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Abstract

Existing dynamic self-scheduling algorithms, used to schedule independent tasks on heterogeneous clusters, cannot handle tasks with
dependencies because they lack the support for internode communication. To compensate for this deficiency we introduce a synchronization
mechanism that provides inter-processor communication, thus, enabling self-scheduling algorithms to handle efficiently nested loops with
dependencies. We also present a weighting mechanism that significantly improves the performance of dynamic self-scheduling algorithms.
These algorithms divide the total number of tasks into chunks and assign them to processors. The weighting mechanism adapts the chunk
sizes to the computing power and current run-queue state of the processors. The synchronization and weighting mechanisms are orthogonal,
in the sense that they can simultaneously be applied to loops with dependencies. Thus, they broaden the application spectrum of dynamic
self-scheduling algorithms and improve their performance. Extensive testing confirms the efficiency of the synchronization and weighting
mechanisms and the significant improvement of the synchronized–weighted versions of the algorithms over the synchronized-only versions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many scheduling algorithms were devised in the past few
years for general distributed systems, composed of non-
identical processing nodes, called heterogeneous distributed
systems. Load balancing is one of the most challenging issues
in attaining high performance in heterogenous distributed sys-
tems. In this article we deal with two important cases of the
load balancing problem when running loops with and without
dependencies. We consider: (1) loops with tasks of uneven size
and (2) loops executed on non-dedicated distributed systems.
Load balancing is usually achieved by relocating application
tasks from busy nodes to lightly loaded or idle nodes [8]. Some
load balancing algorithms for homogeneous systems were
presented in [2,16], and for heterogeneous systems in [11,24].
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Another categorization of scheduling algorithms for dis-
tributed systems is static versus dynamic. A review of classic
static algorithms for task graphs is given in [15]. Static schedul-
ing algorithms [1,22] are not effective for non-dedicated dis-
tributed systems. One reason is that the workload distribution
of many applications cannot be predicted. Also the available
computation power of the processing node may not be known
in advance or may not remain constant throughout the appli-
cation’s execution. Dynamic algorithms [10] strive to achieve
load balancing under load variation. The performance of dy-
namic load balancing algorithms in practice is determined by
their ability to adapt to a dynamic and, in most cases, unpre-
dictable environment. They use runtime state information of
the system in order to make informative decisions on balancing
the workload. This makes them applicable to a much larger
spectrum of applications. In [8] different dynamic load balanc-
ing algorithms with different complexities were compared.

Many important applications involve loops with or without
dependencies among their iterations. An important class of
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dynamic scheduling algorithms are the self-scheduling
schemes: chunk self-scheduling (CSS) [14], guided self-
scheduling (GSS) [21], trapezoid self-scheduling (TSS) [23],
factoring self-scheduling (FSS) [13]. These algorithms were
devised for nested loops without dependencies executed on
homogenous systems. Self-scheduling algorithms divide the
total number of tasks into chunks, which are then assigned to
processors (slaves). In their original form, these algorithms
do not perform satisfactorily on non-dedicated heterogeneous
systems and cannot handle loops with dependencies. A first
attempt to make self-scheduling algorithms suitable for het-
erogeneous systems was weighted factoring (WF) that was
proposed in [12]. WF differs from FSS in that the chunks
sizes are weighted according to the processing powers of
the slaves. However, in WF the processor weights remain
constant throughout the parallel execution. Banicescu et al.
proposed in [4] a method called adaptive weighted factoring
(AWF) that adjusts the processor weights according to tim-
ing information reflecting variations of slaves computation
power. This was designed for time-stepping scientific applica-
tions. Chronopoulos et al. extended in [5] the TSS algorithm,
proposing the distributed TSS (DTSS) algorithm suitable for
distributed systems. In DTSS the chunks sizes are weighted by
the slaves relative power and the number of processes in their
run-queue.

However, in spite of these developments, self-scheduling
algorithms were still not applicable to loops with dependen-
cies. To the best of our knowledge, the first work that ap-
plied self-scheduling algorithms to dependence loops was [7].
Therein, CSS, TSS and DTSS were enhanced via synchroniza-
tion points (SPs) so as to enable inter-slave communication and
to satisfy the loop dependencies. Loop unrolling for enhanc-
ing parallelization of loops with dependencies has been stud-
ied in [20] and references therein. However, loop unrolling is
not practical for a large number of iterations because the un-
rolling factor depends on the size of the available registers.
Moreover, it is not easy to determine the unrolling factor in
advance.

In this paper we extend and generalize the work in [7] by
constructing a general synchronization mechanism S, which ap-
plies to all loop self-scheduling schemes. When this mechanism
is applied to a self-scheduling algorithm, it enables it to han-
dle efficiently loops with dependencies. The synchronization
mechanism S inserts SPs in the execution flow so that slaves
perform the appropriate data exchanges. This mechanism is not
incorporated within the self-scheduling algorithm, but it is an
additional stand-alone component, applicable without further
modifications. Given a self-scheduling algorithm A, its syn-
chronized version is denoted S-A. By enabling self-scheduling
algorithms to be applicable to loops with dependencies, which
was not the case before, the spectrum of applications is
extended.

In addition, motivated by the results in [3,5,12], we de-
fine a weighting mechanism W , aimed at improving the load
balancing and, thus, the performance of all non-adaptive
self-scheduling algorithms on non-dedicated heterogeneous
systems. This mechanism is inspired from the approach used in

[5], i.e., it uses the relative powers of the slaves combined with
information regarding their run-queues to compute chunks.
However, in contrast to previous approaches to chunk weight-
ing, this mechanism is not embedded within the self-scheduling
algorithm, but it is an external stand-alone component appli-
cable to any dynamic algorithm without modifications. Given
any self-scheduling algorithm A, its weighted version will be
called W-A.

Self-scheduling algorithms were usually implemented on dis-
tributed memory systems using the master–slave model. In this
model, communication takes place only between the master and
the slaves. The existence of dependencies necessitates commu-
nication among slaves, making the standard master-slave model
inadequate. Therefore, an extended version of the master–slave
model is required in the synchronized version of the self-
scheduling algorithms. In the extended model communication
among slaves is performed by direct data exchanges from slave
to slave, and not through the master. In this approach, the mas-
ter has a global view of the system’s load and decides upon
allocating the tasks to each slave.

One of the goals of this work was to develop algorithm inde-
pendent mechanisms that can be simultaneously applied to any
self-scheduling algorithm, for the dynamic load balancing of
loops with dependencies. The synchronization and weighting
mechanisms can be regarded individually as stand-alone com-
ponents. The two mechanisms can be combined and applied in
a single step to any self-scheduling scheme. This is illustrated in
Fig. 1, which shows that starting with the classic master–slave
model (see Fig. 1(a)), and applying the synchronization mech-
anism, the model is augmented with inter-slave communication
links and the synchronization component S (see Fig. 1(c)). The
communication is handled by the S component. Similarly, by
applying the weighting mechanism, the model is augmented
with a stand alone weighting component W (see Fig. 1(d)).
Fig. 1(b) depicts the case where the weighting capability is
embedded within the self-scheduling algorithm. Finally, by ap-
plying the combination of the two mechanisms, the master–
slave model is augmented by the two mechanism-related stand
alone components S and W , and with inter-slave communica-
tion links, as illustrated in Fig. 1(e).

The contributions of this paper are summarized in Table 1.
In order to confirm that the synchronization mechanism is
general and efficient, it was applied to all significant self-
scheduling algorithms: CSS, GSS, FSS and TSS, hence ob-
taining S-CSS, S-GSS, S-FSS and S-TSS. Furthermore, each
of these algorithms was compared with the synchronized and
weighted SW-TSS (originally presented in [7] under the name
of DMPS(DTSS)), verifying once more the superiority of
SW-TSS over the synchronized-only schemes. Subsequently,
the weighting mechanism was applied to CSS, GSS and FSS,
yielding W-CSS, W-GSS, W-FSS and W-TSS and their per-
formance was compared. In all cases, the weighted algorithm
significantly outperformed its corresponding non-weighted
algorithm. Finally, both mechanisms were combined and
the resulting SW-CSS, SW-GSS, SW-FSS, SW-TSS algo-
rithms were compared against their synchronized-only version,
i.e., S-CSS, S-GSS, S-FSS, S-TSS. Again, every weighted
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Fig. 1. The master–slave model with synchronization and/or weighting component(s).

Table 1
The contributions of this paper

Self-scheduling algorithm Synchronized algorithm Weighted algorithm Synchronized & weighted
& reference number algorithm

CSS [14] S-CSS W-CSS SW-CSS
presented in [7]

FSS [13] S-FSS W-FSS SW-FSS
other weighted
approaches
exist in [3,12]

GSS [21] S-GSS W-GSS SW-GSS
TSS [23] S-TSS W-TSS SW-TSS

new notation for new notation for new notation for
DMPS(TSS) [7] DTSS [5] DMPS(DTSS) [7]

algorithm outperformed its non-weighted version. From the
tests and results obtained in this paper, one can conclude that
loops with dependencies can be efficiently scheduled with any
self-scheduling algorithm.

The paper is organized as follows. Section 2 gives a brief
introduction of existing self-scheduling algorithms. The syn-
chronization mechanism proposed in this paper is given in
Section 3. The synchronization mechanism is presented along
with its application to the existing self-scheduling algorithms.
Moreover, this section includes a study of the impact of the
number of SPs on the performance of the synchronized algo-
rithms. The weighting mechanism is presented in Section 4,
which shows how self-scheduling algorithms can be enhanced
with this mechanism in order to achieve better load balancing.
Next, the combination of the two aforementioned mechanisms
for better performance is given in Section 5. Finally, the exper-
iments and results are given in Section 6. Section 6.1 contains
a short description of the three test cases we used in our exper-
iments. The experimental setup and the three series of exper-
iments are presented and interpreted in the same section. We
conclude the paper and present future work in Section 7.

2. Overview of existing self-scheduling algorithms

In this section we give a brief overview of existing self-
scheduling algorithms, as they were originally proposed for
applications with independent tasks. We consider a distributed
system consisting of a master (computer) and m slaves (com-
puters). We use the following notations throughout this article:

• P1, . . . , Pm are slaves.
• VPk is the virtual computing power of slave Pk . 1

• VP = ∑m
k=1 VPk is the total virtual computing power of the

cluster.
• Qk is the number of processes in the run-queue of Pk , re-

flecting the total load of Pk .

• Ak =
⌊

VPk

Qk

⌋
is the available computing power (ACP) of Pk .

• A = ∑m
k=1 Ak is the total ACP of the cluster. In contrast to

VP, A varies over times depending on load fluctuations.

1 The virtual power for each machine type can be established as the
normalized execution time of the same test suite on each machine type.
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• N is the number of scheduling steps, i = 1, . . . , N , for a
given algorithm.

• A few consecutive iterations of the loop are called a chunk;
Ci is the chunk size at the ith scheduling step.

A nested loop is modeled as an n-dimensional Cartesian space
J (J ⊂ Zn), called index space, where n is the depth of the
loop nest. Each point of this n-dimensional index space is a
distinct iteration of the loop body. Without loss of generality
we assume that for every index point (u1, . . . , un) it holds that
1�ui �Ui , 1� i�n.

We can now give an overview of the following self-
scheduling schemes: CSS, GSS, FSS, TSS and DTSS, where
we assume that the master–slave model is used and the slaves
are assigned the iterations to be executed by the master.

CSS [14] assigns constant size chunks to each slave, i.e.,
Ci = constant . The chunk size is chosen by the user. If Ci =
1 then CSS is the so-called (pure) self-scheduling. A large
chunk size reduces scheduling overhead, but also increases the
chance of load imbalance, due to the difficulty to predict an
optimal chunk size. As a compromise between load imbalance
and scheduling overhead, other schemes start with large chunk
sizes in order to reduce the scheduling overhead and reduce the
chunk sizes throughout the execution to improve load balanc-
ing. These schemes are known as reducing chunk size algo-
rithms and their difference lies in the choice of the first chunk
and the computation of the decrement.

In the GSS [21] scheme, each slave is assigned a chunk
given by the number of remaining iterations divided by the
number of slaves, i.e., Ci = Ri/m, where Ri is the number of
remaining iterations. Assuming that the loop which is sched-
uled with GSS is the r-th loop, where 1�r �n, then R0 is
the total number of iterations, i.e., |Ur |, and Ri+1 = Ri − Ci ,

where Ci = �Ri/m� =
⌈(

1 − 1
m

)i · |Ur |
m

⌉
. This scheme ini-

tially assigns large chunks, which implies reduced communi-
cation/scheduling overheads in the beginning. At the last steps
small chunks are assigned to improve the load balancing, at the
expense of increased communication/scheduling overhead.

The TSS [23] scheme linearly decreases the chunk size Ci .
The first and last (assigned) chunk size pair (F, L) may be set
by the programmer. A conservative selection for the (F, L) pair

is: F = |Ur |
2∗m

and L = 1, where m is the number of slaves.
This ensures that the load of the first chunk is less than 1/m of
the total load in most loop distributions and reduces the chance
of imbalance due to a large first chunk. Still many synchro-
nizations may occur. One can improve this by choosing L >

1. The proposed number of steps needed for the scheduling

process is N = 2×|Ur |
(F+L)

. Thus, the decrement between consec-

utive chunks is D = (F − L)/(N − 1), and the chunk sizes
are C1 = F, C2 = F − D, C3 = F − 2 × D, . . . , CN =
F − (N − 1) × D. TSS improves GSS for loops with varying
tasks sizes, as it is explained in detail in [18].

The FSS [3] scheme schedules iterations in batches of m

equal chunks. In each batch, a slave is assigned a chunk size
given by a subset of the remaining iterations (usually half)
divided by the number of slaves. The chunk size in this case is

Ci =
⌈

Ri

�∗m

⌉
and Ri+1 = Ri −(m×Ci), where the parameter �

is computed (by a probability distribution) or is sub-optimally
chosen � = 2. The weakness of this scheme is the difficulty
to determine the optimal parameters. However, tests show [3]
improvement on previous adaptive schemes (possibly) due to
fewer adaptations of the chunk-size.

DTSS [5,6] improves on TSS by selecting the chunk sizes
according to the computational power of the slaves. DTSS uses
a model that includes the number of processes in the run-queue
of each slave. Every process running on a slave is assumed to
take an equal share of its computing resources. The applica-
tion programmer may determine the pair (F, L) according to
TSS, or the following formula may be used in the conserva-
tive selection approach: F = |Ur |

2×A
and L = 1 (assuming that

the loop which is scheduled by DTSS is the r-th loop). The

total number of steps is N = 2×|Ur |
(F+L)

and the chunk decrement
is D = (F − L)/(N − 1). The size of a chunk in this case is
Ci = Ak × (F − D × (Sk−1 + (Ak − 1)/2)), where: Sk−1 =
A1 +· · ·+Ak−1. When all slaves are dedicated to a single user
job then Ak = VPk . Also, when all slaves have the same speed,
then VPk = 1 and the tasks assigned in DTSS are the same as in
TSS. The important difference between DTSS and TSS is that
in DTSS the next chunk is allocated according to the slave’s
ACP. Hence, faster slaves get more loop iterations than slower
ones. In contrast, TSS simply treats all slaves in the same way.

3. The synchronization mechanism

The self-scheduling schemes described in the previous sec-
tion are applicable to loops without dependencies. Nested loops,
however, fall in two categories: parallel and dependence loops.
Parallel loops have no dependencies among iterations and, thus,
their iterations can be executed in any order or even simultane-
ously. In dependence loops the iterations depend on each other,
hence, imposing a certain execution order, according to the ex-
isting dependencies. The loop body may contain general pro-
gram statements that include if blocks and other for or while
loops. We assume that the nested loop has p uniform depen-
dencies. These are modeled by dependence vectors and their
set is denoted DS = {�d1, . . . , �dp}.

The purpose of the synchronization mechanism is to enable
self-scheduling algorithms to handle loops with dependencies.
Recall that self-scheduling algorithms are devised for parallel
loops and as such do not provide inter-slave communication.
In [7] it was shown that CSS, TSS and DTSS can be applied
to dependence loops by SPs to compensate for this deficiency.
In this paper we generalize this approach and define a syn-
chronization mechanism applicable to all self-scheduling algo-
rithms. In all cases the master assigns chunks to slaves which
synchronize with each other at SPs. We must emphasize that
the synchronization mechanism is completely independent of
the self-scheduling algorithm and does not enhance the load
balancing capability of the algorithm. Therefore, synchronized
self-scheduling algorithms perform well on heterogeneous sys-
tems only if the self-scheduling algorithm itself explicitly takes
into account the heterogeneity. The synchronization overhead
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Fig. 2. Partitioning of a 2D loop into chunks, and placement of synchronization points.

is compensated by the increase of parallelism resulting in an
overall performance improvement.

To describe formally the synchronization mechanism we use
the following additional notations:

• A stands for any self-scheduling algorithm.
• #—denotes the ‘number of’.
• us = 1, . . . , Us designates the synchronization dimension,

along which the synchronization mechanism is applied. With-
out loss of generality we choose as us the maximal dimension
of the index space; it makes sense to map consecutive rows
along the longest dimension to the same processor since it
saves the communication overhead along that dimension.

• uc = 1, . . . , Uc denotes the chunk dimension, which will be
divided into chunks according to a self-scheduling algorithm
(the weighting mechanism is applied on this dimension). In
practice, uc is taken as the second largest dimension of the
problem; doing so enables more processors to be employed
therefore enhancing the degree of parallelism.

• Vi is the length of the projection of the chunk i on the chunk

dimension uc. We note that Ci = Vi ×
∏n

j=1 Uj

Uc
.

• SPj stands for SP j , where j = 1, 2, . . . #SPs is the number
of SPs.

• The synchronization mechanism inserts #SPs SPs in each
chunk, uniformly distributed along us .

• SI =
⌈

Us

#SPs

⌉
is the interval between two SPs and it is the

same for every chunk.
• The set of iterations of chunk i, between SPj−1 and SPj is

called subchunk SCi,j .
• The current slave is the slave assigned the latest chunk i,

whereas the previous slave is the slave assigned with the
chunk i − 1. This information is needed only by the master.

• The send-to is the slave id to which Pk must send computed
data to. The receive-from is the slave id from which Pk must

receive data, in order to begin its current computation. These
ids are communicated to Pk by the master, based on the
current and previous slave ids.
The synchronization mechanism S provides the synchroniza-

tion interval along us

SI =
⌈

Us

#SPs

⌉
(1)

and a framework for inter-slave communication. Fig. 2 illus-
trates Vi and SI . The horizontal strip sections are assigned to
single slaves. Synchronization points are placed in the us di-
mension so that other slaves can start computing as soon as
possible. Note that in this example, Ci is the number of loop
iterations in the horizontal strip, i.e., Ci = Vi × Us .

3.1. Implementation details related to the mechanism S

In Fig. 3 chunks i − 1, i, i + 1 are assigned to slaves
P, Pk, Pk+1, respectively. The shaded areas denote sets of
iterations that are computed concurrently on different slaves.
When Pk reaches the SP SPj+1, after computing SCi,j+1, it
sends to Pk+1 the data that Pk+1 needs to begin the execution
of SCi+1,j+1, called communication set. Pk sends to Pk+1
data only for those iterations of SCi,j+1 on which the iter-
ations of SCi+1,j+1 depend on. Communication is incurred
only by those dependence vectors that cross chunks. Note that
no dependence vector can span more than two chunks.

Slave Pk receives from Pk−1 the data Pk requires in order
to proceed with the execution of SCi,j+2. Note that slaves
do not reach the same SP at the same time. For instance, Pk

reaches SPj+1 earlier than Pk+1 and later than Pk−1. The
existence of SPs leads to a wavefront execution, as shown in
Figs. 3 and 5. The choice of SI plays a crucial role in the
parallel performance. It should be chosen so as to minimize
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Fig. 4. The master–slave model with synchronization mechanism.

the total makespan and maintain the communication
computation ratio well

below one. The wait time in the synchronization step equals[
Us

#SP
× Time of operations in subchunk(Vi × SI) + time for

data transmit to send-to slave].

3.2. Enhancing self-scheduling algorithms via synchronization

Mechanism S adds three components to the original al-
gorithm A (see Fig. 4): (1) transaction accounting (master
side)—according to slaves’ requests, the master extracts in-
formation and decides upon the identity of the slaves par-
ticipating in a data exchange (previous and current slaves);
(2) receive part (slave side)—uses the information from (1) to
receive the corresponding communication sets, and (3) trans-
mit part (slave side)—uses the information from (1) to send
the corresponding communication sets. Details regarding com-
ponents (2) and (3) are given in the pseudocode Algorithm 1.
The flexibility of the synchronization mechanism is twofold:

(1) Pk checks for the identity of the send-to slave at
every SP. Suppose that Pk first learns the identity of the

send-to slave Pk+1 at SP SPj . In this case, Pk sends to
Pk+1 all the locally stored data that Pk+1 requires in one
step because it is more efficient to send one large message
than sending the same amount of data in smaller consec-
utive messages. Hence, Pk+1 is not delayed or stalled at
any SP up to SPj . Moreover, the fact that Pk is j SPs
ahead of Pk+1, where 2�j �#SPs, means that Pk+1 receives
from Pk the data it needs because they have already been
computed.

(2) In the extreme case where no send-to is designated by
the time Pk reaches the last SP, then Pk stores all the data it
should have sent to the send-to slave in a local buffer. When
the master designates the send-to slave Pk+1, then Pk sends to
Pk+1 all stored data. Note that in this case Pk could also be the
send-to slave.

We discuss next the implementation of the synchronization
mechanism. The issues to be addressed are: (a) the placement
of SPs along the dimension us and (b) the transmission of
data to the adjacent slave. The SPs are computed as follows:
SP1 = SI and SPi+1 = SPi + SI . SI depends on #SP , which
is determined empirically, as demonstrated in the experiments
of Section 6, or selected by the user. The pseudocode of Algo-
rithm 1 provides the basis for two C-code blocks that handle
the transmission part. The code blocks are inserted in the slave
code, in the positions indicated in Fig. 4. Before “Compute
chunk” we insert the block responsible for handling the recep-
tion part of the communication, and after “Compute chunk" we
insert the block that handles the send part. We have assumed
that the outer dimension of the loop is the synchronization di-
mension. This implies that the receive and send code blocks
are inserted between the loop iterating over the synchroniza-
tion dimension and before the loop iterating over the chunk
dimension. Whenever the index of synchronization dimension
is iterated SI times, these blocks are activated in order for the
data exchange event to occur. On the master side, a code block
is inserted so as whenever a new slave makes a request, it is
registered as the current slave, and the last registered slave is
renamed as the previous slave. This information is then trans-
mitted to the last two registered slaves. A preprocessor could be
implemented for automatic parsing, detecting and inserting the
appropriate code blocks. In our experiments we did this manu-
ally. In either case the initial code does not have to be rewritten.
This also applies to the implementation of the W and the SW
mechanisms.
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3.3. Empirical determination of the appropriate #SPs

In order to understand the impact on performance of the
choice of #SPs, we give in Fig. 5 the parallel execution on m =
4 slaves of a hypothetical example. For simplicity, assume that
each slave is assigned only two chunks and that all chunks are
of the same size. The slave request order, i.e., P1, P2, P3, P4,
and the SPs, SP1, . . . , SP12, inserted by the synchronization
mechanism, are also shown. The numbers in each subchunk
SCi,j indicate the time step in which it is executed. The flow of
execution follows a wavefront fashion. During time steps 1–3
(initial time steps) and 25–27 (final time steps), denoted by the
gray areas, one can see that not all slaves are active, whereas
during steps 4 to 24 (intermediate time steps) all slaves are ac-
tive. At the end of the 12th time step, slave P1 has completed its
first chunk and it is then assigned a second chunk by the master.
It begins computing the second chunk at time step 13, since it
has all the necessary data from slave P4. In the same time step,
slaves P2, P3, P4 are still computing their first chunk. As soon
as slave P2 completes its first chunk (at the end of time step
13), it proceeds with its next chunk at time step 14. The transi-
tion to the second chunk for P3 and P4 takes place at time steps
14 and 15, respectively. In other words, except for the initial
and the final time steps, the execution proceeds with no delays,
apart from the synchronization between slaves, as imposed by
the SPs. The #initial steps is (m − 1) and is equal to the #fi-
nal steps, while #intermediate steps = #total steps−2(m−1),
as illustrated in Fig. 5. The number of total steps depends on
the number of SPs and the number of chunks produced by the
scheduling algorithm. Since the number of chunks is algorithm
dependent, the choice of the number of SPs should maximize
the percentage of intermediate time steps over the total time
steps.

The selection of the number of SPs is a tradeoff between
synchronization overhead and parallelism. A choice of a large
#SPs incurs too frequent data exchanges and a high synchro-

nization overhead, whereas a small #SPs restricts the inherent
parallelism. We believe that the optimal selection of the syn-
chronization interval depends on many factors, such as: the
dependencies of the loop, the characteristics of the underlying
communication network and of the processors, and the self-
scheduling algorithm used. Extensive experimental runs for
various test cases and self-scheduling algorithms (contained
in Section 6) show that a good, albeit arbitrary, choice is
#SPs�3 ∗ m, where m is the number of slaves. In our exam-
ple (Fig. 5), #SPs = 12, which yields that #total steps = 27,
#intermediate steps = 21, and a percentage of 77% of execu-
tion without idle times.

4. The weighting mechanism

The weighting mechanism is used to enhance self-scheduling
algorithms to account for load variations and cluster hetero-
geneity. A brief review of similar attempts and how the current
approach differs from them was given in the Introduction. To
achieve good load balancing in a heterogenous environment,
chunks should be computed according to the current run-queue
state of each slave. The run-queue state of a slave is not always
the same for every chunk assignment. For this reason we de-
fine a weighting mechanism, applicable to any self-scheduling
algorithms, e.g., CSS [14], GSS [21], TSS [23], FSS [13], such
that the resulting chunk sizes are adjusted according to the cur-
rent load and the available computational power of each slave.

Suppose a self-scheduling algorithm A is used to parallelize
a nested loop on a heterogenous cluster of m slaves, each with
VP1, . . . ,VPm virtual computational power. Furthermore, as-
sume that during the i-th scheduling step, slave Pk has Qk pro-
cesses in its run-queue. The weighting mechanism W , calcu-
lates the chunk Ĉi assigned to Pk , using the following formula:

Ĉi = Ci × VPk

Qk

. (2)
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procedure Receive part � Receive partial results from
Pk−1

in synchronization point SPi check for partial results
from previous slave Pk−1

if current and previous slaves are the same, that is, Pk =
Pk−1 then

all partial results exist in local memory
proceed to the computation without blocking in any

SP for the completion of current chunk
else

receive partial results from Pk−1
check the number of communication sets b of partial

results received
if b > 1 then

skip the next b SP s

end if
end if
proceed to computation

end procedure

procedure Transmit part � Send partial results to Pk+1
in synchronization point SPi

if SP reached is SP1 then
make a non-blocking request to master for the rank

of the next slave Pk+1
if the rank of slave Pk+1 is not yet known to master

then
store partial results in local memory
proceed to receive part

else
get the rank of Pk+1
send it partial results

end if
else

if the rank of Pk+1 is already known by Pk then
send Pk+1 the partial results

else
if a reply has been received by the master for the

rank of the next slave Pk+1 then
send Pk+1 all previous partial results in a sin-

gle packet
proceed to receive part

else
store partial results in local memory
proceed to receive part

end if
end if

end if
end procedure

Algorithm 1. Pseudocode of the communication scheme implementation on
the slave side.

In the above formula VPk and Qk are the virtual power and
number of processes in the run-queue of slave Pk and Ci is
the chunk size given by the original self-scheduling algorithm
A. Hence, Ĉi is the “weighted” chunk size, given the current
load conditions of Pk . In most cases the addition of the W

c∧

Fig. 6. The master–slave model with weighting mechanism.

mechanism improves the performance. However, when the loop
is run on a dedicated homogeneous cluster, the W mechanism
does not improve the performance and could be omitted.

4.1. Enhancing self-scheduling algorithms via weighting

Fig. 6 shows the effect of the weighting mechanism on a
self-scheduling algorithm A. The mechanism adds two compo-
nents to the original algorithm: (1) chunk weighting (master
side)—the master adjusts the chunk size based on the slave’s
load information and computational power, and (2) run-queue
monitor (slave side)—it keeps track of the number of processes
that require CPU time, updates Qk and informs the master of
its current load.

Table 2 shows the chunk sizes given by the original and
weighted self-scheduling algorithms. These chunks were ob-
tained for a parallel loop (Mandelbrot computation) 2 with an
index space of 10 000 × 10 000 points. Four slaves were used,
having virtual computing powers VP1 = 1,VP2 = 0.8,VP3 =
1 and VP4 = 0.8. The two slowest slaves were loaded with an
extra process, i.e., Q2 = 2, Q4 = 2, and their ACP halved:
A2 = 0.4 and A4 = 0.4.

Table 2 also shows the order in which slaves requested
work from the master, which differs from algorithm to algo-
rithm. Self-scheduling algorithms were devised for homoge-
nous systems and they tend to assign large initial chunks to
all slaves. They make the assumption that all slaves compute
their assigned chunk in roughly the same time and advance
to the next chunk simultaneously, as it is explained in [18].
This assumption is not valid for heterogenous systems. Slower
slaves may fall behind faster ones because they need more
time to compute chunks of equal size. In most cases, slower

2 The Mandelbrot test case is described in Section 6.1.
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Table 2
Chunk sizes given by the original and weighted algorithms for the Mandelbrot set, index space size |J | = 10 000 × 10 000 points and m = 4

A Chunk sizes with A Chunk sizes with W-A Parallel time Parallel time
with respect to the with respect to the for A for W-A
processors’ request order processors’ request order (s) (s)

1250(P1) 1250(P2) 1250(P3) 1250(P1) 1250(P3) 500(P4) 120.775 66.077
CSS 1250(P4) 1250(P3) 1250(P1) 500(P2) 1250(P3) 500(P2)

1250(P3) 1250(P1) 500(P4) 1250(P1) 1250(P3)
500(P4) 1250(P1)

FSS 1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2) 120.849 56.461
1250(P4) 625(P3) 625(P3) 500(P4) 812(P3) 324(P2)
625(P1) 625(P3) 390(P1) 324(P4) 324(P1) 324(P3)
390(P1) 390(P3) 390(P1) 812(P3) 630(P1) 630(P1)
244(P3) 244(P4) 244(P1) 630(P4) 252(P3) 176(P1)
208(P3) 441(P4) 441(P2) 176(P3)

123(P1) 308(P2) 308(P4)
113(P1)

GSS 2500(P1) 1875(P2) 1406(P3) 2500(P1) 1875(P3) 562(P2) 145.943 58.391
1054(P4) 791(P3) 593(P3) 506(P4) 455(P4) 410(P2)
445(P3) 334(P1) 250(P3) 923(P3) 692(P3) 519(P1)
188(P1) 141(P3) 105(P1) 155(P4) 140(P2) 315(P3)
80(P3) 80(P1) 80(P3) 78(P1) 94(P4) 213(P1) 160(P3)

120(P1) 90(P3) 80(P2)
80(P1) 80(P3) 31(P1)

TSS 1250(P1) 1172(P3) 1094(P2) 1250(P1) 1172(P3) 446(P2) 89.189 63.974
1016(P4) 938(P3) 860(P1) 433(P4) 1027(P3) 388(P4)
782(P3) 704(P1) 626(P3) 375(P2) 882(P1) 804(P3)
548(P4) 470(P2) 392(P1) 299(P4) 286(P2) 660(P1)
148(P3) 582(P3) 504(P1) 179(P4)

392(P3) 134(P2) 187(P1)

slaves requested work only once throughout the whole exe-
cution. The weighting mechanism compensates for this defi-
ciency as shown by the request orders in Table 2. The gain
of the weighted algorithms over the non-weighted ones is also
demonstrated by the times of the parallel execution in the same
table.

The code blocks that implement the weighting mechanism
are much shorter than those of the synchronization mechanism,
as it can be seen from Fig. 6. In particular, we insert a block
in the slave’s code that monitors the current load of the slave
at the time it makes a new request for work to the master. This
load is then reported to the master along with the new request.
On the master side, the block code implementing W performs
a multiplication of the chunk size produced by the original self-
scheduling algorithm according to the slave’s reported virtual
power and current load, using formula (2).

5. The combined SW mechanisms

In Section 3 we applied the synchronization mechanism S to
dependence loops whereas in Section 4 we applied the weight-
ing mechanism W to parallel loops. In this section we com-
bine the two mechanisms and demonstrate their effectiveness.
The synchronization mechanism, while necessary to parallelize
dependence loops, does not provide any load balancing. This
makes advantageous the simultaneous use of the weighting

While there are unassigned chunks 
{

     1. Receive request from Pk

     2. Calculate Ci according to A

     3. Serve request
}

SW-Master

While there are unassigned chunks 
{

     1. Receive request from Pk
     2. Calculate Ci according to A

     3. Apply W to compute i
 4. Make Pk - current slave

     5. Make Pk-1 - previous slave
     6. Send Pk-1 the rank of Pk
     7. Send Pk the rank of Pk-1

     8. Serve request
}

1. Make new request to Master

2. If request served 

{
Compute chunk 

}

3. Go to step 1

SW-Slave Pk

1. Make new request to Master 

2. Report current load Qk

3. If request served 
{

Receive partial results from Pk-1

Compute chunk 

Send partial results to Pk+1}

4. Go to step 1

Master

Slave Pk

C
∧

Fig. 7. The master–slave model with the combination of synchronization and
weighting mechanisms.

mechanism in order to improve the overall performance.
Recall that the synchronization interval is the same for ev-

ery chunk, meaning that the size of the communication sets is
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Table 3
Chunk sizes given by the synchronized-only and synchronized–weighted algorithms for the Floyd–Steinberg loop, index space size |J | = 10 000 × 10 000
points and m = 4

A Chunk sizes with S-A Chunk sizes with SW-A Parallel time Parallel time
with respect to the with respect to the for S-A for SW-A
processors’ request order processors’ request order (s) (s)

CSS 1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2) 27.335 16.582
1250(P4) 1250(P1) 1250(P3) 500(P4) 1250(P1) 1250(P3)
1250(P2) 1250(P4) 500(P2) 500(P4) 1250(P1)

1250(P3) 500(P2)

FSS 1250(P1) 1250(P3) 1250(P2) 1250(P1) 1250(P3) 500(P2) 27.667 16.556
1250(P4) 625(P1) 625(P3) 500(P4) 812(P1) 812(P3)
625(P2) 625(P4) 390(P1) 324(P2) 324(P4) 630(P1)
390(P3) 390(P2) 390(P4) 630(P3) 252(P2) 252(P4)
244(P1) 244(P3) 244(P2) 488(P1) 488(P3) 195(P2)
208(P4) 195(P4) 378(P1) 378(P3)

151(P2) 151(P4) 40(P1)

GSS 2500(P1) 1875(P3) 1406(P2) 2500(P1) 1875(P3) 562(P2) 28.526 18.569
1054(P4) 791(P1) 593(P3) 506(P4) 1139(P1) 854(P3)
445(P2) 334(P4) 250(P1) 256(P2) 230(P4) 519(P1)
188(P3) 141(P2) 105(P4) 389(P3) 116(P2) 105(P4)
80(P1) 80(P3) 80(P2) 237(P1) 178(P3) 80(P2)
78(P4) 80(P4) 108(P1) 81(P3)

80(P2) 80(P4) 25(P1)

TSS 1250(P1) 1172(P2) 1094(P3) 509(P2) 1217(P1) 464(P4) 25.587 14.309
1016(P4) 938(P1) 860(P2) 1105(P3) 420(P2) 995(P1)
782(P3) 704(P4) 626(P1) 376(P4) 885(P3) 332(P2)
548(P2) 470(P3) 392(P4) 775(P1) 288(P4) 665(P3)
148(P1) 244(P2) 555(P1) 200(P4)

445(P3) 156(P2) 335(P1)
34(P4)

Table 4
Problem sizes for Floyd–Steinberg and Hydro test cases

Problem size Small Medium Large

Floyd–Steinberg 5000 × 15 000 10 000 × 15 000 15 000 × 15 000
Upper/lower threshold 500/10 750/10 1000/10
Hydro 5000 × 5 × 10 000 7500 × 5 × 10 000 10 000 × 5 × 10 000
Upper/lower threshold 500/10 750/10 1000/10

constant which in turn implies that the communication time at
any two SPs is approximately the same for every processor.
Similarly, since the size of the chunk is weighted according to
the requesting processor’s run-queue state, it is expected that
the computation time of a subchunk is approximately the same
for every processor. This yields a constant communication

computation ra-

tio, which results in a good load balancing. It is therefore ad-
vantageous to apply the weighting mechanism in addition to the
synchronization mechanism. It is obvious that a self-scheduling
algorithm with both synchronization and weighting will out-
perform the same self-scheduling algorithm without weighting
in a heterogeneous system.

Fig. 7 shows the effects of both synchronization and weight-
ing mechanisms for the scheduling of dependence loops on

heterogenous systems. As with the previous cases, the com-
bined SW mechanisms add two components to the master:
(1) chunk weighting and (2) transaction accounting, and
three components to the slave: (3) run-queue monitor, (4)
receive part and (5) transmit part. Component (1) (master-
side) along with component (3) (slave-side) are related to
the weighting mechanism, whereas all other components
(both from master and slave) belong to the synchronization
mechanism.

The chunk sizes of the synchronized-only and synchronized–
weighted algorithms for a dependence loop (Floyd–Steinberg
computation) 3 with an index space of 10 000 × 10 000 points
are shown in Table 3. Notice that due to the existing de-

3 The Floyd–Steinberg test case is described in Section 6.1.
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pendencies and synchronization, the slaves request order
stays the same for a particular algorithm. The chunk sizes
differ from the ones in Table 2, where no synchronization
was used and the slaves request order was random. Again,
from the parallel times in Table 3 one can see that the
synchronized–weighted algorithms perform better than the
synchronized-only ones.

The implementation of the combination of the two mech-
anisms is actually the insertion of all code blocks associated
with each of the mechanisms, both in the code of the slave and
the code of the master, as it can be seen in Fig. 7.

6. Experiments and results

6.1. Test cases

The first test case we use in this paper is a Mandelbrot set
generator [17], a type of fractal model generator. Fractal mod-
els are used in many supercomputing applications. They are
useful for predicting systems that demonstrate chaotic behav-
ior. The Mandelbrot set is obtained from the quadratic recur-
rence equation zn+1 = z2

n + C, with z0 = C, where points C

in the complex plane for which the orbit of zn does not tend to
infinity are in the set. Setting z0 equal to any point in the set
gives the same result.
The Mandelbrot set was originally called a � molecule by Man-
delbrot [17]. This application is a real life example that has
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Fig. 8. Impact of #SPs on the parallel execution times for Floyd–Steinberg and Hydro case studies.

no loop iteration dependencies but it is considered herein be-
cause the loop iterations tasks are highly irregular in size. The
pseudocode of the Mandelbrot fractal computation is given
below:

/* Mandelbrot */
for (hy=1; hy<=hyres; hy++) { /* chunk dimension */

for (hx=1; hx<=hxres; hx++) {
cx = (((float)hx)/((float)hxres)-0.5)/
magnify*3.0-0.7;

cy = (((float)hy)/((float)hyres)-0.5)/magnify*3.0;
x = 0.0; y = 0.0;

for (iteration=1; iteration<itermax; iteration++)
{

xx = x*x-y*y+cx;
y = 2.0*x*y+cy;
x = xx;
if (x*x+y*y>100.0) iteration = 999999;

}
if (iteration<99999) color(0,255,255);
else color(180,0,0);

}
}

The second test case is the Floyd–Steinberg computation [9], an
image processing algorithm used for the error-diffusion dither-
ing of a width by height grayscale image. The pseudocode is
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Fig. 9. Parallel times of the synchronized-only algorithms for Floyd–Steinberg and Hydro case studies.

given below:

/* Floyd--Steinberg */
for (i=0; i<width; i++){ /* synchronization dimension */

for (j=0; j<height; j++){ /* chunk dimension */
I[i][j] = trunc(J[i][j]) + 0.5;
err = J[i][j] - I[i][j]*255;
J[i][j+1] += err*(7/16);
J[i+1][j-1] += err*(3/16);

J[i+1][j] += err*(5/16);
J[i+1][j+1] += err*(1/16);

}
}

The third test case is a modified version of the Liver-
more kernel 23-Hydro (Implicit Hydrodynamics fragment)
[19], widely used in hydrodynamics. It is a 3-dimensional
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Table 5
Speedups for Floyd–Steinberg and Hydro test cases

Test case VP S-CSS S-FSS S-GSS S-TSS SW-TSS

Floyd–Steinberg 3.6 1.45 1.57 1.59 1.63 2.86
5.4 2.76 2.35 2.33 2.47 4.35
7.2 2.81 2.92 3.09 3.10 5.39
9 3.41 3.50 3.49 3.70 6.27

10.8 3.95 4.07 4.27 4.34 7.09

Hydro 3.6 1.64 1.33 1.42 1.47 2.61
5.4 2.02 2.10 2.16 2.28 4.04
7.2 2.53 2.57 2.72 2.75 4.73
9 3.01 3.07 3.33 3.29 5.43

10.8 3.49 3.49 3.72 3.69 6.16
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Fig. 10. Parallel times of the weighted and non-weighted algorithms for Mandelbrot case study.

dependence loop, which we modified in order to explicitly show
the 3-dimensional dependencies among iterations for the array
za. The pseudocode is given below:

/* implicit hydrodynamics fragment */
for (l=1; l<=loop; l++) { /* synchronization dimension */

for (j=1; j<5; j++) {

for (k=1; k<n; k++){ /* chunk dimension */
qa = za[l-1][j+1][k]*zr[j][k] + za[l][j-1][k]*zb[j]

[k] +za[l-1][j][k+1]*zu[j][k] + za[l][j][k-1]
*zv[j][k] +zz[j][k];

za[l][j][k] += 0.175 * (qa - za[l][j][k] );
}

}
}
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Table 6
Gain of the weighted over the non-weighted algorithms for the Mandelbrot test case

Test Problem VP S-CSS S-GSS S-FSS S-TSS
case size vs SW-CSS (%) vs SW-GSS (%) vs SW-FSS (%) vs SW-TSS (%)

Mandelbrot 10 000 × 10 000 3.6 27 50 18 33
5.4 38 54 37 34
7.2 43 57 52 32
9 48 53 52 35

10.8 43 52 52 34

12 500 × 12 500 3.6 27 50 18 33
5.4 38 54 37 34
7.2 44 57 53 30
9 47 54 52 35

10.8 44 52 53 34

15 000 × 15 000 3.6 27 50 18 33
5.4 38 54 37 34
7.2 45 57 53 31
9 49 54 52 35

10.8 46 52 54 33

Confidence Overall 40 ± 6 53 ± 6 42 ± 8 33 ± 4
interval (95%) 42 ± 3%

Table 7
Load balancing in terms of total number of iterations per slave and computation times per slave, GSS vs W-GSS (Mandelbrot test case)

Slave GSS W-GSS

# Iterations Comp. time # Iterations Comp. time
(106) (s) (106) (s)

twin2 56.434 34.63 55.494 62.54
kid1 18.738 138.40 15.528 62.12
twin3 10.528 39.37 15.178 74.63
kid2 14.048 150.23 13.448 61.92

6.2. Experimental environment setup

The implementation of the master–slave scheme was made
using the MPI message-passing interface. The experiments
were performed on a heterogeneous Linux cluster of 13 nodes
(1 master and 12 slaves). The cluster consists of two machine
types: (a) 7 Intel Pentiums III 800 MHz with 256 MB RAM
(called twins), with virtual power VPk = 1; and (b) 6 Intel
Pentiums III 500 MHz with 512 MB RAM (called kids), with
virtual power VPk = 0.8. In order to obtain the virtual power
of each slave we ran 10 times a test problem (which involved
nested loops with floating point operations) serially on each
computer and averaged the measured execution times. Al-
though this is a simple model, it is appropriate for the type of
applications we study, namely nested loops with floating point
operations. The machines are interconnected by a 100 Mbits/s
Fast Ethernet network.

We experiment on the non-dedicated cluster. In particular,
at the beginning of execution, we start a resource expensive

process on some of the slaves, which halves their ACP. We
ran three series of experiments: (1) for the synchronization
mechanism (S), (2) for the weighting mechanism (W) and
(3) for the combined case (SW). We ran the above series for
m = 4, 6, 8, 10, 12 slaves. The results given in the following
subsections are the average of 10 runs for each experiment.

We used the following machines: twin1(master), twin2, kid1,
twin3, kid2, twin4, kid3, twin5, kid4, twin6, kid5, twin7, kid6.
In all cases, the overloaded machines were the kids (written in
boldface). When m = 4, the first four machines are used from
the above list, when m = 8 the first eight machines are used,
and so on.

6.3. Experiment 1

For the first series, we experimented on two real-life appli-
cations: Floyd–Steinberg and Hydro. For each application we
used three problem sizes, given in Table 4, in order to perform
a scalability analysis with respect to the problem size. In each
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Fig. 11. Parallel times of the synchronized–weighted and synchronized-only algorithms for Floyd–Steinberg case study, for three different problem sizes:
15 000 × 5000, 15 000 × 10 000 and 15 000 × 15 000.

case, Us was taken as the maximal dimension, whereas Uc was
taken as the second largest dimension. For each of these appli-
cations we compared the parallel execution times against the
serial execution times.

We scheduled each test case using the five self-scheduling
algorithms, i.e., CSS, FSS, GSS, TSS and W-TSS, to which
we applied the synchronization mechanism S. The algorithms
were implemented as described in Section 2. In the case of
CSS we used the chunk size Uc

2∗m
in order to ensure that slaves

receive work twice. To avoid excessive synchronization over-
heads and large idle times we used lower and upper bounds (see
Table 4) on the size of the chunks given by the self-scheduling
algorithms.

The SI for both test cases is given by formula (1), where
#SPs = 3 ∗ m was used. In order to show that the #SPs must
be at least 3 ∗ m we ran multiple tests with different values
for the #SPs, ranging from 1 ∗ m to 10 ∗ m in order to assess
the impact of choice of #SPs on the parallel execution times.
The results for both applications with dependencies are given

in Fig. 8. One can see that a good performance can be obtained
if #SPs�3 ∗ m.

Both the Floyd–Steinberg and Hydro applications have uni-
tary dependence vectors, i.e., unitary projection lengths along
the chunk dimension uc. This yields a relatively small volume of
communication, making it easy to maintain the communication

computation
ratio below 1. The results for all problem sizes are shown in
Fig. 9.

We plotted the parallel and serial times vs the virtual power
of the cluster. With four slaves VP is 3.6, with six slaves VP
is 5.4, with eight slaves is 7.2, with 10 slaves VP is 9 and with
12 slaves is 10.8. The serial time was measured on the fastest
slave type, i.e., twin.

The results show that the synchronization mechanism can
be applied to all existing self-scheduling algorithms, leading to
their synchronized versions, which can efficiently parallelize
real-life dependence loops. One can notice that S-CSS, S-FSS,
S-GSS, and S-TSS give significant speedup over the serial ex-
ecution (see Table 5), proving the efficiency of the transformed
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Fig. 12. Parallel times of the synchronized–weighted and synchronized-only algorithms for Hydro case study, for three different problem sizes 10 000×5×5000,
10 000 × 5 × 7500 and 10 000 × 5 × 10 000.

algorithms. In all cases, SW-TSS, which explicitly accounts
for system’s heterogeneity, shows an even greater speedup over
all synchronized-only algorithms. The two charts from the bot-
tom of Fig. 9 illustrate the serial and parallel times on 12 pro-
cessors for both applications. The serial times increase faster
than the parallel time as the problem size increases in both
cases. This shows that the larger the problem size, the more
processors can be effectively employed in the parallel exe-
cution. This yields larger speedups for larger problem sizes.
This was anticipated since with larger index spaces and for the
same task granularity, a greater degree of parallelism becomes
available.

6.4. Experiment 2

For the second series of experiments, we used a well known
parallel loop, the Mandelbrot fractal computation algorithm, on
the domain [−2.0, 1.25]× [−1.25, 1.25], for different window
sizes: 7500 × 10 000, 10 000 × 10 000 and 12 500 × 12 500.
The computation involves unpredictably irregular loop tasks.
We scheduled the Mandelbrot set with CSS, FSS, GSS, TSS
and compared their performance against their weighted versions

W-CSS, W-FSS, W-GSS, W-TSS. In this series, the weighting
mechanism is expected to facilitate the scheduling algorithms
to distribute the work to slaves more evenly and to improve
the overall performance. This is confirmed by the experimen-
tal results, depicted in Fig. 10. One can see that in all cases
the weighted algorithm clearly outperforms the non-weighted
algorithm.

The gain of the weighted over non-weighted algorithms is
also given in Table 6, computed as TA-TW-A

TA , where TA is the
parallel time of the non-weighted algorithm A and TW-A is
the parallel time of the weighted algorithm W-A. We are also
interested in establishing an adequate confidence interval for the
performance gain in each case. As it is common in practice, we
consider 95% confidence. The algorithm with the least parallel
time is SW-FSS for all problem sizes; the performance gain
of SW-FSS over FSS ranges from 18% to 53%. With 0.95
probability the performance gain lies in the interval 42 ± 8%.
However, the algorithm with the best overall performance gain
is GSS, ranging from 50% to 57%. With 0.95 probability the
gain lies in the interval 53 ± 6%. As shown in Fig. 10, the
difference in performance of the weighted algorithms is much
smaller than the performance difference between their non-
weighted versions.
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Table 8
Gain of the synchronized–weighted over the synchronized-only algorithms for the Floyd–Steinberg and Hydro test cases

Test Problem VP S-CSS S-GSS S-FSS S-TSS
case size vs SW-CSS (%) vs SW-GSS (%) vs SW-FSS (%) vs SW-TSS (%)

Floyd–Steinberg 15 000 × 5000 3.6 39 47 43 45
5.4 42 43 44 44

7.2 37 40 35 40
9 34 27 34 36

10.8 31 23 28 35

15 000 × 7500 3.6 44 46 45 42
5.4 41 42 44 45
7.2 39 45 38 42
9 37 40 37 38

10.8 36 30 36 38

15 000 × 10 000 3.6 50 46 45 43
5.4 41 48 44 43
7.2 41 42 41 42
9 39 43 40 41

10.8 38 36 38 39

Confidence Overall 39 ± 2 40 ± 3 40 ± 2 41 ± 2
interval (95%) 40 ± 1

Hydro 10 000 × 5 × 5000 3.6 40 46 43 44
5.4 43 44 44 44
7.2 39 37 37 41
9 37 29 36 38

10.8 32 23 29 34

10 000 × 5 × 7500 3.6 38 46 43 44
5.4 43 45 44 46
7.2 40 37 39 42
9 37 29 38 38

10.8 35 30 35 36

10 000 × 5 × 10 000 3.6 40 47 45 44
5.4 42 47 44 43
7.2 40 41 41 42
9 39 33 38 39

10.8 37 30 37 40

Confidence Overall 39 ± 2 38 ± 4 40 ± 2 41 ± 2
interval (95%) 39 ± 1

In order to examine the effect of the weighting mechanism
on load balancing, Table 7 provides the total computation times
of each slave together with the total number of iterations it
was assigned, for the computation of the Mandelbrot test-case.
The total computation time of each slave is the time it spends
performing actual work. In the ideal case, all slaves should
have exactly the same computation time, and a large divergence
shows great load imbalance.

The data in Table 7 correspond to Fig. 10 (GSS vs W-GSS,
the parallel times obtained for four slaves with total V P =
3.6), and shows the difference between the non-weighted and
the weighted algorithm. In particular, Table 7 analyzes the par-
allel times of GSS and W-GSS on each of the four slaves and

the number of iterations computed by each slave. Note that the
parallel time plotted in Fig. 10 is close to the computation time
of the slowest slave. It is clear that with the non-weighted al-
gorithm the computation times of each slave vary in relation
to the computation power and load of the slave, i.e., slow and
overloaded slaves have larger total computation times. In the
case of the weighted algorithm this variation is reduced sig-
nificantly. Also, with GSS, even though kid2 and twin2 were
assigned 14.048×106 and 56.434×106 loop iterations, respec-
tively, twin2 required 34.63 s to compute these loop iterations,
in contrast with 150.23 s required by kid2 (this is roughly the
parallel time for this case). This led to a huge load imbalance,
which deteriorated significantly the algorithm’s performance.
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Table 9
Load balancing in terms of total number of iterations per slave and computation times per slave, S-FSS vs SW-FSS

Test Slave # Iterations (106) Comp. time (s) # Iterations (106) Comp. time (s)

S-CSS S-CSS SW-CSS SW-CSS

Floyd–Steinberg twin2 59.93 19.25 89.90 28.88
kid1 59.93 62.22 29.92 30.86
twin3 59.93 19.24 74.92 24.06
kid2 44.95 46.30 29.92 29.08

S-GSS S-GSS SW-GSS SW-GSS

Hydro twin2 84.50 15.32 117.94 21.39
kid1 78.38 42.60 38.03 22.49
twin3 62.69 17.44 106.48 20.75
kid2 73.58 33.72 36.41 19.46

Unlike GSS, W-GSS execution times for all slaves are about
the same which confirms that W-GSS indeed achieves good
load balancing.

6.5. Experiment 3

For the third series of experiments we repeat the first series,
applying now the W mechanism to all synchronized-only al-
gorithms. In particular, we schedule the Floyd–Steinberg and
Hydro test cases with the following synchronized–weighted
algorithms: SW-CSS, SW-FSS, SW-GSS and SW-TSS.
The results in Figs. 11 and 12 show that in all cases the
synchronized–weighted algorithms clearly outperform their
synchronized-only counterparts. One can notice that all SW
algorithms give comparable parallel times.

The above results are also illustrated in Table 8, which shows
the gain of SW-A over S-A, computed as TS-A−TSW-A

TS-A , where
TS-A is the parallel time of the synchronized-only algorithm A
and TSW-A is the parallel time of the synchronized–weighted
algorithm SW-A. Confidence intervals are also given in the
same Table, both with respect to every algorithm and overall
confidence intervals per test case.

In Table 8, we show the algorithm with the highest gain for
each application. Subsequently, in Table 9 we analyze the gain
of SW-CSS over S-CSS for Floyd–Steinberg and of SW-GSS
over S-GSS for Hydro. This gain is attributed to better load
balancing, which is expressed in terms of the total computation
time per slave. In particular: S-CSS and S-GSS, respectively,
assigned approximately the same number of iterations to all
slaves; this led to larger computation times for the slower slaves
(i.e., kids) in comparison to faster slaves (i.e., twins). With SW-
CSS and SW-GSS, respectively, the difference in the slaves’
computation time is reduced because the number of iterations
assigned to each slave has been adjusted according to their
available power.

7. Conclusions and future work

In this paper we deal with the problem of load balanc-
ing in scheduling loops with (or without) dependencies on
heterogeneous non-dedicated distributed systems. We study

existing self-scheduling schemes and propose two mechanisms
to improve their performance using a master–slave model.
Firstly, the synchronization mechanism, which enables the ap-
plication of existing self-scheduling algorithms to loops with
dependencies. Secondly, the weighting mechanism, which im-
proves the load balancing capability of these algorithms. We ran
experiments from practical applications involving loops with
uniform dependencies and also a test with a parallel loop with
uneven tasks. Our results show that the synchronization mech-
anism enables the scheduling algorithms to obtain significant
speedups for the dependence loops. Furthermore, the weight-
ing mechanism makes the existing algorithms most suitable
for heterogenous non-dedicated systems because significant
gains were obtained over the algorithms without weighting.

Although in this article we study the problem of scheduling
loops with uniform dependencies we expect that our results can
be extended to apply to loops with non-uniform dependencies.
In the future we plan to study the scheduling problem for non-
uniform dependence loops in distributed systems. We also plan
to further investigate the synchronization mechanism in terms
of the number of SPs required for achieving the best perfor-
mance.
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