
A Truthful Load Balancing Mechanism with Verification

DANIEL GROSU

Department of Computer Science, Wayne State University,

5143 Cass Avenue, Detroit, MI 48202, USA, E-mail: dgrosu@cs.wayne.edu

and

ANTHONY T. CHRONOPOULOS

Department of Computer Science, Univ. of Texas at San Antonio, 6900 N. Loop 1604 West

San Antonio, TX 78249, E-mail: atc@cs.utsa.edu

Received October 2004
Revised January 2005

Communicated by M. Cosnard

ABSTRACT
In this paper we investigate the problem of designing load balancing protocols in

distributed systems involving self-interested participants. These participants have their
own requirements and objectives and no a-priori motivation for cooperation. Their self-

ish behavior may lead to poor performance and inefficiency. To address this problem we
design a load balancing mechanism with verification that provides incentives to partici-
pants to report their true parameters and follow the given algorithm. We prove that our

load balancing mechanism is truthful (i.e., agents will be better off by reporting their
true parameters) and satisfies the voluntary participation condition (i.e., truthful agents
never incur a loss). We present a simulation study to show the performance of our load

balancing mechanism.

Keywords: Distributed systems; Load balancing; Game theory; Mechanism design

1. Introduction

The study in this paper is motivated by the recent increased interest in designing al-
gorithms for resource allocation involving self interested participants [7,12,18,19,21].
We are especially interested in solving the load balancing problem in distributed
systems where computational resources belong to self-interested parties (e.g., or-
ganizations, people). These participants called agents have no a-priori motivation
for cooperation and they are tempted to manipulate the load allocation algorithm
if it is beneficial to do so. This behavior may lead to poor system performance
and inefficiency. Unlike the traditional protocols in distributed computing, the new
protocols must deal with the possible manipulations. Thus, the system must pro-
vide incentives to agents to participate in the given algorithm. The solution of this
kind of problems comes from economics, more precisely from mechanism design

theory [20]. The scope of this theory is to provide tools and methods to design pro-
tocols for self-interested agents. Of interest are the so called truthful mechanisms

in which agents are given incentives to report their true parameters and follow the

Grosu and Chronopoulos

given algorithm.
The goal of this paper is to design a load balancing mechanism with verification.

We consider a distributed system in which computers are modeled by linear load-
dependent latency functions [1,22]. Solving the load balancing problem involves
finding an allocation that minimizes the total latency of the system. The optimal
allocation is obtained by assigning jobs to computers in proportion to their process-
ing rates. This allocation algorithm is the basis for our mechanism. To design our
mechanism we assume that each computer in the distributed system is characterized
by its processing rate and that the true value of this rate is private knowledge. The
valuation of each computer is the function that quantifies its benefit or loss and is
equal to the negation of its latency.

The load balancing mechanism with verification works as follows. It first asks
the computers to report their processing rates. Having obtained these rates, the
mechanism computes the allocation and allocates the jobs to computers. Because we
want to have a mechanism with verification the payment to each agent is computed
and given to it after the assigned jobs were executed. Here we assume that the
processing rate at which the jobs were actually executed is known to the mechanism.
Each computer goal is to report a value for its processing rate such that its utility
is maximized. The utility of each computer is defined as the sum of its valuation
and its payment. The mechanism must be designed such that the agents maximize
their utility only if they report the true values of the processing rates and execute
the jobs using their full processing capacity. Also, if each computer reports its true
value and executes the jobs at the full capacity then the minimum total latency is
obtained.

In this paper we design a mechanism with verification based on a compensation-
and-bonus type mechanism. This type of mechanism was initially studied by Nisan
and Ronen [19] in the context of task scheduling on unrelated machines.

1.1. Related work

The load balancing problem in distributed systems has been extensively investi-
gated under the classical assumption that the participants are obedient and follow
the algorithm. The solution of this problem was obtained using different techniques
and models such as cooperative games [9], nonlinear optimization [13,23] and learn-
ing automata [8].

Recently, several researchers considered the mechanism design theory to solve
several computational problems that involve self-interested agents. These problems
include resource allocation and task scheduling [16,17,25,26], congestion control and
routing [5,14].

The closest work to our study is the paper of Nisan and Ronen [19]. They were
the first to consider the mechanism design problem in a computational setting. They
studied different types of mechanisms for shortest paths and job scheduling on unre-
lated machines. They proposed a VCG(Vickrey-Clarke-Groves) [4,11,24] mechanism
for solving the shortest paths in graphs where edges belong to self-interested agents
and mechanisms for solving the task scheduling on unrelated machines. The VCG
mechanism allows arbitrary form for valuations and is restricted to objective func-
tions defined by the sum of agents’ valuations. They also proposed a mechanism

A Truthful Load Balancing Mechanism with Verification

with verification that solves the problem of task scheduling on unrelated machines.
Their mechanism is a compensation-and-bonus type mechanism.

Archer and Tardos [2] derived a general framework for designing truthful mecha-
nisms for optimization problems where the private data of each agent is described by
one real valued parameter. Their method allows the design of truthful mechanisms
for optimization problems that have general objective functions and restricted form
for valuations. Using this method they designed truthful mechanisms for several
problems in computer science. In [3] the same authors investigated the frugality
of shortest path mechanisms. A truthful mechanism that gives the overall optimal
solution for the static load balancing problem in distributed systems is proposed
in [10].

The computational aspects of the mechanisms for cost sharing in multicast trans-
missions were studied by Feigenbaum et al. [6]. In [5] a mechanism for low cost rout-
ing in networks is studied. In both these papers the authors considered a distributed
mechanism which is suitable for implementation in large distributed systems. The
results and the challenges of designing distributed mechanisms are surveyed in [7].

1.2. Our contributions

The focus of this paper is the design of a load balancing mechanism with veri-
fication in heterogeneous distributed systems. We model the computers of the dis-
tributed system using linear load-dependent latency functions. We formulate the
problem of designing a load balancing mechanism with verification and we devise a
truthful mechanism for this problem. We prove that our mechanism is truthful and
satisfies the voluntary participation condition. A simulation study is performed to
investigate the effectiveness of our mechanism.

1.3. Organization

The paper is structured as follows. In Section 2 we present the distributed sys-
tem model and formulate the load balancing problem. In Section 3 we design a
truthful mechanism with verification that solves the load balancing problem in dis-
tributed systems in which computers have linear load-dependent latency functions.
In Section 4 we investigate the effectiveness of our load balancing mechanism by
simulation. In Section 5 we draw conclusions and present future directions.

2. Model and problem formulation

We consider a distributed system that consists of a set N = {1, 2, . . . , n} of

n heterogeneous computers. We assume that each computer is characterized by a

load-dependent latency function. The latency function of computer i is linear on xi

and has the following form:

li(xi) = aixi (1)

where xi is the arrival rate of jobs allocated to computer i and ai is a parameter

inversely proportional to the processing rate of computer i. A small (big) ai char-

acterizes a fast (slow) computer. In other words li(xi) measures the time required

to complete one job on computer i.

Grosu and Chronopoulos

Models using linear load-dependent latency functions were investigated in [1,22].

This type of function could represent the expected waiting time in a M/G/1 queue,

under light load conditions (considering ai as the variance of the service time in the

queue) [1].

We assume that there is a large number of jobs that need to be executed. These

jobs arrive at the system with an arrival rate R. A feasible allocation of jobs to the

computers is a vector x = (x1, x2, . . . , xn) that satisfies two conditions:

(i) Positivity: xi > 0 i = 1, 2, . . . , n;

(ii) Conservation:
∑

n

i=1
xi = R;

The performance of the system is characterized by the total latency :

L(x) =

n∑

i=1

xili(xi) =

n∑

i=1

aix
2

i
(2)

The load balancing problem can be stated as follows:

Definition 1 (Load balancing problem) Given the job arrival rate R at a

distributed system with n heterogeneous computers characterized by the load-

dependent latency functions li(.), i = 1, . . . , n, find a feasible allocation x =

(x1, x2, . . . , xn) that minimizes the total latency L(x).

The following theorem gives the solution for this problem.

Theorem 1 (Optimal allocation) The optimal allocation for the above load

balancing problem is given by:

xi =
1

ai∑
n

k=1

1

ak

R i = 1, 2, . . . , n (3)

This allocation gives the minimum value for the total latency:

L∗ =
R2

∑
n

k=1

1

ak

(4)

Proof. The total latency function is a convex function and the optimal allocation

can be obtained by using the Kuhn-Tucker conditions [15].

Let α ≥ 0, ηi ≥ 0, i = 1, . . . , n denote the Lagrange multipliers [15]. We consider

the Lagrangian function:

L(x, α, η1, . . . , ηn) =

n∑

i=1

aix
2

i
− α(

n∑

i=1

xi −R)−

n∑

i=1

ηixi (5)

The Kuhn-Tucker conditions imply that xi, i = 1, . . . , n is the optimal solution to

our problem if and only if there exists α ≥ 0, ηi ≥ 0, i = 1, . . . , n such that:

∂L

∂xi

= 0, i = 1, . . . , n (6)

A Truthful Load Balancing Mechanism with Verification

∂L

∂α
= 0 (7)

ηixi = 0, ηi ≥ 0, xi ≥ 0, i = 1, . . . , n (8)

We consider xi > 0 and this implies that the last condition is satisfied only if ηi = 0.

The conditions become:

2aixi − α = 0 i = 1, . . . , n (9)

n∑

i=1

xi −R = 0 (10)

Solving these equations we get:

xi =
α

2ai

i = 1, . . . , n (11)

α =
2R∑
n

k=1

1

ak

(12)

From these, we obtain the optimal allocation xi:

xi =
1

ai∑
n

k=1

1

ak

R i = 1, . . . , n (13)

Using this allocation we compute the minimum value for the latency function as

follows:

L∗ =

n∑

i=1

aix
2

i
=

n∑

i=1

ai

(1

ai

)2

(
∑

n

k=1

1

ak

)2
R2 =

R2

∑
n

k=1

1

ak

(14)

2

In other words this theorem says that if the latency functions for each com-

puter are linear then the allocation of jobs in proportion to the processing rate of

each computer gives the minimum total latency. Using this theorem, the following

algorithm can be derived.

PR algorithm:

Input: Processing rates: 1

a1

, 1

a2

, . . . 1

an

;

Arrival rate: R;

Output: Load allocation: x1, x2, . . . xn;

for i = 1, . . . , n do

xi ← R
1

ai∑
n

k=1

1

ak

;

The above algorithm solves the load balancing problem in the classical setting

where the participants (computers) are assumed to follow the algorithm. Here

we assume that computers are selfish agents characterized by their true values ti,

i = 1, 2, . . . , n. The true value ti corresponds to the parameter ai in the latency

function li, which is inversely proportional to the processing rate of computer i.

We need to design a mechanism that obtains the optimal allocation and forces the

Grosu and Chronopoulos

participants to reveal their true types ti and follow the PR algorithm. In the next

section we design such a mechanism.

3. The load balancing mechanism with verification

In this section we formally describe the load balancing mechanism design prob-

lem considering our distributed system model. Then we present the design of our

load balancing mechanism with verification and study its properties.

Definition 2 (Mechanism design problem) The problem of designing a load

balancing mechanism with verification is characterized by:

(i) A finite set X of allowed outputs. The output is a vector x(b) = (x1(b), x2(b),

. . . , xn(b)), x(b) ∈ X, computed according to the agents’ bids, b = (b1, b2,

. . . , bn). Here, bi is the value (bid) reported by agent i to the mechanism.

(ii) Each agent i, (i = 1, . . . , n), has a privately known parameter ti called the true

value and a publicly known parameter t̃i ≥ ti called the execution value. The

preferences of agent i are given by a function called valuation Vi(x, t̃) = −t̃ix
2

i
.

The execution value t̃i determines the value of the latency function and thus

the actual execution time for one job at agent i.

(iii) Each agent goal is to maximize its utility. The utility of agent i is Ui(b, t̃) =

Pi(b, t̃) + Vi(x(b), t̃), where Pi is the payment handed by the mechanism to

agent i and t̃ is the vector of execution values. The payments are handed to

agents after the assigned jobs have been completed and the mechanism knows

t̃i, i = 1, 2, . . . , n.

(iv) The goal of the mechanism is to select an output x that minimizes the total

latency function L(x,b) =
∑

n

i=1
bix

2

i
.

An agent i may report a value (bid) bi different from its true value ti. The true

value characterizes the actual processing capacity of computer i. In addition, agent

i may choose to execute the jobs allocated to it at a different processing rate given

by its execution value (t̃i ≥ ti). Thus, an agent i may execute the assigned jobs

at a slower rate than its true processing rate. The goal of a truthful mechanism

with verification is to give incentives to agents such that it is beneficial for them

to report their true values and execute the assigned jobs using their full processing

capacity. Now we give a formal description of a mechanism with verification.

Definition 3 (Mechanism with verification) A mechanism with verification is

a pair of functions:

(i) The allocation function x(b) = (x1(b), x2(b), . . . , xn(b)). This function has

as input the vector of agents’ bids b = (b1, b2, . . . , bn) and returns an output

x ∈ X.

A Truthful Load Balancing Mechanism with Verification

(ii) The payment function P (b, t̃) = (P1(b, t̃), P2(b, t̃), . . . , Pn(b, t̃)), where Pi(b, t̃)

is the payment handed by the mechanism to agent i.

According to this definition, to obtain a load balancing mechanism with verifica-

tion we must find an allocation function x(b) and a payment function P (b, t̃). The

allocation function must minimize L(x). The payment function must be designed

such that the mechanism is truthful.

Here we consider a compensation-and-bonus type mechanism [19] to solve the

load balancing problem. The optimal allocation function for this mechanism is given

by the PR algorithm. The payment function for this type of mechanism is the sum

of two functions: a compensation function and a bonus function.

Notation: In the rest of the paper we denote by b−i the vector of bids not including

the bid of agent i. The vector b is represented as (b−i, bi).

In the following we define our load balancing mechanism with verification.

Definition 4 (The load balancing mechanism with verification) The mech-

anism with verification that solves the load balancing problem is defined by the

following two functions:

(i) The allocation function given by the PR algorithm.

(ii) The payment function given by:

Pi(b, t̃) = Ci(b, t̃) + Bi(b, t̃) (15)

where the function Ci(b, t̃) = t̃ix
2

i
(b) is called the compensation function for

agent i; and the function Bi(b, t̃) = L−i(x(b−i,b−i)) − L(x(b), (b−i, t̃i)) is

called the bonus for agent i.

The function L−i(x(b−i,b−i)) is the optimal latency when agent i is not used

in the allocation. Thus, the bonus for an agent is equal to its contribution in

reducing the total latency.

We are interested in obtaining a truthful load balancing mechanism. A truthful

mechanism can be defined as follows.

Definition 5 (Truthful mechanism) A mechanism is called truthful if for every

agent i of type ti and for every bids b−i of the other agents, the agent’s utility

is maximized when it declares its real value ti (i.e., truth-telling is a dominant

strategy).

For our load balancing mechanism we can state the following theorem.

Theorem 2 (Truthfulness) The load balancing mechanism with verification

is truthful.

Proof. Assuming a vector of bids b, the utility of agent i is:

Ui(b, t̃) = Pi(b, t̃) + Vi(x(b), t̃)

= L−i(x(b−i))− L(x(b), (b−i, t̃i)) + t̃ix
2

i
(b)− t̃ix

2

i
(b)

Grosu and Chronopoulos

= L−i(x(b−i))− L(x(b), (b−i, t̃i)) (16)

We consider two possible situations:

i) ti = t̃i i.e. agent i executes its assigned jobs using its full processing capability.

If agent i bids its true value ti then its utility U t

i
is:

U t

i
= L−i(x(b−i))− L(x(b−i, ti), (b−i, t̃i))

= L−i(x(b−i))− Lt

i
(17)

If agent i bids lower (bl

i
< ti) then its utility U l

i
is:

U l

i
= L−i(x(b−i))− L(x(b−i, b

l

i
), (b−i, t̃i))

= L−i(x(b−i))− Ll

i
(18)

We want to show that U t

i
≥ U l

i
, which reduces to show that Ll

i
≥ Lt

i
. Because Lt

i

is the minimum possible value for the latency (from the optimality of PR algorithm),

by bidding a lower value, agent i gets more jobs and the total latency is increased,

thus Ll

i
≥ Lt

i
.

If agent i bids higher (bh

i
> ti) then its utility Uh

i
is:

Uh

i
= L−i(x(b−i))− L(x(b−i, b

h

i
), (b−i, t̃i))

= L−i(x(b−i))− Lh

i
(19)

By bidding a higher value agent i gets fewer jobs and so more jobs will be

assigned to the other agents. Due to the optimality of allocation the total latency

increases i.e., Lh

i
≥ Lt

i
and thus we have U t

i
≥ Uh

i
.

ii) t̃i > ti i.e., agent i executes its assigned jobs at a slower rate thus increasing the

total latency. A similar argument as in the case i) applies.

2

A desirable property of a mechanism is that the profit of a truthful agent is

always non-negative. This means the agents hope for a profit by participating in

the mechanism.

Definition 6 (Voluntary participation mechanism) We say that a mechanism

satisfies the voluntary participation condition if Ui((b−i, ti), t̃i) ≥ 0 for every agent

i, true values ti, execution values t̃i = ti, and other agents’ bids b−i (i.e., truthful

agents never incur a loss).

Theorem 3 (Voluntary participation) The load balancing mechanism with

verification satisfies the voluntary participation condition.

Proof. The utility of agent i when it bids its true value ti is:

U t

i
= L−i(x(b−i))− L(x(b−i, ti), (b−i, t̃i)) (20)

The latency L−i is obtained by using all the other agents except agent i. By

allocating the same number of jobs, we get a higher latency L−i than in the case

A Truthful Load Balancing Mechanism with Verification

of using all the agents, with agent i bidding its true value (from the optimality of

allocation). Thus, UT

i
≥ 0. 2

We obtained a truthful load balancing mechanism with verification that satisfies

the voluntary participation condition. Based on this mechanism a load balancing

protocol can be derived. An informal description of this centralized protocol is

as follows. The mechanism collects the bids from each computer, computes the

allocation using PR algorithm and allocates the jobs. Then it waits for the allocated

jobs to be executed. In this waiting period the mechanism estimates the actual job

processing rate at each computer and use it to determine the execution value t̃i.

After the allocated jobs are completed the mechanism computes the payments and

sends them to the computers. After receiving the payment each computer evaluates

its utility.

4. Experimental results

In this section we study the effectiveness of the proposed mechanism by simu-

lation. The simulated distributed system consists of 16 heterogeneous computers.

The latency function of each computer is given by the parameter ai = ti presented

in Table 1. This parameter is inversely proportional to the computer’s processing

rate.

Computers C1 - C2 C3 - C5 C6 - C10 C11 - C16

True value(t) 1 2 5 10

Table 1: System configuration.

We consider eight types of experiments depending on the bid and on the execu-

tion value of computer C1. In all the experiments we assume that all the computers

except C1 bid their true values and that their execution values are the same as their

true values. We classify these experiments in three main classes according to the

bids of computer C1 as follows: True, when b1 = t1; High, when b1 > t1; and Low,

when b1 < t1. We further divide these main classes considering the execution value

of C1. We have two sets of experiments for the True class, four for the High class

and two for the Low class. The parameters used in these experiments are presented

in Table 2.

First, we consider the influence of false bids (b1 6= t1) on the total latency. We

assume that the job rate is R = 20 jobs/sec. In Figure 1 we present the total latency

for the eight experiments. We now discuss the results of each experiment.

True1 : All the computers report their true values. The execution value is equal to

the true value for each computer. As expected (from the theory) we obtain

the minimum value for the total latency (L = 78.43).

True2 : The parameters are as in True1 except that C1 has a higher execution value

Grosu and Chronopoulos

Experiment Characterization t1 b1 t̃1

True1 t̃1 = t1 = b1 1 1 1

True2 t̃1 > t1 = b1 1 1 3

High1 t̃1 = b1 > t1 1 3 3

High2 b1 > t1 = t̃1 1 3 1

High3 b1 > t̃1 > t1 1 3 2

High4 t̃1 > b1 > t1 1 3 4

Low1 t̃1 = t1 > b1 1 0.5 1

Low2 t̃1 > t1 > b1 1 0.5 2

Table 2: Types of experiments.

Figure 1: Performance degradation.

t̃1 > t1. This means C1 execution is slower increasing the total latency by

17%.

High1 : In this case C1 bids three times higher than its true value and the execution

value is equal to the bid. Because C1 bids higher the other computers are

overloaded thus increasing the total latency. C1 gets fewer jobs and executes

them with a slower execution rate.

High2 : In this case C1 gets fewer jobs and the other computers are overloaded.

Here the increase is not as big as in High1 because C1 executes the jobs at

its full capacity.

High3 : This case is similar to High1 except that the execution on C1 is faster. It

can be seen that the total latency is less than in the case High1.

High4 : Similar to High1, except that C1 executes the jobs slower, increasing the

total latency.

Low1 : C1 bids two times less than its true value, getting more jobs and executing

them at its full capacity. The increase in total latency is not big, about 11%.

A Truthful Load Balancing Mechanism with Verification

Figure 2: Payment and utility for computer C1.

Low2 : In this case C1 gets more jobs and executes them two times slower. This

overloading of C1 leads to a significant increase in the total latency (about

66%).

From the results of these experiments, it can be observed that small deviations

from the true value and from the execution value of only one computer may lead to

large values of the total latency. We expect even larger increase if more than one

computer does not report its true value and does not use its full processing capacity.

The necessity of a mechanism that forces the participants to be truthful becomes

vital in such situations.

In Figure 2 we present the payment and utility of computer C1 for each set

of experiments. As expected, C1 obtains the highest utility in the experiment

True1, when it bids its real value and uses its full processing capacity. In the other

experiments C1 is penalized for lying and the payment that it receives is lower than

in the case of True1. The utility is also lower in these experiments. An interesting

situation occurs in the experiment Low2 where the payment and utility of C1 are

negative. This can be explained as follows. Computer C1 bids two times less than its

true value and the PR algorithm allocates more jobs to it. In addition, its execution

value t̃1 is two times higher than t1, that means the allocated jobs are executed two

times slower than in the experiment True1 (when t̃1 = t1). More allocated jobs to

C1 combined with a slow execution increases the total latency L. The total latency

becomes greater than the latency L−1 obtained when computer C1 is not used in

the allocation (i.e., L > L−1) and thus the bonus is negative. The absolute value of

the bonus is greater than the compensation and from the definition of the payment

it can be seen that the payment given to C1 is negative.

In Figures 3-5 we present the payment structure for each computer in three of

the experiments. In the experiment Low1 (Figure 5) computer C1 obtains a utility

Grosu and Chronopoulos

Figure 3: Payment and utility for each computer (True1).

Figure 4: Payment and utility for each computer (High1).

which is 45% lower than in the experiment True1. The other computers (C2 - C16)

obtain lower utilities. This is because all the computers except C1 receive fewer

jobs and their payments are smaller than in the experiment True1.

In the experiment High1 (Figure 4) computer C1 obtains a utility which is 62%

lower than in the experiment True1. The other computers (C2 - C16) obtain higher

utilities. The mechanism pays them more because they receive more jobs.

In Figure 6 we present the payment structure of our mechanism. It can be

observed that the total payment given by our mechanism to the computers is at

most 2.5 times the total valuation. The lower bound on the total payment is the total

valuation. This is because our mechanism must preserve the voluntary participation

property. The amount of the total payment given by a mechanism characterizes its

frugality. A mechanism that gives small payments by some measure it is called

A Truthful Load Balancing Mechanism with Verification

Figure 5: Payment and utility for each computer (Low1).

Figure 6: Payment structure.

frugal. Based on the experimental results presented here the payments are at most

2.5 times the total valuation, thus our mechanism can be considered frugal.

5. Conclusion

We designed a truthful mechanism with verification that solves the load balanc-

ing problem in a distributed system in which computers are characterized by linear

load-dependent latency functions. We proved that this mechanism satisfies the vol-

untary participation condition. We studied the performance of this mechanism in

terms of its payment structure.

Future work will address the problem of designing distributed load balancing

mechanisms in which the allocation and the payment function are computed by the

agents themselves. The basic idea is to provide a method to compute these functions

Grosu and Chronopoulos

such that no participant can manipulate the computation and no information about

the agents’ true values is revealed.

Acknowledgments

This research was supported, in part, by NSF Grant CCR-0312323, a grant from

the Center for Infrastructure Assurance and Security at The University of Texas at

San Antonio and by a Wayne State University Faculty Research Grant.

The authors wish to express their thanks to the editor and the anonymous

referees for their helpful and constructive suggestions, which considerably improved

the quality of the paper.

References

[1] E. Altman, T. Basar, T. Jimenez and N. Shimkin, “Routing in Two Parallel Links:
Game-Theoretic Distributed Algorithms”, Journal of Parallel and Distributed Com-
puting, vol. 61, no. 9, pp. 1367-1381, September 2001.

[2] A. Archer and E. Tardos, “Truthful Mechanism for One-Parameter Agents”, Proc. of
the 42nd IEEE Symp. on Foundations of Computer Science, pp. 482-491, October
2001.

[3] A. Archer and E. Tardos, “Frugal Path Mechanisms”, Proc. of the 13th Annual
ACM-SIAM Symp. on Discrete Algorithms, pp. 991-999, January 2002.

[4] E. Clarke, “Multipart Pricing of Public Goods”, Public Choice, vol. 15, pp. 17-33,
1971.

[5] J. Feigenbaum, C. Papadimitriou, R. Sami and S. Shenker, “A BGP-based Mechanism
for Lowest-Cost Routing”, Proc. of the 21st ACM Symposium on Principles of
Distributed Computing, pp. 173-182, July 2002.

[6] J. Feigenbaum, C. Papadimitriou and S. Shenker, “Sharing the Cost of Multicast Trans-
missions”, Journal of Computer and System Sciences, vol. 63, no. 1, pp. 21-41,
August 2001.

[7] J. Feigenbaum and S. Shenker, “Distributed Algorithmic Mechanism Design: Recent
Results and Future Directions”, Proc. of the 6th ACM Workshop on Discrete Al-
gorithms and Methods for Mobile Computing and Communications, pp. 1-13,
September 2002.

[8] A. Glockner and J. Pasquale, “Coadaptive Behavior in a Simple Distributed Job
Scheduling System”, IEEE Transactions on Systems, Man and Cybernetics, vol.
23, no. 3, pp. 902-907, March 1993.

[9] D. Grosu, A. T. Chronopoulos, and M. Y. Leung, “Load Balancing in Distributed
Systems: An Approach Using Cooperative Games”, Proc. of the 16th IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp. 501-510, April 2002.

[10] D. Grosu and A. T. Chronopoulos, “Algorithmic Mechanism Design for Load Balancing
in Distributed Systems”, IEEE Transactions on Systems, Man and Cybernetics -
Part B: Cybernetics, vol. 34, no. 1, pp. 77-84, February 2004.

[11] T. Groves, “Incentive in Teams”, Econometrica, vol. 41, no. 4, pp. 617-631, 1973.
[12] J. Hershberger and S. Suri, “Vickrey Prices and Shortest Paths: What is an Edge

Worth?”, Proc. of the 42nd IEEE Symp. on Foundations of Computer Science,
pp. 252-259, October 2001.

[13] H. Kameda, J. Li, C. Kim, and Y. Zhang, Optimal Load Balancing in Distributed
Computer Systems, Springer Verlag, London, 1997.

A Truthful Load Balancing Mechanism with Verification

[14] R. Karp, E. Koutsoupias, C. H. Papadimitriou, and S. Shenker, “Optimization Prob-
lems in Congestion Control”, Proc. of the 41st IEEE Symp. on Foundations of
Computer Science, pp. 66-74, November 2000.

[15] D. G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, Reading,
Mass., 1984.

[16] C. Ng, D. Parkes, and M. Seltzer, “Strategyproof computing: Systems infrastructures
for self-interested parties”, Proc. of the 1st Workshop on Economics of Peer-to-
Peer Systems, June 2003.

[17] N. Nisan, S. London, O. Regev, and N. Camiel, “Globally Distributed Computation
over Internet - The POPCORN Project”, Proc. of the 18th IEEE International
Conference on Distributed Computing Systems, pp. 592-601, May 1998.

[18] N. Nisan and A. Ronen, “Algorithmic Mechanism Design”, Proc. of the 31st Annual
ACM Symp. on Theory of Computing, pp. 129-140, May 1999.

[19] N. Nisan and A. Ronen, “Algorithmic Mechanism Design”, Games and Economic
Behavior, vol. 35, no. 1-2, pp. 166-196, April 2001.

[20] M. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge,
Mass., 1994.

[21] A. Ronen, “Algorithms for Rational Agents”, Proc. of the 27th Conf. on Current
Trends in Theory and Practice of Informatics, LNCS 1963, Springer Verlag, pp.
56-70, November 2000.

[22] T. Roughgarden, “Stackelberg Scheduling Strategies”, Proc. of the 33rd Annual ACM
Symp. on Theory of Computing, pp. 104-113, July 2001.

[23] X. Tang and S. T. Chanson, “Optimizing static Job Scheduling in a Network of Hetero-
geneous Computers”, Proc. of the Intl. Conf. on Parallel Processing, pp. 373-382,
August 2000.

[24] W. Vickrey, “Counterspeculation, Auctions, and Competitive Sealed Tenders”, Journal
of Finance, vol. 16, no. 1, pp. 8-37, March 1961.

[25] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K. MacKie-Mason, “Some Eco-
nomics of Market-based Distributed Scheduling”, Proc. of the 18th IEEE Interna-
tional Conference on Distributed Computing Systems, pp. 612-621, May 1998.

[26] R. Wolski, J. S. Plank, T. Bryan, and J. Brevik, “G-commerce: Market Formulations
Controlling Resource Allocation on the Computational Grid”, Proc. of the 15th IEEE
International Parallel and Distributed Processing Symposium, April 2001.

