
another solution that gives lower execution time. This solution is P(1) = 4, P(2) = 3. It violates
Assumption 1 (i.e. processor 1, the fastest, terminates before processor 2) but the overall computation
time is 22 which is less than 26.

Computational complexity

The complexity of the DP algorithm is O(np log p). This follows from: (1) an element g(i, j) can be
computed in O(log p) time using binary search; (2) the whole array can be completed in O(np) time;
(3) the backward phase of the dynamic programming algorithm is in �(n) time.

3.2. Reducing the complexity of DP algorithm

The complexity of the DP algorithm can be reduced based on the following observation. If there is a
sufficient number of patterns we can allocate them in two phases.

• Phase 1: We allocate most patterns in constant time so that all the processors will finish execution
at the same time.

• Phase 2: We apply DP on the remaining patterns.

We make the following assumptions: (i) all n processors will be used in the most efficient way;
(ii) tcomm is not negligible compared with the execution time of one pattern on any processor and so
we want to overlap communication and computation.

The following example illustrates this technique.

Example 3. We consider a system of n = 3 processors. The total number of patterns is p = 77.
The execution times for one pattern on each processor are the following: T (1) = 2, T (2) = 3,
T (3) = 5. We assume the communication time tcomm = 1. We compute the least common multiplier
(lcm) of T (i), i = 1, 2, 3. In this case lcm = 30 and it represents the execution time for one time
block. We allocate two time blocks on each processor as in Figure 3. In this figure the dark segments
represents tcomm.

A formal description of this procedure is as follows. Let Tblock be the lcm of T (i), i = 1, . . . , n.
We have two cases: (I) when tcomm ≤ Tblock and (II) when tcomm > Tblock.

Case I.

1. Since the communication is to be overlapped with computation, we subtract the number of
patterns pc = ∑n

i=1 �(n − i)tcomm/T (i)� whose execution will overlap with communication.
Then, we determine the number k of possible stages of time blocks that can be formed:

k =
⌊

p − pc

Tblock
∑n

i=1(1/T (i))

⌋

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

AN EFFICIENT CONCURRENT IMPLEMENTATION 1567

����

15 6

15

10

10 6

30

60

77 76
71

P P P1 2 3

patterns patterns

patterns patterns patterns

patterns patterns patterns

patterns

5 28

T
im

e

Figure 3. Pattern allocation for Example 3.

2. We allocate k(Tblock/T (i)) patterns to processor i. Then apply DP algorithm on p′ patterns,
where p′ = p − kTblock

∑n
i=1(1/T (i)).

Case II. We find the minimum kc such that T ′
block = kcTblock > tcomm. Then apply the procedure (I)

with T ′
block instead of Tblock.

Using the procedures described above we can reduce the complexity of DP algorithm to O(n2 log n).
This can be shown as follows:

p′ ≤ n
Tblock

T (1)
⇒ p′ = O(n) (10)

From the remark above, the complexity of DP is in O(np′ log p′). This implies that the complexity is in
O(n2 log n). This is an important reduction in complexity because in most practical situations p 	 n.

Remark. One can generalize this approach to consider the case when it is more efficient to use
fewer than n processors. Then all pc = ∑k

i=1 �(k − i)tcomm/T (i)� for k = 1, . . . , n must be examined.

4. EXPERIMENTAL RESULTS

To demonstrate the performance of our DP allocation algorithm we conducted our experiments on a
NOC using the PVM [16] message-passing system. The network is dedicated to this application so

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

1568 R. ANDONIE ET AL.

Table II. Processing time for one pattern (µs).

Workstation P1 P2–P3 P4–P8

Time 383 467 532

that no other users are allowed to use it. The parallel implementation of backpropagation was tested on
NetTalk benchmark. The NetTalk is a text to phoneme transcription network proposed by Sejnowski
and Rosenberg [12]. This network is a feedforward neural network with three layers. Input to the
network represents a sequence of seven consecutive characters from sample English text. The network
learns to map these to a representation of a single phoneme corresponding to the fourth character in the
sequence. We used a binary encoding for characters and phonemes. The neural network has 36 input
neurons, 80 hidden neurons and nine output neurons. In our experiments we used the NetTalk training
set, with 7560 patterns.

The set of experiments was done on a heterogeneous system composed of one Pentium PC 500 MHz
(P1) and two Pentium PC 440 MHz (P2, P3) and five Pentium PC 400 MHz (P4–P8) connected by
an Ethernet (10 Mb) network. The backpropagation processing times for one pattern considering the
NetTalk network on each workstation are presented in Table II.

We have considered clusters of n computers with n = 2, 3, 4, 5, 6, 7 and 8. For each such
configuration we have used three pattern allocation methods.

(1) Equal allocation method. The patterns are equally distributed among computers. This type of
allocation will produce a poor execution time due to the fact that slower machines will adversely
dominate the execution time. The communication steps are performed after the computation and
they do not overlap.

(2) Proportional allocation method. The patterns are allocated in proportion to the CPU speeds.
This is suitable for heterogeneous systems. The allocation can be computed in O(n) time.
The communication is not overlapped with computation. The patterns are allocated using the
method presented in Section 3.2 (Case I, item 1) and the remaining patterns (p′) are allocated
according to the following equations:

P(i) =
⌈

p′/T (i)∑n
j=1 1/T (j)

⌉
, i = 1, . . . , n − 1 (11)

P(n) = p′ −
n−1∑
j=1

P(j) (12)

(3) The DP allocation method. The DP allocation method is based on overlapping communications
and computations. The solution of the optimization problem was obtained using the algorithm
described in Section 4. In this algorithm we used tcomm = 4 ms, which was found experimentally.

The performance of the three allocation schemes is characterized by the execution time (Tn) for
one epoch. The allocations of patterns to computers for the three methods are shown in Table III.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

AN EFFICIENT CONCURRENT IMPLEMENTATION 1569

Table III. Pattern allocation for heterogeneous computers.

Computers
Number of Allocation
processors method P1 P2 P3 P4 P5 P6 P7 P8

8 Equal 945 945 945 945 945 945 945 945
Prop 1214 993 993 872 872 872 872 872
DP 1856 1360 1199 911 770 629 488 347

7 Equal 1080 1080 1080 1080 1080 1080 1080 —
Prop 1370 1123 1123 986 986 986 986 —
DP 1918 1412 1251 957 815 674 533 —

6 Equal 1260 1260 1260 1260 1260 1260 — —
Prop 1576 1291 1291 1134 1134 1134 — —
DP 2029 1503 1342 1037 895 754 — —

5 Equal 1512 1512 1512 1512 1512 — — —
Prop 1854 1519 1519 1334 1334 — — —
DP 2214 1655 1494 1169 1028 — — —

4 Equal 1890 1890 1890 1890 — — — —
Prop 2249 1845 1845 1621 — — — —
DP 2520 1906 1745 1389 — — — —

3 Equal 2520 2520 — 2520 — — — —
Prop 2976 2440 — 2144 — — — —
DP 3152 2423 — 1985 — — — —

2 Equal 3780 3780 — — — — — —
Prop 4154 3406 — — — — — —
DP 4242 3318 — — — — — —

Table IV. Epoch time (ms).

Number of computers
Allocation
method 2 3 4 5 6 7 8

Equal 2030 1662 1443 1420 1591 1820 1813
Proportional 1882 1607 1536 1552 1742 1955 1910
DP 1860 1542 1365 1354 1431 1603 1474

Table V. DP gain in execution time for one epoch.

Number of computers

2 3 4 5 6 7 8

Gain (%) 1.16 4.04 6.16 3.87 10.05 11.92 18.69

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

1570 R. ANDONIE ET AL.

Figure 4. An execution (epoch) using the DP allocation on eight workstations.

Figure 5. An execution (epoch) using the proportional allocation on eight workstations.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

AN EFFICIENT CONCURRENT IMPLEMENTATION 1571

Figure 6. An execution (epoch) using the equal allocation on eight workstations.

In Table IV we show the epoch time considering the three allocation techniques. The epoch times in
this table are obtained by running the NetTalk benchmark on the system described at the beginning
of this section. Tn for one epoch using the DP allocation algorithm is considerably smaller than in the
case of using equal and proportional allocations. The gain in performance is shown in Table V. DP is
faster than the proportional scheme because DP overlaps communications and computations. This gain
would increase as tcomm and the number of workers increases.

The maximum gains are obtained for up to eight computers. For example, consider a network of
eight computers. Using DP allocation, the best distribution of patterns is found to be 1856, 1360, 1199,
911, 770, 629, 488, 347. The resulting epoch time is 1474 ms. Using equal distribution, i.e. 945 patterns
per computer, the epoch time is 1813 ms. The gain in performance was about 19%.

In Figures 4–6, we show a run (on eight computers) using the allocation methods (1)–(3) above.
Each process is represented by a horizontal bar having a different color depending on the state of
the process. The dark gray segments represent the times when the tasks execute useful computation.
The white segments represent the times spent waiting for messages from other tasks. The light gray
(small) segments correspond to communication or task control routines. The thin lines linking task
execution bars represent message exchanges. It can be observed that in the case of DP allocation the
useful computation segments of each worker task appears to be well balanced. This is not the case for
the equal allocation method where the slow worker computers have higher execution times compared

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

1572 R. ANDONIE ET AL.

with the faster ones. For the proportional allocation method the execution times are balanced, but the
communication times increase and the overall performance degrades.

5. CONCLUSIONS AND FUTURE WORK

Our main contribution is the pattern-mapping optimization algorithm, which reduces the generally
NP-complete problem to a polynomial-time dynamic programming solution. The optimization criterion
is based on minimizing the execution time for one epoch (or Tn) of backpropagation learning.
Using this allocation method we have obtained significant gains in performance compared with
the proportional and equal allocation methods. Other backpropagation type algorithms with better
convergence properties can directly be implemented using the mapping methods reported here.

Our allocation scheme can also be used on homogeneous systems. In this case, only the overlapping
of computation and communication is exploited. In our paper, we analyze the performance in a
dedicated environment, where the CPUs are not shared with other applications. If other applications
would be active, our algorithm should be adjusted dynamically.

This pattern-mapping optimization could also be used for other parallel computation tasks. However,
it is connected to the presented parallel architecture. The backpropagation algorithm was a very good
match to this architecture.

ACKNOWLEDGEMENTS

Some of the reviewers comments which helped enhance the quality of presentation of this article are graciously
acknowledged. This research was supported, in part, by research grants from: (1) NASA NAG 2-1383 (1999–
2001); (2) State of Texas Higher Education Coordinating Board through the Texas Advanced Research/Advanced
Technology Program ATP 003658-0442-1999; (3) NSF Grant ASC-9634775; (4) NSF Grant CCR-0312323.

REFERENCES

1. El-Amawy A, Kulasinghe P. Algorithmic mapping of neural networks onto multiple bus systems. IEEE Transactions on
Parallel and Distributed Systems 1997; 8(1):130–136.

2. Chu LC, Wah BW. Optimal mapping of neural-network learning on message-passing multicomputers. Journal of Parallel
and Distributed Computing 1992; 14:319–339.

3. Kumar V, Shashi S, Amin MB. A scalable parallel formulation of the backpropagation algorithm for hypercubes and related
architectures. IEEE Transactions on Parallel and Distributed Systems 1994; 5:1073–1090.

4. Foo SK, Saratchandran P, Sundararajan N. Parallel implementation of backpropagation neural networks on a heterogeneous
array of transputers. IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics 1997; 27(2):118–126.

5. Crespo M, Piccoli F, Printista M, Gallard R. Parallel shaping of backpropagation neural networks in a workstations-based
distributed system. Proceedings of EIS’98 International ICSC Symposium on Engineering of Intelligent Systems. ICSC
Academic Press: Millet, AB, 1998; 709–715.

6. Paugam-Moisy H. Parallel neural computing based on network duplicating. Parallel Algorithms for Digital Image
Processing, Computer Vision, and Neural Networks, Pitas I (ed.). Wiley: New York, 1993; 305–340.

7. Bharadwaj V, Ghose D, Mani V, Robertazzi TG. Scheduling Divisible Loads in Parallel and Distributed Systems. IEEE
Computer Society Press: Los Alamitos, CA, 1996.

8. Sohn J, Robertazzi TG, Luryi S. Optimizing computing costs using divisible load analysis. IEEE Transactions on Parallel
and Distributed Systems 1998; 9(3):225–234.

9. Nicol DM. Rectilinear partitioning of irregular data parallel computations. Journal of Parallel and Distributed Computing
1994; 23:119–134.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

AN EFFICIENT CONCURRENT IMPLEMENTATION 1573

10. Andonie R, Chronopoulos AT, Grosu D, Galmeanu H. Distributed backpropagation neural networks on a PVM
heterogeneous system. Proceedings of the 10th IASTED International Conference on Parallel and Distributed Systems
(PDCS’98), October 1998, Pan Y, Akl SG, Li K (eds.). IASTED/ACTA Press: Anaheim, CA, 1998; 555–560.

11. Beaumont O, Legrand A, Robert Y. The master–slave paradigm with heterogeneous processors. IEEE Transactions on
Parallel and Distributed Systems 2003; 14:897–908.

12. Sejnowski TJ, Rosenberg CR. Parallel networks that learn to pronounce English text. Complex Systems 1987; 1:145–168.
13. Zurada JM. Artificial Neural Systems. PWS Publishing Company: Boston, MA, 1992.
14. Ali H, El-Rewini H. On the intractability of task allocation in distributed systems. Parallel Processing Letters 1994; 4:149–

157.
15. Boffey B. Distributed Computing-Associated Combinatorics Problems. Blackwell Scientific: Oxford, 1992.
16. Geist A et al. PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Parallel Computing. MIT Press:

Cambridge, MA, 1994.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 18:1559–1573

	1 INTRODUCTION
	2 A PARALLEL ARCHITECTURE FOR BACKPROPAGATION LEARNING
	3 PATTERN-MAPPING OPTIMIZATION
	3.1 Dynamic programming (DP)
solution
	Computational complexity

	3.2 Reducing the complexity of DP algorithm

	4 EXPERIMENTAL RESULTS
	5 CONCLUSIONS AND FUTURE WORK

