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a b s t r a c t

In this work, we develop and evaluate a theoretical model, which we then use to study the
impact of the synchronization frequency on the performance of dynamic self-scheduling
algorithms. These algorithms are used to parallelize loops with data dependencies on
heterogeneous systems. The proposedmodel uses a formula to estimate the parallel time as
a function of the synchronization frequency. Inter-node communication has been proven
to be the dominant factor for the performance degradation of applications containing loops
with data dependencies. The synchronization mechanism therefore requires careful fine-
tuning in order to give the best possible performance. The proposed model determines
the optimal synchronization frequency that results in the minimum parallel time. We use
this model to study the impact of the synchronization frequency on the parallel execution
of a computational kernel from image processing. For this kernel, the synchronization
frequency giving the minimum parallel time predicted by our theoretical model was
very close to the synchronization frequency giving the least parallel time in practice. We
validate our model by extensive comparisons of the theoretically predicted parallel time
and synchronization frequency against those obtained from practical experiments. The
comparisons show that the proposed model is highly accurate, its predictions for the
optimal synchronization frequency being within 0.0250% of the experimentally optimal
synchronization frequency in the best case, and within 0.1750% of the experimentally
optimal synchronization frequency in the worst case. Finally, the comparisons show that
the proposed model improves on a previously existing model in heterogeneous systems,
whereas it gives similar results in homogeneous systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we propose and evaluate a linear, yet very accurate, mathematical model for determining the optimal
synchronization frequency of dynamic self-scheduling algorithms, designed to parallelize nested loops with data
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dependencies on heterogeneous systems.Many scheduling algorithms have been proposed in the past for nested loopswith
andwithout data dependencies on heterogeneous distributed systems. An important class of dynamic scheduling algorithms
is that of the self-scheduling schemes, such as chunk self-scheduling (CSS) [1], guided self-scheduling (GSS) [2], trapezoid
self-scheduling (TSS) [3] and factoring self-scheduling (FSS) [4] (see also [5–9] and references therein). These algorithms
dynamically assign work to processing nodes in chunks of variable sizes. The simpler versions of these algorithms are
suitable for homogeneous systemsworking in single-user-job (dedicated) executionmode. The distributed versions of these
algorithms target heterogeneous computing systems [10]. In such systems, loop-scheduling schemesmust take into account
the differences in the computational power of each processing node. The computational power of a processing node depends
on the CPU speed, memory, cache structure and even the application type. Therefore, load-balancing methods adapted to
distributed computing environments take into account the relative computing powers of the processing resources [6–8,11,9,
12–14]. The relative computing powers are used asweights that scale the size of the subproblem assigned to each processing
node.

A class of dynamic self-scheduling algorithms was developed in [13,15] specifically to address applications containing
loops with data dependencies. The algorithms in this class were inspired from the chunk self-scheduling, trapezoid self-
scheduling and distributed trapezoid self-scheduling (DTSS) schemes, which were initially devised for tasks without data
dependencies. Self-scheduling algorithms follow the master–worker model, and their modus operandi is to partition the
iteration space of the loop into chunks, which are then assigned to worker processors by the master processor upon
request. However, due to the existence of data dependencies, certain iterations in one chunk depend on certain iterations in
other chunks. Hence, every worker communicates with neighboring workers at predefined synchronization points, since
it requires data for its local computations and/or other workers require data for remote computations. Inter-processor
communication is, therefore, one of themost important factors for performance degradationwhen parallelizing applications
containing loops with data dependencies. In [13,15], the synchronization frequency was chosen in an ad hocmanner. In this
work, we develop a rigorous mathematical model for the performance evaluation of the dynamic self-scheduling schemes
as a function of the synchronization frequency. This model allows us to theoretically determine the optimal synchronization
frequency, i.e., the one leading to the minimum parallel time.

Related work. A significant amount of work exists for determining the optimal partitioning (tile size, block size, grain
size) of the iteration space of nested loops in homogeneous systems ([16–21] and references therein). In [16], Desprez et al.
presented a method for overlapping communications on homogeneous systems for pipelined algorithms. They provided a
general theoreticalmodel to find the optimal packet size. In [17], Andonov and Rajopadhye addressed the problem of finding
the tile size that minimizes the total execution time, on homogeneous systems. Xue studied the problem of time minimal
tiling in [19]. Tiles are statically assigned in a block or block cyclic fashion to homogeneous processors. The optimal tile size
is determined based on the critical path of the last processor. In [20], Xue and Cai presented a solution to the problem of
finding the optimal tile size on homogeneous systems, when the rise is larger than zero. In [18], Lowenthal et al. proposed
a method for selecting the block size at run time in pipelined programs; they target problems with irregular workloads
on homogeneous systems. In [21], Strout et al. proposed a run-time reordering transformation, i.e., full sparse tiling, that
improves the data locality for stationary iterative methods. However, the problem of finding the optimal partitioning of
iteration spaces for heterogeneous systems has not been given enough attention so far. In [22], Chen and Xue proposed a
method for obtaining the optimal tile size on heterogeneous networks of workstations, in which the shape and sizes of
tiles are statically determined and scheduled using a block distribution approach. A first effort to determine the optimal
synchronization frequency was presented in [23].

Our approach. This work differs from the aforementioned methods in that it targets dynamic scheduling algorithms
for application tasks with data dependencies on heterogeneous systems. This work is an extension of [23], which only
outlined the central idea behind a theoretical model, such as the one elaborated and extended herein. In the quest to find the
optimal synchronization frequency, the first step is to construct a theoretical model that will predict the minimum parallel
time in the less complicated case of homogeneous dedicated computing systems. For this first step we select a simple self-
scheduling algorithm, CSS, as enhanced in [13], to handle data dependencies. We show that the minimum actual parallel
time for homogeneous systems is achieved with a synchronization frequency that is within 0.0250% of the theoretically
optimal synchronization frequency in the best case, and within 0.0750% of the theoretically optimal one in the worst case.
The next step is to build a theoretical model for predicting the parallel performance in heterogeneous dedicated systems, in
which worker processors have different computational speeds. Again, we select CSS as the self-scheduling algorithm, and
we show that the minimum actual parallel time for a particular heterogeneous system is obtained with a synchronization
frequency within 0.0750% of the theoretically optimal synchronization frequency in the best case, and within 0.1750% of the
theoretically optimal one in the worst case. For the experiments on the heterogeneous clusters we had to modify CSS, such
that the chunk assigned to a worker wasweighted according to its computational power. As an application test case we used
the Floyd–Steinberg [24] error dithering algorithm, an image-processing computational kernel described in Section 5.

Contributions. In this work, we do not propose a new scheduling scheme; we consider an existing scheme, first
presented in [13,15], and propose a model to evaluate its performance. The contribution of this paper is twofold: (1)
proposing a verifiablemodel for fine-tuning the synchronizationmechanismbetweenworker processors thatminimizes the
communication overhead and yields sufficient concurrency for reaching the best possible overall performance; (2) analyzing
the case of both an unlimited and a limited number of processors in heterogeneous systems, and improving on a previously
existing model [22] on heterogeneous systems that gives similar results on homogeneous systems. Extensive experimental
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Fig. 1. Algorithmic model.

tests show that our model, despite its simplicity – a deliberate choice based on linearity in order to preserve a low time
complexity – works well because it determines the optimal synchronization frequency with a high accuracy. Nevertheless,
in future work it would be interesting to study other notable, yet more complicated, scheduling schemes, such as those
based on factoring and its variants (see [6–8]).

Organization. The paper is organized as follows. In Section 2, the programmodel is explained and the necessary notation
is defined. The theoretical parallel time estimation models for the homogeneous and heterogeneous systems are presented
in Sections 3 and 4, respectively. The experimental validation and comparison of our model with another existingmodel are
described in Section 5. Conclusions and future work are presented in Section 6.

2. Programmodel and notation

An n-nested loop is a program structure typically modeled as a discrete subset J of the n-dimensional Euclidean space
Rn (J ⊂ Rn), called the iteration space of the loop. Each point of this n-dimensional iteration space corresponds to a
distinct iteration of the loop body. L = (l1, . . . , ln) and U = (u1, . . . , un) are the initial and terminal points of the discrete
iteration space (Fig. 1). There are two categories of nested loops: parallel loops and dependence loops. Parallel loops have
no data dependencies among their iterations and, thus, these can be executed in any order or even simultaneously. In
dependence loops, the iterations depend on each other, which imposes a certain execution order in order to satisfy the
existing data dependencies. In this work we assume that an n-nested loop has r uniform dependencies which are modeled
by n-dimensional dependence vectors. A dependence vector is written as d⃗i ∈ Rn, 1 ≤ i ≤ r .

Consider the following toy scale example, representing a two-dimensional nested loop with data dependencies:

for (i=1; i<=24; i++)
for (j=1; j<=8; j++) {

A[i,j] = A[i,j] * A[i-2,j-2];
B[i,j] = 2*B[i-3,j-1] + A[i-2,j-2] - 1;

}

The iteration space of this example contains 24 × 8 = 192 points; the initial and terminal points are L = (1, 1) and
U = (24, 8) respectively, and the two dependence vectors are d⃗1 = (2, 2) and d⃗2 = (3, 1).

Self-scheduling algorithms partition the iteration space into chunks along one of its dimensions, called the chunk
dimension, and denoted by uc . This partitioning yields a pool of tasks, which are then dynamically assigned to the available
worker processors upon request. The simplest self-scheduling algorithm is pure self-scheduling (PSS). PSS assigns one
iteration per request to each worker processor. To reduce the synchronization overhead of PSS, the chunk self-scheduling
(CSS) algorithm assigns to each worker a chunk of iterations of fixed size. For a detailed exposition of self-scheduling
schemes, the interested reader is referred to [25]. The CSS algorithm was extended in [13,15] to handle loops with data
dependencies in addition to parallel loops. The extension involved the insertion of synchronization points along another
dimension of the iteration space, called the synchronization dimension, and denoted by us.

The following notation will be used in the rest of this work.

• NP is the number of worker processors in the system.
• P1, . . . , PNP are the worker processors.
• N is the number of steps of the scheduling algorithm.
• uc is the chunk dimension, which is divided into chunks according to a self-scheduling algorithm.
• A few consecutive iterations of the loop are called a chunk; Ci is the chunk size at the i-th scheduling step.
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Fig. 2. (a) The toy scale iteration space is partitioned into two chunks, and each chunk is partitioned into six subchunks. (b) A space–time mapping of
chunks to a processor and a naive time schedule following the execution flow. (c) The flow of execution in space and time for a balanced workload on
processors of equal speed.

• Vi is the length of the projection of chunk i in the uc dimension.
• us is the synchronization dimension, along which synchronization points are inserted. The synchronization points are

uniformly distributed along us.
• h is the length of the synchronization interval, i.e., the distance between successive synchronization points. Note that h

is the same for every chunk.
• The set of iterations of a chunk between successive synchronization points is called a subchunk.

Let us consider again the toy scale example described earlier. The iteration space is depicted in Fig. 2with the two uniform
dependence vectors (2, 2) and (3, 1). If only workers with equal computational power are available, then the resulting
schedule would be the one in Fig. 2(a), where the iteration space is partitioned into two chunks of equal size. Worker P1 is
assigned chunk 1 comprising of subchunks 1–6, all of equal size, andworker P2 is assigned chunk 2 comprising of subchunks
7–12, also of equal size. Partitioning a chunk into subchunks is a necessary step imposed by the data dependencies. Workers
1 and 2 cannot compute simultaneously subchunks 1 and 7 respectively because subchunk 7 requires data from subchunk
1. For all workers, the execution flow follows the ‘‘receive, compute, send’’ order. After P1 finishes subchunk 1, it sends the
necessary data to P2, which in turn receives the data and proceeds to compute subchunk 7. In effect the subchunks establish
a communication and synchronization mechanism between workers. If P1 were to compute the entire chunk without any
data exchange with P2, the result would be the sequential execution of chunks 1 and 2. The presence of dependencies
necessitates the partitioning of chunks into subchunks and at the same time imposes a precedence order on their execution.
Certain subchunks, e.g., 1 and 7, 2 and 8, etc., cannot be computed simultaneously, in order to respect the data dependencies.
Certain other subchunks can be processed in parallel as long as no data dependencies are violated. For instance, subchunks
4 and 9 can be computed simultaneously; a typical iteration point of chunk 9 requires data from points in subchunks 2
and 3. For instance, (9, 5) requires data from points (7, 3) and (6, 4). These have already been computed by P1. Assuming
that P1 communicates these data to P2 upon completion of subchunk 3 and before beginning the computation of subchunk
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4, then subchunks 4 and 9 can be computed in parallel. For this type of synchronization between workers P1 and P2, the
chunk–subchunk assignment is depicted in Fig. 2(b), whereas Fig. 2(c) shows the execution flow in time.

Next, we describe the communication and computation cost models we used in order to estimate the parallel time in a
distributed computing system.

2.1. Communication cost model

In this work, we adopt the one-port model as the communication model. In this model, a processor at each time step can
either send or receive. Of course, distinct processor pairs communicate simultaneously. This assumption is made to simplify
the proposed model and our analysis to determine the optimal synchronization frequency. More elaborate communication
models can be considered in the future. The cost of communicating a message between two workers is assumed to be the
sumof two parts: the start-up cost cd, representing the time to send a zero-lengthmessage, including the hardware/software
overhead of sending the message, and the transmission cost of the message. The transmission cost varies according to the
size and type (e.g., float, double or any other user-defined type) of data. The transmission cost per unit and type of data is
denoted by cc .

To quantify the communication parameters, we developed a benchmark program (which can be applied in any network
architecture), that simulates a small-scale model with inter-node communication. It performs send and receive calls
between all pairs of nodes for messages of increasing size. We measured the average round-trip time for all data exchanges
and we observed that this yields a linear model. We chose to perform data exchanges between all pairs of nodes in order
to simulate levels of network contention similar to those of the actual application. We then divided this average time by 2,
assuming that the send (ts) and receive (tr ) times are equal. This is a realistic assumption, since the sent and received data
concern equal number of elements of the same array that are of the same size. Also, the send and receive operations always
occur in pairs. Thus we do not measure send and receive operations separately. The specific cd and cc values for our test case
are determined in Section 5.2. Therefore, the cost tr or ts of communicating a message consisting of h data elements is given
by

tr = ts = cd + hcc . (1)

2.2. Computation cost model

We define the computation cost as a linear function of the computation cost per iteration, cp, times the number of
iterations. The computation cost per iteration is application and processor dependent. In this work, we consider loops
with regular loop bodies. We assume that, for a single application, cp is the same for every iteration. To accurately quantify
cp, we ran a small subset of the selected application (in our case the Floyd–Steinberg kernel) on each processor type. We
divided the total computation time by the total number of iterations in the subset to obtain the cp for this application. The
computation time per iteration, cp, differs from processor to processor in heterogeneous systems, as shown later in the
paper (see Section 5.2). Hence the computation cost of a subchunk (i.e., the number of iterations between two successive
synchronization points) is given by

tp = hVicp. (2)

3. Model for parallel time prediction in homogeneous systems

In this section, we investigate the impact of the synchronization interval h on the parallel time. The synchronization
interval determines the synchronization frequency; we construct a mathematical model that estimates the parallel time for
both homogeneous and heterogeneous systems (the latter are assumed to be dedicated to our application) as a function of
the synchronization interval. The proposed model is valid if the following two premises are satisfied.

(PR1) The time to compute a subchunk is the same in all cases and for all worker processor types. This is a reasonable
assumption, because the main advantage of the underlying scheduling algorithm is its ability to adjust the subchunk
size according to the computational power of each worker processor.

(PR2) The communication time (to send and/or to receive data) for every subchunk is the same.

The special casewhenNP > N is not investigated here, since it can be reduced to the casewhenNP = N by discarding the
extra processors. Thus in this work we study two cases: NP = N and NP < N . The homogeneous systems case is presented
with the sole purpose of facilitating the understanding of the heterogeneous systems case, which is analyzed in Section 4.
Case NP = N . This is the special case where the number of available processors equals the number of chunks of tasks, so that
each processor is assigned exactly one chunk.

Fig. 3 illustrates a small-scale iteration space partitioned into four chunks (horizontal segments) assigned to fourworkers.
Ten synchronization points are inserted in each chunk in such a way that the distance between successive synchronization
points is h. The parallelization strategy for this case is given in Fig. 4. All four worker processors start by requesting work
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Fig. 3. A two-dimensional loop is partitioned into four chunks and ten synchronization points are placed in each chunk (NP = N).

0
TNP

idle time - tidle work assignment time -Twa processing time - tp send time - ts receive time - tr

P4

P2
P3

P1

Fig. 4. Parallel execution flow on a homogeneous system with NP = N .

from the master processor. The master receives the first request from P1, calculates the size of the first executable chunk
and then assigns it to P1. The master continues to serve the other incoming work requests in the same fashion. On the
worker processors side, P1 begins computing its assigned chunk. Due to the data dependencies, P2 can start receiving and
computing its assigned chunk only after P1 has computed its first subchunk and sent the necessary data to P2. This occurs
at the first synchronization point. Similarly, P3 can begin computing only after P2 has sent the required data, again at the
first synchronization point but at a later time. This is the idle time tidle shown in Fig. 4 by the horizontal white strip. The
same holds for P4, except for the sending part. P4 does not need to send any data since it is the last worker processor.
However, it must wait for P3 to send the necessary data, thus introducing an expected idle time, as depicted in Fig. 4 by
the white small boxes between computing and receiving events. In a homogeneous system, Vi and cp are the same for all
processors. Therefore, the time needed to compute the iterations in a subchunk, tp = hVicp, is the same for all processors.
The communication between two workers at the subchunk level consists of two parts: the sending part and the receiving
part. The send operation takes ts = cd + hcc as does the receive operation, according to our communication model.

When NP = N , the total number of chunks is NP and the size of each chunk is Vi = Uc/NP . The theoretical parallel time
for this situation, denoted TNP , is the completion time of the last subchunk of the problem (in our example this is the last
subchunk of P4). TNP can be estimated as the completion time of the highlighted subchunks in Fig. 3. For every chunk, except
for the first and the last, a worker has to receive, compute and send data. For the first chunk, a worker needs only to compute
and send data. Therefore, the time to compute each subchunk in the first chunk and to send the necessary data to the next
worker is tp + ts. Likewise, for the last chunk, a worker needs only to receive and compute data, i.e., the time required to
receive the necessary data and to compute every subchunk in the last chunk is tr + tp. The time needed to complete the first
subchunk of chunks 2, 3, . . . ,NP − 1 is (NP − 2)(tr + tp + ts), where NP can be written as NP =

Uc
Vi
, since NP = N (see

Fig. 3).

Claim 3.1. The time required to compute the last chunk is the product of the time tr + tp required to compute any of its subchunks
and the number Us

h of subchunks, including the expected total idle time,
Us

h − 1

tidle, spent waiting for the required data to be

sent from the previous worker. We assume that tidle is approximately equal to ts, as illustrated in Fig. 4.

The claimholds because, due to the data dependencies,workers cannot compute their assigned chunks in parallelwithout
exchanging data throughout the execution of a chunk. A worker starts computing only after it receives the necessary data
from the previous worker. Therefore, the total parallel time is the completion time of the worker that computes the last
chunk of the problem. Since we consider the master–worker model, the work assignment time is Twa = tr + csch + ts, where
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transfer time -Ttr

Fig. 5. Parallel execution flow on a homogeneous system with NP < N and k = 3.

tr is the transmission time needed for the work request to reach the master, ts is the time needed for the master’s reply to
reach the worker, and csch is the time needed for the master to compute the next executable chunk size. Hence the total
parallel time in this case is

TNP =

tp + ts


+


Uc

Vi
− 2

 
tr + tp + ts


+

Us

h


tr + tp


+


Us

h
− 1


tidle + Twa. (3)

Note that in Eq. (3) Twa is taken only once, because thework assignment time for every chunk is overlappedwith theworker’s
computation or communication operations, except for the first chunk of the problem. Fig. 4 gives a timing diagram which
clarifies formula (3). Using the above formula in conjunction with formulas (1) and (2), one can determine the theoretically
optimal value of h for which TNP is minimized. This is done by differentiating TNP with respect to h, which yields

hNP =

 2cdUs

(Uc − Vi)cp +


2Uc

Vi
− 4


cc

. (4)

Case NP < N . In this case, the number of chunks is greater than the number of available processors, so each processor is
assignedmore than one chunk.

Fig. 5 depicts such a situation, inwhich 12 chunks are assigned to fourworkers, eachworker being assigned three chunks.
In our analysis, we assume that all workers are assigned the same number of chunks. We address this case by assuming that
a problem of size Uc × Us with NP < N processors can be decomposed into k = N/NP subproblems of size U⋆

c × Us, where
U⋆
c =

Uc
k and Vi =

U⋆
c

NP . These subproblems are interdependent, in the sense that part of the data produced by one subproblem
is consumedby the next subproblem. Therefore the computation of a subproblemcannot start until the previous subproblem
is completed. Upon completion of a subproblem, the processor assigned the last chunk of the previous subproblem transmits
in a singlemessage all necessary data to the processor assigned the first chunk of the next subproblem. The time to complete
this data transfer is called Ttr , and is given by Ttr = 2(cd + Uscc). Ttr designates the time required to send and receive a data
packet of size equal to the size of the scheduling dimension. Fig. 5 illustrates such a problem where NP < N . The entire
problem is divided into three subproblems, sinceN/NP = 3 and the same set of four processors is used for each subproblem.

In the general case, assuming that the initial problem is divided into k = N/NP subproblems, the parallel time for the
completion of the first subproblem is T ⋆

NP , which is the time required to compute a subproblem of size U⋆
c × Us. The parallel

time for the completion of every subsequent subproblem is T ⋆
NP − Twa, because the work assignment time for every chunk

is overlapped with other computation or communication operations, except for the chunks of the first subproblem. Finally,
the time to transfer the necessary data between all the successive subproblems is (k − 1)Ttr .

Claim 3.2. When NP < N, the total parallel time, denoted by TN , is

TN = kT ⋆
NP + (k − 1)Ttr − (k − 1)Twa. (5)

To see that the above claim is true, onemust take into account the existence of data dependencies. These dependencies are
responsible for the fact that the execution of each subproblem can start only after the first worker of a subproblem receives
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the necessary data from the last worker of the previous subproblem. Therefore, the total parallel time is the completion
time of the last subproblem, i.e., the time when the last chunk of the initial problem is computed, plus the time required for
transferring the partial results from one subproblem to the next. As in the previous case, one can determine the theoretical
optimal value of h for which TN is minimized, by differentiating TN with respect to h:

(TN)′ = k(TNP)′ + ((k − 1)Ttr)′ + ((k − 1)Twa)
′, (6)

where T ′
tr = 0 and T ′

wa = 0. This yields

hN =

 2cdUs

(U⋆
c − Vi)cp +


2U⋆

c
Vi

− 4

cc

. (7)

4. Model for parallel time prediction in heterogeneous systems

To describe our theoretical model for dedicated heterogeneous systems we use the following additional notation.
• αj, j = 1, . . . , ξ—the worker types of the heterogeneous system.
• NPαj ≥ 1—the number of processors of type αj, j = 1, . . . , ξ .
• VPαj—the virtual computing power of a worker of type αj. The virtual computing power for each machine type is

established as the normalized execution time of the same test program on each machine type.
• V

αj
i —the length of the projection of chunk i on uc , assigned to a worker of type αj and weighted according to its virtual

power.
• c

αj
p —the computation time per iteration on a worker of type αj.

• t
αj
p —the computation time of hV

αj
i iterations on a worker of type αj.

In the heterogeneous case, the processor loads are taken into account in the evaluation of their virtual computing power
in the scheduling scheme. These virtual powers are used in the proposed performance evaluation model. The validity of
our model is, again, based on the two premises outlined in the beginning of Section 3. In order to derive a formula for the
theoretical parallel time on a heterogeneous system, we first devise a formula for the case when NP = N , which we then
use to infer the formula for the case NP < N . We assume that workers are assigned work in decreasing order of their virtual
computing power. This implies that the last chunk is assigned to the slowest worker. In order to satisfy the premise (PR1),
which asserts that the time to compute a subchunk is the same in all cases and for all worker types, the size of the chunk
must be weighted according to the virtual computing power of each worker type. We assume that workers are grouped
according to their type and that the group of workers having the greatest computational power per worker gets assigned
work first.
Case NP = N . An illustration of this case, for a small-scale iteration space partitioned into four chunks assigned to four
heterogeneousworkers,would be similar to the one in Fig. 3,with the difference that the chunk sizesVi would vary according
to the virtual computing powers of the four workers. As in the NP = N case for homogeneous systems, the parallel time
is given by the completion time of the last subchunk of the problem. The completion time of the first subchunk assigned
to the last worker is the total time required for the completion of the first subchunk of all previous chunks. In this scheme,
workers are grouped according to their type, and each worker is assigned exactly one chunk. For all workers of type αj,
the total time for the completion of all corresponding first subchunks is NPαj(tr + t

αj
p + ts). Therefore, the total time for all

worker types is given by
∑ξ

j=1(NP
αj)(tr + t

αj
p + ts). From this sum we subtract tr and ts, since there is no receive operation

for the first subchunk of the problem, and no send operation for the last subchunk of the problem. The time required for the
computation of the remaining subchunks of the last chunk is

Us
h − 1


(tr + t

αξ
p + tidle), and this corresponds to a worker of

type αξ , which is the slowest type of worker in the heterogeneous system.

Claim 4.1. When NP = N, the theoretical parallel time of a heterogeneous system is

TNP =

ξ−
j=1

(NPαj)

tr + t

αj
p + ts


− tr − ts +


Us

h
− 1

 
tr + t

αξ
p + tidle


+ Twa. (8)

The proof of this claim is the same as the one for Claim 3.1. To determine the optimal synchronization interval, denoted
by hNP , we differentiate TNP with respect to h, and obtain

hNP =

 2cdUs
ξ∑

j=1
(NPαj)(V

αj
i c

αj
p + 2cc) − V

αξ

i c
αξ
p − 4cc

. (9)

Case NP < N . In this case, the number of chunks is greater than the number of available processors, so each processor is
assignedmore than one chunk. Chunks are weighted according to the virtual computing powers of the workers.
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Claim 4.2. The theoretical parallel time of a heterogeneous system when NP < N is given by

TN = kT ⋆
NP + (k − 1)Ttr − (k − 1)Twa, (10)

where

• T ⋆
NP is the parallel time according to the heterogeneous case NP = N for a subproblem of size Uc

k × Us,
• Ttr = 2(cd + Uscc), and
• Twa = tr + csch + ts.

The proof of this claim is similar to that of Claim 3.2. The theoretical optimal synchronization interval hN that minimizes
the parallel time is determined by differentiating TN with respect to h:

(TN)′ = k(TNP)′ + ((k − 1)Ttr)′ + ((k − 1)Twa)
′. (11)

Taking into account that T ′
tr = 0 and T ′

wa = 0, we conclude that

hN =

 2cdUs
ξ∑

j=1
(NPαj)(V

αj
i c

αj
p + 2cc) − V

αξ

i c
αξ
p − 4cc

. (12)

Formula (12) is similar to formula (9), with the difference that the values of V
αj
i are not equal, since each worker is

assigned more than one chunk.

5. Experimental validation

The accuracy of the proposed theoretical model for parallel time prediction in homogeneous and heterogeneous systems
can be established only through comparison with experimental tests. We computed a set of theoretical results analytically.
The parallel times were plotted as a function of the synchronization interval using formulas (3), (5), (8) and (10). For the
experimental results, we ran a series of tests for different values of the synchronization interval h, measured the actual
execution time, and plotted it in order to find the actual optimal synchronization interval. In every case, the comparison
between the theoretical and the experimental curve shows that, even though the two curves are not identical, the size of
the optimal synchronization interval (which in turn defines the synchronization frequency) is predicted by the theoretical
curve with a high accuracy. As the experiments demonstrate, using the theoretical optimal synchronization interval given
by formulas (4), (7), (9) and (12) results in a parallel time that deviates 0.02616 s from the actual optimal value in the best
case, and 0.1040 s in the worst case. This shows that, despite the simplifying assumptions we made in order to arrive at a
linear model, the model itself is both accurate and robust. The experimental measurements were taken using caching. This
means that our model is not sensitive to caching. Taking caching into account would simply complicate the model without
significant practical improvements.

5.1. Experimental environment

The computational kernel and the scheduling algorithm are both implemented in C, using MPI for inter-processor
communication. The experiments were performed on two homogeneous clusters and one heterogeneous cluster.

Experiment #1: a homogeneous cluster of 11 Intel Pentium IIImachines called ‘kids’ with 500MHz, 512MBRAM,with virtual
power VPkid

= 0.63.

Experiment #2: a homogeneous cluster of 7 Intel Pentium III machines called ‘twins’ with 800 MHz, 256 MB RAM, with
virtual power VP twin

= 1.

Experiment #3: a heterogeneous cluster of 5 ‘kids’ and 6 ‘twins’ (one ‘twin’ was used as master).
We measured the virtual computing power of each worker by running a small test problem (which involved nested

loops with floating point operations) 10 times, serially, on each computer and averaging the measured execution times. The
machines are interconnected by a 100 Mbits/s fast Ethernet network. The results given in the following subsections are the
average of 10 runs for each experiment. As the application test case we used the Floyd–Steinberg computational kernel [24],
an image-processing algorithm used for error-diffusion dithering of a width by height grayscale image. The pseudocode
is given below, and it has four unitary data dependencies. Note that although this kernel has unitary dependencies, the
scheduling method and the theoretical model are not limited to kernels with unitary data dependence vectors. Our basic
premise is that the data dependence vectors are such that they allow the parallelization of the computation, meaning that
the computational kernel is not inherently sequential. For this to hold, the data dependencies must be strictly greater than
0⃗ = (0, . . . , 0) when ordered lexicographically (see [26]). These data dependence vectors are known in advance.
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Table 1
Estimated model parameters.

Exp. cd (µs) cc (µs) ckidsp (µs) ctwins
p (µs) csched (µs) tm−s (µs)

#1 99 0.69 0.526 – 500 1.253
#2 99 0.65 – 0.319 500 1.25
#3 99 0.69 0.526 0.319 650 1.25

/* Floyd-Steinberg */
for (i=0; i<width; i++){ /* synchronization dimension */

for (j=0; j<height; j++){ /* chunk dimension */
I[i][j] = trunc(J[i][j]) + 0.5;
err = J[i][j] - I[i][j]*255;
J[i][j+1] += err*(7/16);
J[i+1][j-1] += err*(3/16);
J[i+1][j] += err*(5/16);
J[i+1][j+1] += err*(1/16);

}
}

We compare our model for the case NP = N with the model of Chen and Xue [22]. We chose to compare with their work
because, to the best of our knowledge, it is the only one to address this problem for heterogeneous systems. They consider
only block assignment of tiles, on both homogeneous and heterogeneous systems, which corresponds only to our NP = N
case for homogeneous and heterogeneous systems.

5.2. Estimation of parameters

To quantify the communication parameters of our model, we developed a benchmark program in C, using MPI, that
simulates a small scalemaster–workermodelwith inter-node communication. It performs send and receive calls between all
pairs of worker processors for messages of different sizes. We chose to perform data exchanges between all pairs of workers
in order to simulate levels of network contention similar to those of the actual application.Wemeasured the average round-
trip time for all data exchanges.We thenhalved this average time, assuming that the send (ts) and receive (tr ) times are equal.
This is a simple but realistic assumption, since in most cases the send and receive operations are executed in pairs between
communicating workers. This allows us to estimate the start-up time cd and the transmission cost per unit and type of data
cc . Their values are given in Table 1. The computation cost per iteration is application and processor dependent. In ourmodel,
we assume that it is the same for every iteration of the same application. To accurately quantify the computation per iteration
cost, we ran a small subset of the selected application, i.e., the Floyd–Steinberg kernel, on each processor type. We divided
the total computation time by the total number of iterations to obtain the cp for this application. The values for eachmachine
type (kids and twins) are also given in Table 1.

5.3. Description of the experiments

In the following series of experiments, we determine the actual optimal synchronization interval hm,a, which gives the
minimum actual parallel time. We then compare hm,a with the theoretical optimal value hm,t , which is obtained from
formulas (4), (7), (9) and (12), depending on the case under examination. Themaximumpossible value of h is actually the size
of the synchronization dimension us. This scenario is never realized in practice because it would serialize the computation.
The difference between hm,t and hm,a is measured as a percentage of us.

Experiment #1. This experiment was performed on the homogeneous cluster of 10 + 1 kids. We ran the Floyd–Steinberg
kernel for an image size of 10K × 20K pixels (K = 1000).

(a) Initially we examined the case where NP = N and compared our results with the results of Chen and Xue [22]. They
compute the vertical tile size using formula (4) of [22]: nopt

1 = N1/P . This can be written in our terms as V kids
i = Uc/NP .

Similarly, they compute the horizontal tile size as nopt
2 =


P(αs+αr+γ (P−1))N2
(P−1)(N1tc+βs+βr )

, which in our notation becomes hNP =
NP(cd+cd)Us

(NP−1)(Uc ckidsp +2cc )
. For the Floyd–Steinberg kernel on an image size of 10K×20K pixels, their formulas give a vertical tile size

equal to V kids
i = 1000, a horizontal tile size equal to hNP = 29, and a parallel time of TNP = 10.8359 s. The values obtained

by our model for the same case are chunk size equal to V kid
i = 1000, hNP = 30, and parallel time of TNP = 10.8361 s. It is

obvious that both Chen and Xue’s model and ours predict that the minimum execution time is obtained for approximately
the same synchronization interval.
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Fig. 6. Theoretical versus actual parallel time on a homogeneous system with ten workers and k = 1, 4 and 8 subproblems.

(b) Next we studied the case where NP < N . Each worker was assigned k chunks, where k assumed the values of 4 and
8. Vi was computed according to following formula:

Vi =
Uc

kNP
. (13)

In Fig. 6, we have plotted the theoretical versus the actual parallel times on the kids homogeneous cluster. The theoretical
time was obtained using the constants from Table 1 (Exp. #1). The curve representing the theoretical parallel time has
a global minimum (i.e., the parallel time is minimized for hm,t ), and for every value of h greater than hm,t the parallel
time increases approximately linearly with a (very) small slope. Respectively, for every value of h less than hm,t , excessive
synchronization occurs which results in significant performance degradation. As can be seen in Fig. 6, the actual parallel
time fits the theoretical pattern. The actual parallel time is always greater than the corresponding theoretical time. In Fig. 6,
the global minimum of the actual parallel time is positioned to the right of the theoretical global minimum. In all cases the
difference between these two values, hm,a and hm,t , and the actual time for each of these intervals can be seen in Table 2.
The different values in Table 2 show that it is possible to execute the parallel application using the theoretical optimal
synchronization interval hm,t , which in practice gives a parallel time very close to the actual minimum parallel time. Using
the theoretical optimal hN given by Eq. (7), one can expect to deviate from the optimal actual parallel time by less than
+0.0069%, as shown in Table 2, column 7.
Experiment #2. To confirm the validity of our theoretical model, we tested it in a second homogeneous cluster with other
characteristics (i.e., processor speed, memory size) than the first homogeneous system. We repeated the measurements of
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Table 2
Theoretical and actual optimal synchronization interval, actual parallel time for both intervals, the difference in the actual parallel time, and the deviation
from the minimum actual parallel time.

k hm,t hm,a Ta(hm,t ) (s) Ta(hm,a) (s) |Ta(hm,t ) − Ta(hm,a)| (s)
|Ta(hm,t )−Ta(hm,a)|

Ta(hm,a)
(%) |hm,t − hm,a|

|hm,t−hm,a |
Us

100 (%)

Exp. #1: Homogeneous cluster with 10 + 1 kids

1 30 30 12.4787 12.4787 0.00000 0.0000 0 0.0000
4 60 55 12.7500 12.6627 0.08730 0.0069 5 0.0250
8 80 70 12.8900 12.7982 0.09180 0.0072 10 0.0500

Exp. #2: Homogeneous cluster with 6 + 1 twins

1 40 55 7.04723 7.03397 0.01326 0.0019 15 0.0750
4 75 70 7.18130 7.15514 0.02616 0.0037 5 0.0250
8 110 100 7.29295 7.28574 0.00721 0.0010 10 0.0500

Exp. #3: Heterogeneous cluster with 5 kids and 5 + 1 twins

1 35 35 10.2356 10.2356 0.0000 0.0000 0 0.0000
4 65 100 10.6341 10.5301 0.1040 0.0099 35 0.1750
8 90 105 10.8348 10.7911 0.0437 0.0040 15 0.0750

the first experiment, but on the 6 + 1 twins homogeneous cluster, running the Floyd–Steinberg kernel for an image size of
8K × 16K pixels (K = 1000).

(a) Initially, we examined the case where NP = N and compared our results with the results of Chen and Xue [22]. They

use the formulas nopt
1 = N1/P and nopt

2 =


P(αs+αr+γ (P−1))N2
(P−1)(N1tc+βs+βr )

to compute the vertical and horizontal tile size, respectively.

Using our notation, the above formulas can be written as V twin
i = Uc/NP and hNP =


NP(cd+cd)Us

(NP−1)(Uc ctwin
p +2cc )

, respectively. For

the Floyd–Steinberg kernel on 8K × 16K pixels, their formulas give a vertical tile size equal to V twins
i = 1333, a horizontal

tile size equal to hNP = 39, and the parallel time of TNP = 6.9987 s. Our values in this case were chunk size V twin
i = 1334,

hNP = 40, and parallel time TNP = 6.9988 s. Again the results obtained by Chen and Xue are very similar to ours.
(b) For the case where NP < N , each worker was assigned k chunks, where k assumed again the values of 4 and 8, and Vi

was computed using formula (13). Fig. 7 shows the theoretical versus the actual parallel time. As in the previous case, the
theoretical timewas obtained using the parameters from Table 1 (Exp. #2). The curve of the theoretical parallel time follows
the curve of the actual parallel time. The differences between hm,t and hm,a and the differences between their corresponding
actual parallel times are given in Table 2. Using the theoretical optimal hN given by Eq. (7), one can expect to deviate from
the minimum actual parallel time by less than 0.0063%, as shown in Table 2, column 7.

Experiment #3. In this experiment, we tested our model in a heterogeneous cluster of 5 kids and 5 + 1 twins. We ran the
Floyd–Steinberg kernel on an image size of 10K × 20K pixels (K = 1000).

(a) For the heterogeneous case when NP = N (and k = 1), the vertical tile size given by formula (8) from [22] is ni
1

= N1
Ci∑i=1
P Ci

. In our notation, this becomes V
αj
i = Uc

ViP
αj∑j=1

ξ (VPαjNPαj )
. Similarly, the horizontal tile size is ni

2 = nopt
2 =

P(αs+αr+γ (P−1))N2
(P−1)(N1tc+βs+βr )

, which in our notation becomes hht
NP=Nopt

=

 ∑j=1
ξ NPαj (cd+cd)Us∑j=1

ξ NPαj−1


Uc c
αj
p +2cc

 . For the Floyd–Steinberg kernel

and an image size of 10K×20K, the vertical tile size for a twin worker is V twin
i = 1223, and for a kid worker it is V kid

i = 776;
the horizontal tile size is hht

NP=Nopt
= 162 and the parallel time T ht

NP = 8.8273 s. For the V twin
i , V kid

i and h values obtained with
Chen and Xue’s model, our model gives a theoretical parallel time of T ht

NP = 8.8316 s. The optimal theoretical parallel time
predicted by our model is smaller; specifically, it is T ht

NP = 8.4501 s, and is obtained for hht
NP=Nopt

= 35. In this case, as can be
seen in Table 2, our model gives better estimates of ha,t , which is equal to 35.

(b) For the case where NP < N , each worker was assigned k chunks, where k assumed again the values of 4 and 8. The
value of Vi was different for each node type. Because all chunks were weighted according to the virtual computing power of
the worker, twin workers received larger chunks than kid workers. The chunks were weighted as follows:

V kid
i =

Uc

kNP
VPkid (14)

V twin
i =

Uc

kNP
VP twin. (15)

The theoretical and actual parallel times for this experiment are plotted in Fig. 8. The theoretical time was obtained using
the parameters from Table 1 (Exp. #3). Also, the curve of the theoretical parallel time follows the curve of the actual parallel
time, and the differences between hm,t and hm,a, and between their corresponding parallel times, are given in Table 2. The
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Fig. 7. Theoretical versus actual parallel time on a homogeneous system with six workers and k = 1, 4 and 8 subproblems.

values in Table 2, column 7, signify that, using the theoretical optimal hN given by Eq. (12), one can expect to deviate from
the optimal parallel time by less than 0.0062%.

6. Conclusions and future work

In this paper, we have proposed and evaluated a model that determines the optimal synchronization frequency for
a typical dynamic self-scheduling algorithm designed to parallelize loops with data dependencies on homogeneous and
heterogeneous clusters. The accuracy of the proposed model is confirmed in all cases by experimental results. The main
contribution of this work is the fact that formulas (4), (7), (9) and (12) provide the means for approximating the optimal
synchronization frequency. For every experiment, the theoretically predicted optimal synchronization interval is very close
to the actual optimal synchronization interval obtained from practical measurements. The performance loss corresponding
to the difference between the actual and the theoretically predicted optimal h is very small, being in the range 5–10% for
all experiments. Moreover, the cost of determining the optimal synchronization interval through extensive testing is clearly
prohibitive, and a poor choice of the synchronization interval value leads to increased performance loss. Finally, the proposed
theoretical model improves on a previously existing model [22] for heterogeneous systems, while obtaining similar results
on homogeneous systems.

Future work. The processors in real-life systems are not always dedicated to the applications they execute. This means
that the available computing power fluctuates during the execution of an application. Ongoing efforts exist for extending
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Fig. 8. Theoretical versus actual parallel time on a heterogeneous system with ten workers and k = 1, 4 and 8 subproblems.

the proposed model to estimate the optimal synchronization frequency in cases where the computational speed of a
processor varies unpredictably. In the future, we plan to modify our model to include a threshold for the computing power
of each worker, below which the master would not assign work to the worker or the worker would not make a request
for work to the master. This is expected to increase the overall performance of the application by eliminating some of the
communication costs that cannot be compensated by the high computation costs associated with slow processors. We also
intend to investigate the possibility of extending our model to deal with more sophisticated communication schemes than
the one-port model, such as the bounded multi-port model.
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