
J. Parallel Distrib. Comput. 71 (2011) 537–555
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Game-theoretic static load balancing for distributed systems✩

Satish Penmatsa a, Anthony T. Chronopoulos b,∗

a Department of Math. & Computer Science, University of Maryland Eastern Shore, Princess Anne, MD 21853, United States
b Department of Computer Science, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States

a r t i c l e i n f o

Article history:
Received 3 June 2009
Received in revised form
28 November 2010
Accepted 30 November 2010
Available online 17 December 2010

Keywords:
Load balancing
Distributed systems
Cooperative game
Non-cooperative game
Expected response time
Fairness

a b s t r a c t

In this paper, we present a game theoretic approach to solve the static load balancing problem for single-
class and multi-class (multi-user) jobs in a distributed system where the computers are connected by a
communication network. The objective of our approach is to provide fairness to all the jobs (in a single-
class system) and the users of the jobs (in a multi-user system). To provide fairness to all the jobs in the
system,weuse a cooperative game tomodel the load balancing problem.Our solution is based on theNash
Bargaining Solution (NBS)which provides a Pareto optimal solution for the distributed systemand is also a
fair solution. An algorithm for computing the NBS is derived for the proposed cooperative load balancing
game. To provide fairness to all the users in the system, the load balancing problem is formulated as a
non-cooperative game among the users who try to minimize the expected response time of their own
jobs. We use the concept of Nash equilibrium as the solution of our non-cooperative game and derive
a distributed algorithm for computing it. Our schemes are compared with other existing schemes using
simulations with various system loads and configurations. We show that our schemes perform near the
system optimal schemes and are superior to the other schemes in terms of fairness.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

A distributed system often consists of heterogeneous com-
puting and communication resources. Due to the possible dif-
ferences in the computing capacities and uneven job arrival
patterns, the workload on different computers in the system can
vary greatly [5,13]. Improving the performance of such a system by
an appropriate distribution of the workload among the computers
is commonly known as load balancing.

The load balancing schemes can be either static or dynamic [46].
The static schemes either do not use any system information
or use only the average system behavior whereas the dynamic
schemes consider instantaneous system states (runtime state
information) in the job allocation calculations. However, as the
overhead costs for the exchange of system state information
increase, the static schemes can perform equally well or better
compared to dynamic schemes [53]. The lower complexity or the
minimal runtime overhead of the static schemes is also an added
advantage. Another major drawback of the dynamic schemes is

✩ This work was supported in part by the National Science Foundation under
grant number CCR-0312323. This research of A.T. Chronopoulos was partly
supported by a NSF grant (HRD-0932339) to the University of Texas at San Antonio.
∗ Corresponding author.

E-mail addresses: spenmatsa@umes.edu (S. Penmatsa), atc@cs.utsa.edu
(A.T. Chronopoulos).

URLs: http://www.umes.edu/mcs (S. Penmatsa),
http://www.cs.utsa.edu/faculty/atc/ (A.T. Chronopoulos).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.11.016
their sensitivity to inaccurate information used for job allocation
purposes. Some dynamic allocations can result in extremely poor
system performance even when the information accuracy is only
slightly less than 100% [49,48]. Also, jobs in a distributed system
can be divided into different classes based on their resource usage
characteristics and ownership. Based on the number of job classes
considered, we have a single-class or multi-class (multi-user) job
distributed system.

In this paper, we consider the static load balancing problem
for both single-class jobs and multi-user jobs in a distributed
computer system that consists of heterogeneous host computers
(nodes) interconnected by a communication network. Jobs arrive
at each computer according to a time-invariant exponential
process. Load balancing is achieved by transferring some jobs from
nodes that are heavily loaded to those that are idle or lightly loaded.
A communication delay will be incurred as a result of sending a job
to a different computer for processing.

Since all the jobs belonging to the same user (or same class)
usually have equal priority or are under the same administrative
domain,weuse a cooperative game to formulate the load balancing
problem for single-class jobs. In a multi-class (or multi-user) job
environment, jobs belong to various users and a user prefers to
have her/his jobs executed first (or faster) than others. Because of
this selfish nature, we use a non-cooperative game to model the
load balancing problem for multi-user jobs. The expected (mean)
response time of a job or a user or the system used in this paper is
defined as the total time to execute a job or all the users jobs or

http://dx.doi.org/10.1016/j.jpdc.2010.11.016
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:spenmatsa@umes.edu
mailto:atc@cs.utsa.edu
http://www.umes.edu/mcs
http://www.umes.edu/mcs
http://www.umes.edu/mcs
http://www.umes.edu/mcs
http://www.umes.edu/mcs
http://www.cs.utsa.edu/faculty/atc/
http://www.cs.utsa.edu/faculty/atc/
http://www.cs.utsa.edu/faculty/atc/
http://www.cs.utsa.edu/faculty/atc/
http://www.cs.utsa.edu/faculty/atc/
http://www.cs.utsa.edu/faculty/atc/
http://www.cs.utsa.edu/faculty/atc/
http://dx.doi.org/10.1016/j.jpdc.2010.11.016

538 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555
all the jobs in the system which includes the processing time(s) at
a node or nodes (processing delay), any queuing delays, and any
communication delays [22].

1.1. Load balancing for single-class jobs

This load balancing problem is formulated as a cooperative
game among the computers and the communication subsystem.
The several decision makers (e.g., computers and the communi-
cation subsystem) cooperate in making decisions such that each
of them will operate at its optimum. The decision makers have
complete freedomof pre-play communication tomake joint agree-
ments about their operating points. Based on the Nash Bargaining
Solution (NBS) which provides a Pareto optimal and fair solution,
we provide an algorithm (CCOOP) for computing the NBS for our
cooperative load balancing game. The objective of this cooperative
load balancing scheme is to provide fairness to all the jobs, i.e. all
the jobs (of approximately the same size) should experience ap-
proximately the same expected response time independent of the
computers allocated for their execution.

1.2. Load balancing for multi-user jobs

This problem is formulated, taking into account the users’
mean node delays and the mean communication delays, as a
non-cooperative game among the users. Each user minimizes
her/his own response time independently of the others and they
all eventually reach an equilibrium. We use the concept of Nash
equilibrium as the solution of our non-cooperative game and
derive a distributed algorithm (NCOOPC) for computing it. The
objective of this non-cooperative load balancing scheme is to
provide fairness to all the users i.e. all the users should have
approximately the same expected response time independent
of the computers allocated for the execution of their jobs (of
approximately the same size).

Remark 1.1. In the above we do not mean that the computers or
the users engage in games, but, the load balancing problems will
be solved using game theory models and the solution of the games
will be used for job allocation.

1.3. Motivation and contribution

Most of the previous studies on static load balancing considered
the minimization of the overall system expected response time
as their main objective. However, some jobs or users may
experience much longer expected response time than others
in such allocations. Also, past load balancing algorithms whose
objective is to provide fairness did not take the communication
costs into account. In current distributed systems, especially Grid
computing systems [10], the computing resources are distributed
over the globe and so communication delays will be incurred
because of job transfers which can play an important role in load
balancing.

Here, we consider the static load balancing problem for both
single-class jobs and multi-user jobs in a distributed computer
system with the objective of providing fairness to all the jobs
(in the single-class job system) and the users of the jobs (in the
multi-user job system) by taking the communication costs into
account. Fairness of allocation is an important factor in modern
distributed systems and our schemes will be suitable for systems
in which the fair treatment of the jobs or users is as important
as other performance characteristics. Fairness is a major issue in
many modern utility computing systems such as Amazon Elastic
Compute Cloud [4] and Sun Grid Compute Utility [38] where users
pay the price for the compute capacity they actually consume.
Guaranteeing the fairness of allocation to the users in such fixed
price settings is an important and difficult problem.
To provide fairness to all the jobs in the system i.e. to
find an allocation of jobs to computers that yields an equal or
approximately equal expected response time for all the jobs (of
approximately the same size), we use the framework provided by
cooperative game theory. To provide fairness to all the users in
the distributed system i.e. to find an allocation of users’ jobs to
computers that yields an equal or approximately equal expected
response time for all the users (with jobs of approximately the
same size), we use the framework provided by non-cooperative
game theory.

We assume all jobs are of the same size in terms of the
computation time required to be executed by the slowest
computer. In the case where there exist jobs of unequal size then
we assume that they are divisible. We thus assume that they are
divided into jobs of the same size before they are scheduled for
execution.

We perform simulations with various system loads and
configurations to evaluate the performance of the proposed load
balancing schemes. For comparison, we also implemented other
representative static load balancing schemes. These static schemes
are: (i) schemes that yield the system-wide optimal expected
response time which are used as baseline schemes for our
experiments (OPTIM [26] (whichminimizes the expected response
time of all the jobs in a single-class job system) and GOS [25]
(which minimizes the expected response time of all the jobs in
a multi-class job system)); and (b) schemes which allocate jobs
to computers in proportion to their computing power and yield
the worst expected response time of the static schemes in the
literature (PROP [8] (which allocates the jobs to the computers
in proportion to their processing speeds in a single-class job
system) and PROP_M [8] (which allocates the users’ jobs to the
computers in proportion to their processing speeds in amulti-class
job system)). We show that the proposed load balancing schemes
not only provide fairness but also perform near the system-wide
optimal load balancing schemes.

1.4. Related work

Extensive studies have been made on the static load balancing
problem in single-class and multi-class job distributed systems
([51,26,31,50,22,30,32,33,37,43,1,6] and references there-in).Most
of the above used the global approach, where the focus is on
minimizing the expected response time of the entire system over
all the jobs. Different network configurations were considered and
the problemwas formulated as a non-linear optimization problem
and as a polymatroid optimization problem. The schemes that
implement the global approach determine a load allocation to
obtain a system-wide optimal response time and the fairness of
allocation was not considered.

Load balancing for single-class jobs based on cooperative game
theory has been studied in [20,19]. However, the communication
costs were not taken into account in the above studies and the
effect of system size and communication time on the proposed
scheme were not studied. In this paper, we study game-theoretic
load balancing schemes for both single-class and multi-class job
systems by taking the communication costs into account and study
the effect of system size and communication time on the proposed
schemes.

Preliminary results based on cooperative game theory for
single-class job systems by taking the communication subsystem
into account can be found in [40]. Here, we evaluate the perfor-
mance of the proposed cooperative scheme (CCOOP) using 32 com-
puters compared to 16 computers in [40]. Also, in this paper, the
effect of system size and the communication time on CCOOP are
studied, the performancemetrics and other implemented schemes
are explained in more detail, and a numerical example illustrat-
ing CCOOP is provided. In this paper, we also study the NCOOPC
load balancing scheme for multi-class job systems based on

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 539
non-cooperative game theory. The objective of NCOOPC is to pro-
vide fairness to all the users in the system in terms of their ex-
pected response time. The performance ofNCOOPC is evaluatedwith
32 computers and 20 users. The effect of system utilization, het-
erogeneity, system size, and communication time on NCOOPC are
studied and a numerical example illustrating NCOOPC is also pro-
vided. The proof for computing the best response of the users for
Nash equilibrium is also presented.

There exist only a few studies that use the non-cooperative ap-
proach for load balancing in distributed systems. Kameda et al. [22]
derived load balancing algorithms for single and multi-class jobs
using non-cooperative games based on Wardrop equilibrium. In
this case each of the infinitely many jobs optimizes its own re-
sponse time independently of the others and they all eventu-
ally reach an equilibrium. However, under certain conditions [11]
this equilibrium load allocation provides a sub-optimal system-
wide response time. Non-cooperative load balancing for finitely
many jobs based on Nash equilibrium was studied in [18]. How-
ever, the communication subsystem was not taken into account.
The problem was formulated as a Stackelberg game in [44] and
was shown that it is NP-hard to compute the optimal Stackel-
berg allocation strategy. Extensive studies weremade on the prob-
lem of routing traffic in networks using non-cooperative game
models ([3,28,35,39,12,27] and references there-in) and game
theory was also used to model grid systems ([29,23,45,49,48]
and references there-in) and for price-based job allocation in dis-
tributed systems [16,17,54]. Preliminary results for job allocation
in grid systems based on non-cooperative game theory by taking
the communication subsystem into account can be found in [41].

In [15], a workload allocation policy (MMP) for heterogeneous
systems is studiedwhose objective is to provide fairness to the jobs
in the system. More specifically, MMPminimizes or eliminates the
difference in expected response times at the fastest and slowest
computers. It was shown that fairness is achieved at the expense of
a tolerable increase in the overall system expected response time.
MMP assumes that all the jobs are of the same type (or belong to
the same class) and does not take into account the communication
costs for transferring jobs.

CCOOP and NCOOPC (studied in this paper) provide fairness
to the jobs and the users respectively and the performance of
CCOOP and NCOOPC are very close to OPTIM and GOS respectively
for low and medium system loads (OPTIM and GOS provide the
minimum overall expected response time for single and multi-
class job distributed systems respectively). CCOOP and NCOOPC
perform significantly better than PROP and PROP_M respectively
for high system loads (PROP and PROP_M are not optimal and in
simulations they yield the worst overall expected response time
for single and multi-class job distributed systems respectively).

In [49], a load balancing scheme (GT) based on game theory
for computational grids was proposed. GT is dynamic in nature
as it responds to changes in system states during runtime.
Experimental results showed that GT provides fairness to the grid
users but with an increase in the overall system expected response
time. However, as the overheads for transferring the system
state information between the nodes increase, the efficiency and
fairness of GT decreases. In [49], GT was only compared with
PROP_M (denoted by PS in [49]) and not with any optimal schemes
(e.g. GOS).

Significant results on workload heterogeneity for task schedul-
ing in distributed systems have been published ([24,7,2] and ref-
erences there-in). In this paper, we consider a work model on job
scheduling in heterogeneous computer systems. A job may consist
of one ormore tasks. A job is ready to be executed,when all its tasks
are ready for execution. Jobs in this paper may belong to different
users and differ in their arrival rates.
Processor

βi

φi

xji
xij

node 2

node i

node 1 node n

Communication Network

Fig. 1. Distributed system model for single-class jobs.

1.5. Organization

The rest of the paper is organized as follows. In Section 2, we
study the load balancing for single-class jobs based on cooperative
game theory. In Section 3, we study the load balancing for multi-
user jobs based on non-cooperative game theory. The performance
of the proposed cooperative and non-cooperative load balancing
schemes is evaluated in Sections 4 and 5 respectively. Conclusions
are drawn and future research directions are presented in
Section 6.

2. Cooperative load balancing for single-class jobs

2.1. System model

We consider a distributed system model with n nodes
(computers) connected by a communication network as shown
in Fig. 1. The terminology and assumptions used are as follows:
The nodes and the communication network are modeled as
M/M/1 queuing systems [21]. In these queuing systems, the inter-
arrival times and the service (processing) times are exponentially
distributed and jobs arrive in a single queue (which is assumed to
have infinite capacity) to a single computing resource with a First
Come, First Served service discipline.

The following entities characterizeM/M/1 queuing systems.We
denote (i) the external job arrival rate at node i (i.e. the number
of external jobs arriving at node i per unit time) by φi, (ii) the
total external job arrival rate of the system (i.e. the total number
of external jobs arriving into the system per unit time) by Φ (so,
Φ =

∑n
i=1 φi), (iii) the maximum processing rate of node i (i.e. the

maximum number of jobs that can be processed at node i per unit
time) by µi, (iv) the job processing rate (or load) allocated by the
load balancing scheme for node i (i.e. the number of jobs that are
to be processed at node i per unit time) by βi, and (v) the job flow
rate from node i to node j (i.e. the number of jobs sent from i to j
per unit time) by xij.

A job arriving at node i may be either processed at node i or
transferred to another node j through the communication network
for remote processing. The decision of transferring a job does not
depend on the state of the system and hence is static in nature. A
job transferred from node i to node j receives its service at node j
and is not transferred to other nodes. If a node i sends (receives)
jobs to (from) node j, node j does not send (receive) jobs to (from)
node i.

The response time of a job in a system as above consists of a
node delay (queuing delay + processing delay) at the processing
node and also some possible communication delay incurred due to
a job transfer. Let themeannodedelay for a job at node ibedenoted
by Di(βi). Modeling each node as an M/M/1 queuing system [21],

Di(βi) =
1

µi − βi
, i = 1, . . . , n. (1)

540 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555
We assume that the expected communication delay from node
i to node j is independent of the source-destination pair (i, j) but
may depend on the total traffic through the network denoted by λ
where λ =

∑n
i=1
∑n

j=1 xij. Let the mean communication delay for
a job be denoted by G(λ). Modeling the communication network
as an M/M/1 queuing system [21],

G(λ) =
t

1− tλ
, λ <

1
t

(2)

where t is the mean communication time for sending or receiving
a job. Note that Di(βi) and G(λ) are increasing positive functions.

We also assume that the communication delay incurred as a
result of sending a job directly from node i to node j is less than or
equal to the sum of the delays from node i to node k and from node
k to node j. Based on this, we classify the nodes in the following
way similar to [51]:
– Sink (S): Only receives jobs from other nodes but does not send

out any jobs.
– Idle source (Rd): Does not process any jobs (βi = 0) and sends

all the jobs to other nodes. Does not receive any jobs from other
nodes.

– Active source (Ra): Processes a part of the jobs that arrive and
sends the remaining jobs to other nodes. But, it does not receive
any jobs.

– Neutral (N): Processes jobs locally without sending or receiving
jobs.

The network traffic λ can be expressed in terms of the variable
βi as: λ = 1

2

∑n
i=1 |φi − βi|.

We define the differential node delay (di), differential commu-
nication delay (g), and inverse of differential node delay (d−1i) as
follows:

di(βi) =
∂

∂βi
lnDi(βi) =

1
µi − βi

(3)

g(λ) =
∂

∂λ
lnG(λ) =

t
(1− tλ)

(4)

d−1i (x) =


µi −

1
x
, if x >

1
µi

0, if x ≤
1
µi
.

(5)

Remark 2.1. di(βi) and g(λ) are increasing positive functions
based on our assumptions on Di(βi) and G(λ).

2.2. Cooperative load balancing

In this section, we formulate the load balancing problem as a
cooperative game among the computers and the communication
network.We consider an n+1 player gamewhere the n computers
try to minimize their mean node delays Di(βi) and the (n +
1)th player, the communication subsystem, tries to minimize the
expected communication delay G(λ). So, the objective function for
each computer i, i = 1, . . . , n can be expressed as:

fi(X) = Di(βi) (6)

and the objective function for the communication subsystem can
be expressed as:

fn+1(X) = G(λ) (7)

where X = [β1, . . . , βn, λ]
T is the set of strategies of the n + 1

players.

Definition 2.1 (The Cooperative Load Balancing Game). The cooper-
ative load balancing game consists of:
– n computers and the communication subsystem as players.
– The set of strategies, X , is defined by the following constraints:

Stability : βi < µi, i = 1, . . . , n (8)

Conservation :
n−

i=1

βi =

n−
i=1

φi = Φ, (9)

Positivity : βi ≥ 0, i = 1, . . . , n. (10)

– For each computer i, i = 1, . . . , n, the objective function fi(X) =
Di(βi); for the communication subsystem, the objective function
fn+1(X) = G(λ); X = [β1, . . . , βn, λ]

T . The goal is to minimize
simultaneously all fi(X), i = 1, . . . , n+ 1.

– For each player i, i = 1, . . . , n + 1, the initial performance
u0
i = fi(X0), where X0 is a zero vector of length n+ 1.

Remark 2.2. In the above definition, we can assume that βi ≤ µ̂i
to satisfy the compactness requirement for X where µ̂i = µi − ϵ
for a small ϵ > 0. We ignore this condition for simplicity. We also
assume that all the players in the above game are able to achieve
performance strictly superior to their initial performance.

Theorem 2.1. For the cooperative load balancing gamedefined above
there is a unique bargaining point and the bargaining solutions are
determined by solving the following optimization problem:

min
X


G(λ)

n∏
i=1

Di(βi)


(11)

subject to the constraints (8)–(10).

Proof. In Appendix A. �

Theorem 2.2. For the cooperative load balancing game defined
above the bargaining solution is determined by solving the following
optimization problem:

min
X


n−

i=1

lnDi(βi)+ lnG(λ)


(12)

subject to the constraints (8)–(10).

Proof. In Appendix A. �

Theorem 2.3. The solution to the optimization problem in Theo-
rem 2.2 satisfies the relations

di(βi) ≥ α + g(λ), βi = 0 (i ∈ Rd),

di(βi) = α + g(λ), 0 < βi < φi (i ∈ Ra),

α + g(λ) ≥ di(βi) ≥ α, βi = φi (i ∈ N),
di(βi) = α, βi > φi (i ∈ S),

(13)

subject to the total flow constraint,−
i∈S

d−1i (α)+
−
i∈N

φi +
−
i∈Ra

d−1i (α + g(λ)) = Φ (14)

where α is the Lagrange multiplier.

Proof. In Appendix A. �

The relations in Theorem 2.3 can be interpreted as follows:
The differential node delays of all sinks are the same (i.e. α).
The differential node delays of all active sources are equal; they
consist of the differential node delay at a sink and the differential
communication delay due to sending a job through the network
to a sink. The differential node delay for neutrals is not less
than the differential node delay of sinks but not greater than the
differential node delay of active sources. The differential node
delay for idle sources is not less than the differential node delay of
active sources; this makes idle sources send all their jobs to sinks.

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 541
Since obtaining a closed form solution for α from Eq. (14) is
not possible, we use a simple method such as a binary search
to solve Eq. (14) iteratively for α as in [26]. This is described in
the CCOOP algorithm below. Using the α in an iteration of the
binary search, a set of sink (S(α)) and source nodes (Rd(α) and
Ra(α)) are determined and it is checked whether the traffic from
the set of source nodes (λR(α)) equals the traffic into the set of
sink nodes (λS(α)), in which case an optimal α is found. The set
of neutral nodes are denoted by N(α). (S(α), Rd(α), Ra(α), N(α),
λS(α), and λR(α) are defined in Definition A.4 in Appendix A.)
In the following, we present an algorithm (CCOOP) for obtaining
the Nash Bargaining Solution for our cooperative load balancing
game.
CCOOP algorithm:

Input:
Node processing rates: µ1, µ2, . . . µn;
Node job arrival rates: φ1, φ2, . . . φn;
Mean communication time: t .

Output:
Load allocation to the nodes: β1, β2, . . . βn.

1. Initialization: βi ← φi; i ∈ N; i = 1, . . . , n.
2. Sort the computers such that d1(φ1) ≤ d2(φ2) ≤ . . . ≤

dn(φn). If d1(φ1)+ g(0) ≥ dn(φn), STOP. (No load balancing
is required)

3. Determine α (using a binary search):
a← d1(φ1)
b← dn(φn)
while(1) do

λS(α)← 0
λR(α)← 0
α← a+b

2
Calculate: S(α), λS(α), Rd(α), Ra(α), and λR(α)
(eqs. (72)–(76)) in the order given for i = 1, . . . , n
If (|λS(α)− λR(α)| < ϵ) EXIT
If (λS(α) > λR(α))

b← α
else
a← α

4. Determine the loads on the computers:
βi ← 0, for i ∈ Rd(α)
βi ← d−1i (α + g(λ)), for i ∈ Ra(α)

βi ← d−1i (α), for i ∈ S(α)
βi ← φi, for i ∈ N(α)

The following remark describes the stopping criteria and the
time complexity of CCOOP.

Remark 2.3. (i) In step 2, we STOP when the total (node+ com-
munication) time for a job to be transferred from a more pow-
erful to a less powerful node exceeds the node time on the less
powerful node, if the network traffic equals 0. This means that
a job will run faster on the ‘origin’ node than if transferred to a
different node.

(ii) The running time of this algorithm is O(n log n + n log 1/ϵ),
where ϵ denotes the acceptable tolerance used for computing
α in step 3 of the algorithm.

The following remark describes the implementation of CCOOP
in practice.

Remark 2.4. The CCOOP algorithm must be run periodically or
when the system parameters (system load) change in order to
recompute a new load allocation. For example, the job arrival rate
at a node can be estimated by considering the number of arrivals
over a fixed interval of time. When the arrival rates change above
some threshold, then the algorithm can be restarted to compute
the new loads for each computer.
Processor

x x

node 2

node i

node 1 node n

β i

φ i

j

j

ri ir

jj

Communication Network

Fig. 2. Distributed system model for multi-user jobs.

The following example describes the CCOOP algorithm for a
system of 3 nodes.

Example 2.1. In this example, we apply CCOOP algorithm to a
system of 3 nodes. Let the processing rates of the nodes be µ1 =

10, µ2 = 20, and µ3 = 40. Let the job arrival rates to the nodes
be φ1 = 8, φ2 = 5, and φ3 = 2. Let the mean communication
time be 0.001 s. Step 1 initializes the loads on the nodes to β1 = 8,
β2 = 5, and β3 = 2. After sorting the nodes in step 2 we have
d3(2) ≤ d2(5) ≤ d1(8) and d3(2)+g(0) = 0.026+0.001 = 0.027.
d1(8) = 0.5. Since, d3(2)+g(0) < d1(8) the algorithmproceeds to
step 3. In step 3, α is determined using a binary search. Initial value
of α will be 0.263 and the final value of α after exiting the ‘while’
loop is 0.04 and λS = λR = λ = 13 (ϵ is assumed to be 10−5). Step
4 determines the final loads for the nodes as β1 = 0, β2 = 0, and
β3 = 15. Thus, node 3 is a sink and node’s 1 and 2 are idle source
nodes. �

3. Non-cooperative load balancing for multi-user jobs

3.1. System model

We consider a distributed systemmodel as shown in Fig. 2. The
system has n nodes (computers) connected by a communication
network. The nodes and the communication network are modeled
as M/M/1 queuing systems [21]. Jobs arriving at each node may
belong tom different users.

The terminology and notations used are as follows: We denote
(i) the external job arrival rate of user j to node i (i.e. the number
of external jobs of user j arriving at node i per unit time) by φj

i ,

(ii) the total job arrival rate of user j by φj

so, φj

=
∑n

i=1 φ
j
i


, (iii)

the total job arrival rate of the system by Φ

so,Φ =

∑m
j=1 φ

j

,

(iv) the maximum processing rate of node i (i.e. the maximum
number of jobs that can be processed at node i per unit time)
by µi, (v) the job processing rate (or load) of user j allocated by
the load balancing scheme for node i (i.e. the number of jobs of
user j that are to be processed at node i per unit time) by β j

i ,
(vi) the vector of loads at node i from user’s 1, . . . ,m by βi =

[β1
i , β

2
i , . . . , β

m
i]

T , (vii) the load vector of all nodes i = 1, . . . , n
(from all user’s 1, . . . ,m) by β = [β1, β2, . . . , βn]

T , (viii) the
vector of loads of user k allocated to nodes 1, . . . , n by βk

=

[βk
1, β

k
2, . . . , β

k
n]

T , (ix) the job flow rate of user j from node r to
node s (i.e. the number of jobs of user j sent from i to j per unit
time) by xjrs, (x) the job traffic through the network of user j by
λj


λj =

∑n
r=1

∑n
s=1 x

j
rs, λ = [λ

1, λ2, . . . , λm]T , λ =
∑m

j=1 λ
j

,

and (xi) the mean communication time for sending or receiving a
job from one node to another for any user by t .

A job arriving at node i may be either processed at node i or
transferred to a neighboring node j for remote processing through

542 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555
the communication network and is not transferred to any further
nodes. The decision of transferring a job does not depend on the
state of the system and hence is static in nature. If a node i sends
(receives) jobs to (from) node j, node j does not send (receive) jobs
to (from) node i.

For each user j, nodes are classified into the following as in [25]:

– Idle source (Rj
d): does not process any user j jobs (β j

i = 0).
– Active source (Rj

a): processes some of the user j jobs that arrive
and it sends the remaining user j jobs to other nodes. But, it does
not receive any user j jobs from other nodes.

– Neutral (N j): processes user j jobs locally without sending or
receiving user j jobs.

– Sink (S j): only receives user j jobs from other nodes but it does
not send out any user j jobs.

Assuming that each node is modeled as an M/M/1 queuing
system, the mean node delay for an user j job processed at node
i is given by:

F j
i (βi) =

1
µi −

m∑
k=1
βk
i

 . (15)

We assume that the expected communication delay of a job
from node r to node s is independent of the source-destination
pair (r, s) but may depend on the total traffic through the net-
work denoted by λ where λ =

∑m
j=1 λ

j. Modeling the com-
munication network as an M/M/1 queuing system, the expected
communication delay of an user j (j = 1, . . . ,m) job is given
by:

Gj(λ) =
t

1− t
m∑

k=1
λk
 , m−

k=1

λk <
1
t
. (16)

Remark 3.1. F j
i (βi) and Gj(λ) are increasing positive functions.

The network traffic of user j can be expressed in terms of the
variable β j

i as: λ
j
=

1
2

∑n
i=1 |φ

j
i − β

j
i |.

Thus, the overall expected response time of user j is given by:

Dj(β) =
1
φj

n−
i=1

β
j
iF

j
i (βi)+

λj

φj
Gj(λ)

=
1
φj

n−
i=1

β
j
i

µi −
m∑

k=1
βk
i

 + λjt

φj


1− t

m∑
k=1
λk
 . (17)

3.2. Non-cooperative game among the users

In this section, we formulate the load balancing problem as a
non-cooperative game among the users. We use the game theory
terminology introduced in [18]. Each user j (j = 1, . . . ,m)
must find the workload (β j

i) that is assigned to computer i such
that the expected response time of her/his own jobs (Dj(β)) is
minimized. The vector β j

= [β
j
1, β

j
2, . . . , β

j
n] is called the load

balancing strategy of user j (j = 1, . . . ,m) and the vector β∗ =
[β1, β2, . . . , βm

] is called the strategy profile of the load balancing
game. The strategy of user j depends on the load balancing
strategies of the other users.

The assumptions for the existence of a feasible strategy profile
are as follows:

(i) Positivity: β j
i ≥ 0, i = 1, . . . , n, j = 1, . . . ,m;
(ii) Conservation:
∑n

i=1 β
j
i = φ

j, j = 1, . . . ,m;
(iii) Stability:

∑m
j=1 β

j
i < µi, i = 1, . . . , n.

A Non-cooperative load balancing game consists of a set of
players, a set of strategies, and preferences over the set of strategy
profiles:
(i) Players: Them users.
(ii) Strategies: Each user’s set of feasible load balancing strategies.
(iii) Preferences: Each user’s preferences are represented by her/his

expected response time (Dj). Each user j prefers the strategy
profile β∗ to the strategy profile β∗′ if and only if Dj(β∗) <
Dj(β∗′).

Weneed to solve the above game for our load balancing scheme.
A solution can be obtained at the Nash equilibrium [14] which is
defined as follows.

Definition 3.1 (Nash Equilibrium). A Nash equilibrium of the load
balancing game defined above is a strategy profile β∗ such that for
every user j (j = 1, . . . ,m):

βj
∈ argmin

β̃
j
Dj(β1, . . . , β̃

j
, . . . ,βm). (18)

At theNash equilibrium, a user j cannot further decrease her/his
expected response time by choosing a different load balancing
strategywhen the other users’ strategies are fixed. The equilibrium
strategy profile can be found when each user’s load balancing
strategy is a best response to the other users’ strategies.

The best response for user j, is a solution to the following
optimization problem (BRj):

min
βj

Dj(β) (19)

subject to the constraints:

β
j
i ≥ 0, i = 1, . . . , n (20)
n−

i=1

β
j
i = φ

j (21)

m−
j=1

β
j
i < µi, i = 1, . . . , n. (22)

Remark 3.2. In finding the solution to BRj, the strategies of all
the other users are kept fixed and so the variables in BRj are the
workloads of user j, i.e. βj

= (β
j
1, β

j
2, . . . , β

j
n).

In order to solve the optimization problem in Eq. (19), for each
user j, we define the differential node delay (f ji), the differential
communication delay (g j), and the inverse of the differential node
delay ((f ji)

−1) as follows:

f ji (βi) =
∂

∂β
j
i

[β
j
iF

j
i (βi)] =

µ
j
i

(µ
j
i − β

j
i)

2
(23)

where µj
i = µi −

∑m
k=1,k≠j β

k
i .

g j(λ) =
∂

∂λj
[λjGj(λ)] =

tg−j
(g−j − tλj)2

(24)

where g−j =

1− t

∑m
k=1,k≠j λ

k

.

(f ji)
−1(βi|β ji=x

) =



µj
i −


µ

j
i

x

 , if x >
1

µ
j
i

0, if x ≤
1

µ
j
i

.

(25)

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 543
The best response strategy of user j, which is the solution of BRj,
is given in the following theorem.

Theorem 3.1. The solution to the optimization problem BRj satisfies
the relations

f ji (βi) ≥ α
j
+ g j(λ), β

j
i = 0 (i ∈ Rj

d),

f ji (βi) = α
j
+ g j(λ), 0 < β

j
i < φ

j
i (i ∈ Rj

a),

αj
+ g j(λ) ≥ f ji (βi) ≥ α

j, β
j
i = φ

j
i (i ∈ N j),

f ji (βi) = α
j, β

j
i > φ

j
i (i ∈ S j),

(26)

subject to the total flow constraint,−
i∈Sj
(f ji)
−1(βi|β ji=α

j)+
−
i∈N j

φ
j
i +

−
i∈Rja

(f ji)
−1(βi|β ji=α

j+g j(λ)) = φ
j (27)

where αj is the Lagrange multiplier.

Proof. In Appendix B. �

The relations in Theorem 3.1 can be interpreted as follows: For
each user j: the differential node delays of all sinks are the same;
the differential node delays of all active sources are equal; they
consist of the differential node delay at a sink and the differential
communication delay due to sending a job through the network to
a sink. The differential node delay for neutrals is not less than the
differential node delay of sinks but not greater than the differential
node delay of active sources; and the differential node delay for idle
sources is not less than the differential node delay of active sources.

Since it is not possible to obtain a closed form solution for αj

from Eq. (27), we use a binary search to solve Eq. (27) iteratively
for αj similar to [25]. This is described in the BEST-RESPONSE
algorithm below. Using the αj in an iteration of the binary search,
a set of sink (S j(αj)) and source nodes (Rj

d(α
j) and Rj

a(α
j)) for a user

are determined and it is checkedwhether the traffic from the set of
source nodes (λjR(α

j)) equals the traffic into the set of sink nodes
(λjS(α

j)), in which case an optimal αj is found. The set of neutral
nodes are denoted by N j(αj). (S j(αj), Rj

d(α
j), Rj

a(α
j), N j(αj), λjS(α

j),
and λjR(α

j) are defined in Definition B.1 in Appendix B.)
In the following, we present an algorithm for determining user

j’s best response strategy.

BEST-RESPONSE algorithm:
Input: φj, β, λ, µ1, . . . , µn.
Output: β j.
1. Initialization: β j

i ← φ
j
i ; i ∈ N j; i = 1, . . . , n.

2. Sort the computers such that f j1(β1|β j1=φ
j
1
) ≤ . . . ≤

f jn(βn|β jn=φ
j
n
). If f j1(β1|β j1=φ

j
1
)+ g j(λ|λj=0) ≥ f jn(βn|β jn=φ

j
n
),

STOP. (No load balancing is required)
3. Determine αj (using a binary search):

a← f j1(β1|β j1=φ
j
1
)

b← f jn(βn|β jn=φ
j
n
)

while(1) do
λ
j
S(α

j)← 0
λ
j
R(α

j)← 0
αj
←

a+b
2

Calculate: S j(αj), λ
j
S(α

j), Rj
d(α

j), Rj
a(α

j), and λjR(α
j)

(eqs. (103)–(107)) in the order given for i = 1, . . . , n
If (|λjS(α

j)− λ
j
R(α

j)| < ϵ) EXIT
If (λjS(α
j) > λ

j
R(α

j))
b← αj

else
a← αj

4. Determine user j’s loads on the computers:
β

j
i ← 0, for i ∈ Rj

d(α
j)

β
j
i ← (f ji)

−1
(βi|β ji=α

j+g j(λ)), for i ∈ Rj
a(α

j)

β
j
i ← (f ji)

−1
(βi|β ji=α

j), for i ∈ S j(αj)

β
j
i ← φ

j
i , for i ∈ N j(αj)

The following remark proves the correctness of BEST-RESPONSE
algorithm.

Remark 3.3 (Correctness of BEST-RESPONSE Algorithm). In the
above BEST-RESPONSE algorithm, the ‘while’ loop in step 3
computes an optimal αj which partitions the nodes into Idle
Sources, Active Sources, Neutrals, and Sinks. Once the partition is
known, the loads for user j on various nodes are computed in step 4.
These are in accordancewith Theorem 3.1. Thus the load balancing
strategy computed by the BEST-RESPONSE algorithm solves the
optimization problem BRj and its solution is the best response
strategy of user j.

The following remark describes the time complexity of BEST-
RESPONSE algorithm.

Remark 3.4. The running time of BEST-RESPONSE algorithm is
O(n log n + n log 1/ϵ), where ϵ denotes the tolerance used for
computing αj in step 3 of the algorithm. The available processing
rate at each computer (‘‘i’’) as seen by a user (‘‘j’’) (i.e. µj

i in Eq.
(23)) used in the above algorithm can be determined by statistical
estimation of the run queue length of each node.

In order to obtain the equilibrium allocation, we need an
iterative algorithm where each user updates her/his strategies (by
computing her/his best response) periodically by fixing the other
users’ strategies. We can set a virtual ring topology of the users to
communicate and iteratively apply the BEST-RESPONSE algorithm
to compute the Nash equilibrium.

In the following we present an iterative algorithm (NCOOPC)
for computing the Nash equilibrium for our non-cooperative load
balancing game. One of the users can initiate the algorithm
(initiating user) who calculates her/his initial strategies by fixing
the other users’ strategies to zero (or by requesting the other users
for their initial strategies). An iteration is said to be complete if this
initiating user receives amessage fromher/his left neighbor. She/he
then checks if the error norm is less than a tolerance in which case
she/he sends a terminatingmessage to her/his right neighbor to be
propagated around the ring.

NCOOPC distributed load balancing algorithm:
Each user j, j = 1, . . . ,m in the ring performs the following

steps in each iteration:

1. Receive the current strategies of all the other users from the left
neighbor.

2. If the message is a termination message, then pass the
termination message to the right neighbor and EXIT.

3. Update the strategies (β j) by calling the BEST-RESPONSE.
4. Calculate Dj (Eq. (17)) and update the error norm.
5. Send the updated strategies and the error norm to the right

neighbor.

544 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555
An important question is if such best response-based algorithms
converge to the Nash equilibrium. There exists results about
the convergence of such algorithms in the context of routing in
parallel links [39,27]. For our load balancing game there exists a
unique Nash equilibrium because the objective functions of the
players are continuous, convex, and increasing. Orda et al. [39,27]
proved that if the objective functions are continuous, convex, and
increasing there exists a unique Nash equilibrium for the game.
Our simulations of NCOOPC algorithm with different settings in
Section 5 confirm the theoretical results.

The following remark describes the implementation of NCOOPC
in practice.

Remark 3.5. In practice, the NCOOPC algorithm could be imple-
mented by the scheduling agent (process) associated with each
user. Users (or agents) will use the strategies that are computed at
the Nash equilibrium and the system remains in equilibrium. This
equilibrium is maintained until a new execution of the algorithm
is initiated. The scheduling agent of a user communicates with
the agents of other users and makes the allocation decisions. The
NCOOPC algorithm can be restarted periodically by the schedul-
ing agents when the system parameters (or system load) change
above some threshold.When the job arrival rate at a node changes,
then the job queue length at that node also changes. The schedul-
ing agent can estimate the job arrival rate of the user to a node by
considering the number of arrivals over a fixed interval of time.

The following example describes the NCOOPC and BEST-
RESPONSE algorithms for a system of 3 nodes and 2 users.

Example 3.1. In this example, we apply the NCOOPC distributed
load balancing algorithm to a system of 3 nodes and 2 users. Let the
processing rates of the nodes be µ1 = 5, µ2 = 10, and µ3 = 15;
the job arrival rates of user 1 to the nodes be φ1

1 = 3, φ1
2 = 2,

and φ1
3 = 7; the job arrival rates of user 2 to the nodes be φ2

1 =

1, φ2
2 = 5, and φ2

3 = 4; and the mean communication time be
0.001 s.

In iteration 1 of NCOOPC, user 1 receives the initial strategies
of user 2 (i.e. β2

1 = 1, β2
2 = 5, and β2

3 = 4 (the initial
strategies of each user are their own arrival rates)) and updates
her/his strategies by calling the BEST-RESPONSE (BR) algorithm
as follows: BR step 1 initializes user 1’s loads on the computers
to β1

1 = 3, β1
2 = 2, and β1

3 = 7. After sorting the nodes
in BR step 2 we have f 12 ([2, 5]) < f 13 ([7, 4]) < f 11 ([3, 1]) and
f 12 ([2, 5]) + g1([0, 0]) = 0.55 + 0.001 < f 11 ([3, 1]) = 4.0. So,
the BR algorithm proceeds to step 3. In BR step 3, α1 is determined
using a binary search. Initial value of α1 is 2.27 and the final value
ofα1 after exiting the ‘while’ loop is 0.89 andλ1S = λ

1
R = λ

1
= 1.11

(ϵ is assumed to be 10−5). BR step 4 determines the final loads for
user 1 as β1

1 = 2.63, β1
2 = 7.48, and β1

3 = 1.88. User 1 checks
for the error norm and sends her/his updated strategies (loads) to
user 2.

User 2 receives the current strategies of user 1 and updates
her/his strategies by calling the BEST-RESPONSE (BR) algorithm as
follows: BR step 1 initializes user 2’s loads on the computers to
β2
1 = 1, β2

2 = 5, and β2
3 = 4. After sorting the nodes in BR

step 2 we have f 22 ([7.48, 5]) < f 23 ([1.88, 4]) < f 21 ([2.63, 1]) and
f 22 ([7.48, 5]) + g2([1.11, 0]) = 0.60 + 0.001 < f 21 ([2.63, 1]) =
1.31. So, the BR algorithm proceeds to step 3. In BR step 3, α2 is
determined using a binary search. Initial value of α2 is 0.96 and
the final value of α2 after exiting the ‘while’ loop is 0.81 and λ2S =
λ2R = λ

2
= 0.63. BR step 4 determines the final loads for user 2 as

β2
1 = 4.47, β2

2 = 1.16, and β2
3 = 4.36. User 2 updates the error

norm and sends her/his updated strategies (loads) and error norm
to user 1.
In iteration 2 of NCOOPC, user 1 updates her/his loads by calling
the BR algorithm using the loads of user 2 from iteration 1, checks
for the error norm, and passes the updated loads to user 2. User
2 now updates her/his loads using the updated loads of user 1,
updates the error norm, and passes the updated loads and error
norm to user 1. This process continues until the desired error norm
is reached (10 iterations in this example). The final loads of user 1
are β1

1 = 1.67, β1
2 = 3.95, and β1

3 = 6.37, and the final loads of
user 2 are β2

1 = 1.30, β2
2 = 3.32, and β2

3 = 5.37. Thus, for user 1,
node 1 is an active source, node 2 is a sink, and node 3 is an active
source, and for user 2 node 1 is a sink, node 2 is an active source,
and node 3 is a sink. �

4. Performance evaluation of CCOOP

We perform simulations to evaluate the performance of the
CCOOP scheme. The system parameters that are used in the exper-
iments below are obtained using Sim++ [9] simulation software
package. The performance metrics used in our simulations are the
expected response time and the fairness index. The fairness index [21],

I(D) =

[
n∑

i=1
Di

]2
n

n∑
i=1

D2
i

(28)

is used to quantify the fairness of load balancing schemes. Here
the input D is the vector D = (D1,D2, . . . ,Dn) where Di is the
expected response time of jobs that are processed at computer
i. This index is a measure of the ‘equality’ of response times at
different computers. If all the computers have the same expected
job response time, then I = 1 and the system is 100% fair to all jobs
and it is load-balanced. If the differences onDi increase, I decreases
and the load balancing scheme favors only some jobs.

We perform simulations to study the impact of system
utilization, heterogeneity, system size, and communication time
on the performance of the proposed scheme. We describe the
system configuration and simulation setup for each of the above
factors in the subsections corresponding to them. We also
implemented the following static load balancing schemes for
comparison purposes.
– Overall Optimal Scheme (OPTIM) [26]: This scheme minimizes

the expected response time over all the jobs executed by the
system. The loads (βi) at each computer are obtained by solving
the following non-linear optimization problem:

min
1
Φ


n−

i=1

βiDi(βi)+ λG(λ)


, (29)

subject to the constraints (8)–(10).
The centralized algorithm for obtaining the loads is given

in [26]. This scheme provides a system optimal solution but is
unfair.

– Proportional Scheme (PROP) [8]: This scheme allocates the jobs
to the computers in proportion to their processing speeds as
follows:

βi ←− Φ
µi
n∑

j=1
µj

. (30)

The allocationmay not minimize the overall expected response
time of the system and is unfair.
In the following we present and discuss the simulation results.

4.1. Effect of system utilization

System utilization (ρ) represents the amount of load on the
system. It is defined as the ratio of the total arrival rate to the

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 545

E
xp

ec
te

d
R

es
po

ns
e

Ti
m

e
(s

ec
)

System Utilization(%)

CCOOP
OPTIM
PROP

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 10 20 30 40 50 60 70 80 90

F
ai

rn
es

s
In

de
x

I

System Utilization(%)

CCOOP
OPTIM
PROP

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

 1.1

 10 20 30 40 50 60 70 80 90

(a) Expected response time. (b) Fairness index.

Fig. 3. Effect of system utilization.
Table 1
System configuration.

Relative processing rate 1 5 10 15 20 25
Number of computers 6 6 6 4 4 6
Processing rate (jobs/s) 10 50 100 150 200 250

aggregate processing rate of the system:

ρ =
Φ

n∑
i=1
µi

. (31)

We simulated a heterogeneous system consisting of 32
computers to study the effect of system utilization. The system
has computers with six different processing rates. The system
configuration is shown in Table 1. The relative processing rate for
a computer is defined as the ratio of its processing rate to the
processing rate of the slowest computer in the system. For each
experiment the total job arrival rate in the systemΦ is determined
by the system utilization ρ and the aggregate processing rate of
the system. We chose fixed values for the system utilization and
determined the total job arrival rateΦ . For example, if we consider
ρ = 10% and an aggregate processing rate of 3860 jobs/s, then the
total arrival rate in the system is Φ = 386 jobs/s. The job arrival
rate for each computer φi, i = 1, . . . , 32 is determined from the
total arrival rate as φi = qiΦ , where the fractions qi are given in
Table 2. The mean communication time t is assumed to be 0.001 s.

Table 3 presents the job arrival rates to each computer (φi)
and the job processing rates (departures rates or loads) at each
computer (βi) (using the notation φi/βi) for system utilizations
ranging from 10% to 90%. φi, i = 1, . . . , 32 are calculated using
the fractions given in Table 2 and Φ as described in the above
paragraph. βi, i = 1, . . . , 32 are obtained based on the CCOOP
algorithm. The queue length for M/M/1 systems is infinite [21] and
so we assumed that no jobs are lost

∑n
i=1 φi =

∑n
i=1 βi


.

In Fig. 3(a), we present the expected response time of the
system for different values of system utilization ranging from 10%
to 90%. This corresponds to a total arrival rate ranging from 386
jobs/s to 3474 jobs/s (Table 3). It can be observed that CCOOP
performs near the OPTIM for ρ ranging from 10% to 50% and is
better than PROP for ρ ranging from 10% to 90%. For example, at
70% system utilization, the response time of CCOOP is around 16%
less than that of PROP and around 9% greater than OPTIM. The
poor performance of PROP is due to the fact that the less powerful
computers are significantly overloaded. CCOOP does not provide a
system optimal solution like OPTIM but provides a Pareto-optimal
solution.

In Fig. 3(b), we present the fairness index for different values
of system utilization. The CCOOP scheme has a fairness index of
almost 1 for any system utilization. The fairness index of OPTIM
drops from0.98 at low load to 0.69 at high load and PROPmaintains
a fairness index of 0.35 over the whole range of system loads. The
fairness achieved by CCOOP comes at the cost of increasing the
response time of the system. This increased response time is still
close to that of OPTIM as seen in Fig. 3(a) except for very high
system loads.

Fig. 4 shows the expected response time at each computer for
all the schemes at high system load (ρ = 90%). CCOOP guarantees
almost equal expected response times for all the computers. This
means that the jobs will have the same expected response time
Table 2
Job arrival fractions qi for each computer.

Computer 1–6 7–12 13 14–18 19–22 23–26 27–32

qi 0.0025 0.01 0.02 0.025 0.04 0.05 0.07
Table 3
Job arrival rates/job processing rates (loads) for each computer (Ci) for various system utilizations.

System utilization (%) C1–C6 C7–C12 C13 C14–C18 C19–C22 C23–C26 C27–C32

10 0.96/0 3.86/0 7.72/0 9.65/0 15.44/0 19.3/19.3 27.02/51.4
20 1.93/0 7.72/0 15.44/0 19.3/0 30.88/17.4 38.6/40.1 54.04/90.1
30 2.89/0 11.58/0 23.16/0 28.95/0 46.32/39.8 57.9/69.9 81.06/119.9
40 3.86/0 15.44/0 30.88/9.11 38.6/9.11 61.76/59.1 77.2/95.6 108.8/145.6
50 4.82/0 19.3/0 38.6/25.7 48.25/25.7 77.2/75.7 96.5/117.2 135.1/167.2
60 5.79/0 23.16/0 46.3/43.2 57.9/43.2 92.64/92.64 115.8/138.5 162.1/188.5
70 6.75/0 27.02/8.8 54.04/56.5 67.5/58.8 108.8/108.8 135.1/156.5 189.1/206.5
80 7.72/0 30.88/22.9 61.76/72.1 77.2/72.9 123.5/122.9 154.4/172.1 216.1/222.1
90 8.68/0 34.74/37.3 69.48/87.3 86.8/87.3 138.9/137.5 173.7/187.3 243.1/237.5

546 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555
0

1.2

1

0.8

0.6

0.4

0.2

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Computers
C1- C6 C7 - C12 C13 - C18 C19 - C22 C23 - C26 C27 - C32

CCOOP OPTIM PROP

Fig. 4. Expected response time at each computer (ρ = 90%).
Table 4
System parameters.

Speed skewness 1 4 16 36 64 100

µi of C1–C8 10 100 200 300 400 500
µi of C9–C24 10 50 50 50 50 50
µi of C25–C32 10 25 12.5 8.33 6.25 5
Φ (jobs/s) 192 1080 1500 1960 2430 2904

Table 5
Job arrival rates/job processing rates (loads) for each computer (Ci) for various
skewness levels.

Speed skewness C1–C8 C9–C24 C25–C32

4 38.33/76.9 38.33/27.6 20/2.68
16 97.5/160.5 40/13.4 10/0
36 157/242.4 40/1.28 8/0
64 217.7/303.7 40/0 6/0

100 279/362.9 40/0 4/0

independent of the allocated computers. In the case of OPTIM the
expected response times are less balanced than CCOOP but the
overall expected response time is lower than CCOOP as can be
seen from Fig. 3(a). PROP overloads the slowest computers and the
overall expected response time is increased. The difference in the
expected response time at Computer’s 1 through 6 (slowest) and
Computer’s 27 through 32 (fastest) is significant.

In the case of OPTIM and PROP, jobs are treated unfairly in the
sense that a job allocated to the fast computer will have a low
expected response time and a job allocated to a slow computerwill
have a high expected response time. CCOOPprovides a fair and load
balanced allocation which is desirable in many current distributed
systems.

4.2. Effect of heterogeneity

In this section, we study the effect of heterogeneity on
the performance of load balancing schemes. A simple way to
characterize system heterogeneity is to use the processor speed.
One of the common measures of heterogeneity is the speed
skewness [50] which is defined as the ratio of maximumprocessing
rate to minimum processing rate of the computers in the system.
We study the effectiveness of load balancing schemes by varying
the speed skewness.

We simulated a heterogeneous system of 32 computers (8 fast,
16 medium-fast, and 8 slow) to study the effect of heterogeneity.
The slow computers have a relative processing rate of 1 and the
relative processing rate of the fast and medium-fast computers is
varied from 1 (homogeneous system) to 100 and 10 respectively
Table 6
Total arrival rates.

No. of computers 2 5 8 14 20 26 32

Φ (jobs/s) 120 168 216 312 408 504 600

(highly heterogeneous system). The system utilization was kept
constant (ρ = 60%) and the mean communication time t is
assumed to be 0.001 s. In Table 4, we present the processing
rates (µi jobs/s) of the computers in the different heterogeneous
systems and the total arrival rates (Φ) of the systems. C1 through
C8 represent the fast computers, C9 through C24 represent the
medium-fast computers, and C25 through C32 represent the slow
computers. The total arrival rates (Φ) are calculated using Eq. (31).
Table 5 presents the job arrival rates to each computer (φi) and the
job processing rates (departures rates or loads) at each computer
(βi) (using the notation φi/βi) for various skewness levels. φi, i =
1, . . . , 32 are calculated as φi = qiΦ , where qi are fractions similar
to that in Table 2. βi, i = 1, . . . , 32 are obtained based on the
CCOOP algorithm.

Fig. 5(a) shows the effect of speed skewness on the expected
response time. It can be observed that as the skewness increases,
the performance of CCOOP approaches to that of OPTIM which
means that in highly heterogeneous systems CCOOP is very
effective. PROP performs poorly because it overloads the slow
computers. The performance of CCOOP is increased with an
increase in speed skewness because CCOOP idles some of the
slowest computers when the power of the fastest computers in the
system is increased.

Fig. 5(b) shows the effect of speed skewness on the fairness
index. It can be observed that CCOOP has a fairness index of
almost 1 over all range of speed skewness. This shows that
CCOOPguarantees almost equal expected response times for all the
computers. The fairness index of OPTIM and PROP drops below 1
at low skewness to 0.83 and 0.35 respectively at high skewness.

4.3. Effect of system size

An important issue is to study the influence of system size on
the performance of load balancing schemes. To study this issue we
simulated a heterogeneous distributed system consisting of four
types of computers: slow computers (relative processing rate= 1,
2 and 5) and fast computers (relative processing rate = 10). For
a system size of 2, we used two fast computers. To increase the
system size, we kept constant the number of fast computers and
increased the number of slow computers. In Table 6, we present
the total arrival rates for some of the experiments. The system

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 547

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Speed Skewness

CCOOP
OPTIM
PROP

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 20 40 60 80 100

Fa
ir

ne
ss

 In
de

x
I

Speed Skewness

CCOOP
OPTIM
PROP

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

 20 40 60 80 100

(a) Expected response time. (b) Fairness index.

Fig. 5. Effect of heterogeneity.

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Number of Computers

CCOOP

OPTIM

PROP

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fa
ir

ne
ss

 In
de

x
I

Number of Computers

CCOOP

OPTIM
PROP

 0.5

 0.6

 0.7

 0.8

 0.9

1

 1.1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

(a) Expected response time. (b) Fairness index.

Fig. 6. Effect of system size.
Table 7
Job arrival rates/job processing rates (loads) for computers for various system sizes.

System size No. of computers× φi/βi

2 1× 80/59.1, 1× 40/60.8
5 2×52/72.4, 1×40/23.1, 1×15/0, 1×9/0
8 2×44/78.7, 2×40/29.2, 2×15/0, 2×9/0

14 2×28/82.9, 4×40/33.2, 4×15/3.2, 4×9/0
20 2×12/84.6, 6×40/34.8, 6×15/4.8, 6×9/0
26 2×36/85.6, 8×30/35.6, 8×15/5.9, 8×9/0
32 2× 30/86.2, 10× 30/36.2, 10×

15/6.5, 10× 9/0

utilization was kept constant (ρ = 60%) and the mean
communication time t is assumed to be 0.001 s. The total arrival
rates (Φ) are calculated using Eq. (31).

Table 7 presents φi and βi (using the notation φi/βi) (the
computers are ordered in decreasing order of their speeds (actual
processing rates)) for various system sizes presented in Table 6.
φi, i = 1, . . . , 32 are calculated as φi = qiΦ , where qi are fractions
similar to that in Table 2 and βi, i = 1, . . . , 32 are obtained based
on the CCOOP algorithm.

Fig. 6(a) shows the expected response time where the number
of computers increases from 2 to 32. It can be observed that the
performance of CCOOP lies in between OPTIM and PROP. The sub-
linear increase in the expected response time of CCOOP also shows
that it is scalable.

Fig. 6(b) shows the fairness index for all the schemes as the
system size increases. It can be observed that the CCOOPmaintains
a fairness index approximately equal to 1 with an increase in the
system size. This means that the expected response times for all
the computers is almost equal in the case of CCOOP. Thus, CCOOP
provides an allocation which is fair to all the jobs independent of
the allocated computers.

4.4. Effect of communication time

From the above, it can be observed that CCOOP scheme is
not only fair, but also performs near the OPTIM for a low value
of mean communication time t (low value of t represents a
faster communications network). The effect of increasing t on the
expected response time at medium system utilization (ρ = 60%)
for the configuration given in Table 1 is shown in Fig. 7(a).

From Fig. 7(a), it can be observed that without load balancing
(each computer processes its own local stream of jobs) the ex-
pected response time is 0.019 s. As t increases, the expected re-
sponse time of CCOOP increases and reaches 0.019 s at t = 0.2 s,
which is the limiting case of load balancing when the communica-
tion time is high (t ≥ 0.2). This is because, as t increases, the load
transfer from slow computers to fast computers decreases and the
CCOOP schemewill not be able to load balance to its optimum. Sim-
ilarly, the Fairness Index of CCOOPdecreases as the communication
time increases.

We also implemented the COOP scheme [19] for comparison.
COOP is a cooperative game based load balancing scheme.
However, it does not take the communication costs into account
in finding the optimal solution that provides fairness.

Fig. 7(b) shows the effect of communication time on the
performance of COOP and CCOOP at 50% and 70% system
utilizations for the configuration given in Table 1. It can be
observed that as t increases (from 0.001 to 0.01 s), CCOOP
outperforms COOP. As t increases, the performance degradation
of COOP is higher compared to that of CCOOP. For example, as

548 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Communication Time (sec)

CCOOP
OPTIM

NO LOAD BALANCING

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

0 0.05 0.1 0.15 0.2 0.25

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Communication Time (sec)

COOP, 50% system utilization
COOP, 70% system utilization

CCOOP, 50% system utilization
CCOOP, 70% system utilization

 0.01
 0.011
 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02
 0.021
 0.022
 0.023
 0.024
 0.025
 0.026
 0.027
 0.028
 0.029

 0.03

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

(a) CCOOP. (b) COOP vs. CCOOP.

Fig. 7. Effect of communication time.
t increases from 0.001 to 0.01 s, the performance degradation of
COOP is around 20% whereas the performance of CCOOP degrades
by only around 3%. Although the figure shows plots for only a few
values, the performance degradation of COOP compared to CCOOP
is higher for any value of t > 0. This is because CCOOP takes the
communication delays into account whereas COOP does not. Thus,
CCOOP can show a significant performance improvement over
COOP.

5. Performance evaluation of NCOOPC

We perform simulations to study the impact of system
utilization, heterogeneity, system size, and communication time
on the performance of NCOOPC scheme. The system parameters
that are used in the experiments below are obtained using
Sim++ [9] simulation software package. The performancemetrics
used are the expected response time and the fairness index [21]. The
fairness index (defined from the users’ perspective) is defined as,

I(C) =


m∑
j=1

C j

2

m
m∑
j=1

C j2
. (32)

The input C is the vector C = (C1, C2, . . . , Cm) where C j is
the expected response time of user j’s jobs. If all the users have
the same total expected response time, then I = 1 and the
system is 100% fair to all users and it is load-balanced. If I
decreases, then the load balancing scheme favors only some users.
We also implemented the following load balancing schemes for
comparison purposes:

– Global Optimal Scheme (GOS) [25]: This scheme minimizes
the expected response time over all the jobs executed by the
system to provide a system optimal solution. The loads (β j

i)
for each user are obtained by solving the following non-linear
optimization problem:

minD(β) =
1
Φ

m−
j=1


n−

i=1

β
j
iF

j
i (βi)+ λ

jGj(λ)


(33)

subject to the constraints (20)–(22).
– Proportional Scheme (PROP_M) [8]: According to this scheme

each user allocates her/his jobs to computers in proportion to
their processing rate as follows:

β
j
i ←− φ

j µi
n∑

k=1
µk

. (34)
Table 8
Job arrival fractions (qj) for each user.

User 1–5 6–10 11–15 16–20

qj 0.1 0.05 0.04 0.01

This allocation may not minimize the users’ expected response
times or the overall expected response time. The fairness index
for this scheme is always 1 as can be easily checked from
Eq. (32).

In the following we present and discuss the simulation results.

5.1. Effect of system utilization (ρ)

We simulated a heterogeneous system consisting of 32
computers to study the effect of system utilization. The system
has computers with six different processing rates (Table 1) and is
shared by 20 users. For each experiment the total job arrival rate
in the systemΦ is determined by the system utilization ρ and the
aggregate processing rate of the system. The total job arrival rate
Φ is chosen by fixing the system utilization. The job arrival rate for
each user φj, j = 1, . . . , 20 is determined from the total arrival
rate as φj

= qjΦ , where the fractions qj are given in Table 8. The
job arrival rates of each user j, j = 1, . . . , 20 to each computer
i, i = 1, . . . , 32, i.e. the φj

i ’s are obtained similar to Table 3. t is
assumed to be 0.001 s.

In Fig. 8(a), we present the expected response time of the
system for different values of system utilization ranging from
10% to 90%. It can be observed that the performance of NCOOPC
and GOS are similar for ρ ranging from 10% to 50%. NCOOPC
performs significantly better than PROP_M for ρ ranging from 60%
to 90%. For example, at 70% system utilization, the response time
of NCOOPC is around 20% less than that of PROP_M and around
8% greater than that of GOS. The poor performance of PROP_M
is due to the fact that it significantly overloads the less powerful
computers where as NCOOPC does not. The decentralization and
stability of allocation under non-cooperative behavior are themain
advantages of NCOOPC scheme.

Fig. 8(b) shows the fairness index for different values of system
utilization. The PROP_M scheme maintains a fairness index of 1
over the whole range of system loads. It can be shown that the
PROP_M has a fairness index of 1 which is a constant independent
of the system load. The fairness index of GOS varies from 1 at
low load to 0.94 at high load. The fairness index of NCOOPC is
approximately equal to 1 and each user obtains the minimum
possible expected response time for her/his own jobs (i.e. it is user-
optimal).

Fig. 9 shows the expected response time for each user
considering all the schemes at medium system load (ρ = 60%).

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 549

 90

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

System Utilization(%)

NCOOPC
GOS

PROP_M

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 10 20 30 40 50 60 70 80

Fa
ir

ne
ss

 In
de

x
I

System Utilization(%)

NCOOPC
GOS

PROP_M

 0.9

 0.92

 0.94

 0.96

 0.98

1

 1.02

 10 20 30 40 50 60 70 80 90

(a) Expected response time. (b) Fairness index.

Fig. 8. Effect of system utilization.
E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
) 0.025

0.02

0.015

0.01

0.005

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Users

NCOOPC GOS PROP_M

Fig. 9. Expected Response Time for each User (ρ = 60%).

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Speed Skewness

NCOOPC

GOS

PROP_M

0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 20 40 60 80 100

Fa
ir

ne
ss

 In
de

x
I

Speed Skewness

 0.8

 0.85

 0.9

 0.95

1

 1.05

 20 40 60 80 100

NCOOPC

GOS

PROP_M

(a) Expected response time. (b) Fairness index.

Fig. 10. Effect of heterogeneity.
The PROP_M scheme guarantees equal expected response times
for all the users. The expected response times of the users in case
of NCOOPC are almost the same. However, the disadvantage of
PROP_M is that the users have a higher expected response time
for their jobs where as NCOOPC provides the minimum possible
expected execution time for each user according to the properties
of the Nash equilibrium. It can be observed that in the case of GOS,
there are large differences in the users’ expected response times.
Thus, the performance of NCOOPC is not only close to that of GOS
but also makes an allocation that provides fairness to the users.

5.2. Effect of heterogeneity

To study the effect of heterogeneity on the performance of
load balancing schemes, we simulated heterogeneous systems of
32 computers with configurations given in Table 4. The systems
have jobs from 20 users. The system utilization was kept constant
(ρ = 60%) and the mean communication time t is assumed to be
0.001 s. The total arrival rates (Φ) are calculated using Eq. (31) and
the arrival rates of each user (φj’s) are calculated using the fractions
given in Table 8. The job arrival rates of each user to each computer
(φj

i ’s) are obtained similar to Table 5.
Fig. 10(a) shows the effect of speed skewness on the expected

response time of all the schemes. It can be observed that as the
skewness increases, the performance of NCOOPC approaches to
that of GOS which means that in highly heterogeneous systems
NCOOPC is very effective. PROP_M performs poorly because it
overloads the slowest computers. From Fig. 10(b) it can be
observed that NCOOPC maintains a fairness index of almost 1
with increasing speed skewness. The fairness index of GOS drops

550 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Number of Computers

NCOOPC

GOS
PROP_M

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fa
ir

ne
ss

 In
de

x
I

Number of Computers

NCOOPC

GOS

PROP_M

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

1

 1.02

 62 4 8 10 12 14 16 18 20 22 24 26 28 30 32

(a) Expected response time. (b) Fairness index.

Fig. 11. Effect of system size.

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Communication Time (sec)

NCOOPC
GOS

NO LOAD BALANCING

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

0 0.05 0.1 0.15 0.2 0.25

E
xp

ec
te

d
R

es
po

ns
e

T
im

e
(s

ec
)

Communication Time (sec)

NASH, 50% system utilization
NASH, 70% system utilization

NCOOPC, 50% system utilization
NCOOPC, 70% system utilization

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
 0.01

 0.011
 0.012
 0.013
 0.014
 0.015
 0.016
 0.017
 0.018
 0.019

 0.02
 0.021
 0.022
 0.023
 0.024
 0.025
 0.026
 0.027
 0.028
 0.029

 0.03

(a) NCOOPC. (b) NASH vs. NCOOPC.

Fig. 12. Effect of communication time.
from 1 at low skewness to 0.81 at high skewness. This means that
the GOS produces an allocation which does not guarantee equal
expected response time for all the users in the system. PROP_Mhas
a fairness index of 1 for any speed skewness. NCOOPC and PROP_M
guarantees almost equal expected response times for all the users.
However, the expected response times of the users in the case of
NCOOPCare considerably less than that of PROP_M. Thedistributed
nature, user-optimality, and near-optimal performance are the
advantages of NCOOPC which are very important in distributed
computer systems.

5.3. Effect of system size

In this section, we study the effect of system size on the
performance of load balancing schemes. We increased the size of
the heterogeneous system from 2 to 32with configurations similar
to those discussed in Section 4.3. The system utilization was kept
constant (ρ = 60%) and t is assumed to be 0.001 s. The total arrival
rates (Φ) are calculated using Eq. (31) and the arrival rates of each
user (φj’s) are calculated using the fractions given in Table 8. The
job arrival rates of each user to each computer (φj

i ’s) are obtained
similar to Table 7.

Fig. 11(a) shows the expected response timewhere the number
of computers increases from 2 to 32. It can be observed that the
performance of NCOOPC lies in between GOS and PROP_M and
the sub-linear increase in the expected response time of NCOOPC
also shows that it is scalable. From Fig. 11(b) it can be observed
that the fairness index of PROP_M is 1 and the fairness index of
NCOOPC is very close to 1 with an increase in the system size. The
fairness index of GOS drops considerably with an increase in the
system size. The expected response times of all the users are the
same in the case of PROP_M and are almost equal in the case of
NCOOPC. However, the expected response times of the users are
considerably less in the case of NCOOPC compared to PROP_M.
Thus, NCOOPC provides an allocation which is fair to all the users
independent of the allocated computers and also performs near the
optimal scheme.

5.4. Effect of communication time

Fig. 12(a) shows the effect of increasing communication time
on the performance of NCOOPC and GOS. It can be observed that,
as t increases, the expected response time of NCOOPC and GOS
increases and reaches 0.019 s at around t = 0.17 s, which is the
limiting case of load balancing when the communication time is
high. This is because, as t increases, the load transfer from slow
computers to fast computers decreases and NCOOPC will not be
able to load balance to its optimum. Similarly, the Fairness Index
of NCOOPC decreases as the communication time increases.

We also implemented NASH scheme [18] for comparison.
NASH is a non-cooperative game based load balancing scheme
that provides fairness to the users. However, it does not take
the communication costs into account in finding the optimal
solution. Fig. 12(b) shows the effect of communication time on
the performance of NASH and NCOOPC at 50% and 70% system
utilizations for the configuration given in Table 1. It can be
observed that, as t increases, the performance degradation ofNASH
is higher compared to that of NCOOPC. For example, as t increases
from 0.001 to 0.01 s, the performance degradation of NASH is
around 25% whereas the performance of NCOOPC degrades by
only around 5%. This is because NCOOPC takes the communication
delays into account whereas NASH does not. Thus, NCOOPC can
show a significant performance improvement over NASH.

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 551
6. Conclusions and future work

In this paper, we proposed two fair load balancing schemes
for distributed systems by taking the communication costs into
account. Using cooperative game theory we proposed the CCOOP
algorithm that provides fairness to all the jobs in a single-class
job distributed system. Using non-cooperative game theory we
proposed the NCOOPC distributed algorithm that provides fairness
to all users in amulti-user job distributed system. The derivation of
CCOOP and NCOOPC is validated theoretically using Game Theory
results and their performance is evaluated using simulations. The
simulations were performed on a variety of system configurations
that allowed us to compare the schemes in a fair manner.
The experimental results showed that CCOOP and NCOOPC not
only perform near the system optimal schemes OPTIM and GOS
respectively but also provide fairness to the users and their jobs.
CCOOP and NCOOPC will be suitable for systems in which the
fair treatment of the users or their jobs is as important as other
performance characteristics.

In future work, we plan to implement the proposed schemes on
real distributed systems consisting of heterogeneous computers in
order to validate our results and develop mechanisms that take
into account the selfish behavior of the entities in the system.
We also plan to develop dynamic load balancing schemes based
on dynamic game theory that provide fairness by taking the
current system load into account and also consider other aspects
of heterogeneity.

Acknowledgments

Wewish to express our sincere thanks to the reviewers for their
helpful and constructive suggestionswhich considerably improved
the quality of the manuscript.

Appendix A

For the cooperative load balancing game defined in Defini-
tion 2.1, we are interested in finding the NBS which provides a
Pareto optimal solution. We use the existing theory on coopera-
tive games [34,36,47,52,14] (and references there-in) in the proofs
of Theorems 2.1 and 2.2.

Definition A.1 (Pareto Optimality). Let U ⊂ RN be the set of
achievable performances. The point u ∈ U is said to be Pareto
optimal if for each v ∈ U, v ≤ u, then v = u.

Definition A.2 (The Nash Bargaining Solution (NBS)). A mapping
S : G→ RN (where G denotes the set of achievable performances
with respect to the initial agreement point) is said to be a NBS if:
(a) S(U,u0) ∈ U0; (b) S(U,u0) is Pareto optimal and satisfies the
fairness axioms.

Definition A.3 (Bargaining Point). u∗ is a (Nash) bargaining point
if it is given by S(U,u0) and f−1(u∗) is called the set of (Nash)
bargaining solutions.

Theorem A.1 (Nash Bargaining Point Characterization [47,52]). Con-
sider the assumptions fromDefinitionsA.1–A.3 above. Let J denote the
set of players who are able to achieve a performance strictly superior
to their initial performance and let X0 denote the set of strategies that
enable the players to achieve at least their initial performances. Let
the vector function {fj}, j ∈ J be one-to-one on X0. Then, there exists
a unique bargaining point u∗ and the set of the bargaining solutions
f−1(u∗) is determined by solving the following optimization problems:

(PJ) : min
x

∏
j∈J

(fj(x)− u0
j) x ∈ X0 (35)

(P ′J) : min
x

−
j∈J

ln(fj(x)− u0
j) x ∈ X0. (36)
Then, (PJ) and (P ′J) are equivalent. (P ′J) is a convex optimization
problem and has a unique solution. The unique solution of (P ′J) is the
bargaining solution. �

Proof of Theorem 2.1. The objective function for each player
fi(X) (Definition 2.1) is convex and bounded below. The set
of constraints is convex and compact. Thus, the conditions in
Theorem A.1 are satisfied and the result follows. �

Proof of Theorem 2.2. The objective vector function {fj}, j ∈
1, . . . , n+1 (Definition 2.1) of the players is a one-to-one function
of X . Thus, applying Theorem A.1 the result follows. �

Proof of Theorem 2.3. Let ui and vi denote the network traffic into
node i and the network traffic out of node i respectively. From the
balance of the total traffic in the network, we have

n−
i=1

ui =

n−
i=1

vi. (37)

The load βi on node i can then be written as

βi = φi + ui − vi (38)

and the network traffic λ can be written as

λ =

n−
i=1

vi


=

n−
i=1

ui


. (39)

Hence, the problem becomes:

min E(u, v) =


n−

i=1

lnDi(φi + ui − vi)+ lnG


n−

i=1

vi


(40)

subject to

βi = φi + ui − vi ≥ 0, i = 1, . . . , n (41)

−

n−
i=1

ui +

n−
i=1

vi = 0 (42)

βi = φi + ui − vi < µi, i = 1, . . . , n (43)
ui ≥ 0, i = 1, . . . , n (44)
vi ≥ 0, i = 1, . . . , n. (45)

The objective function in Eq. (40) is convex and the constraints
are all linear and define a convex polyhedron. This imply that the
first-order Kuhn–Tucker conditions are necessary and sufficient for
optimality [42].

Let α, δi ≤ 0, ηi ≤ 0, ψi ≤ 0 denote the Lagrange
multipliers [42]. The Lagrangian is

L(u, v, α, δ, η, ψ) = E(u, v)+ α


−

n−
i=1

ui +

n−
i=1

vi



+

n−
i=1

δi(φi + ui − vi)+

n−
i=1

ηiui +

n−
i=1

ψivi. (46)

We ignore the constraint in Eq. (43) since all the associated
multipliers will be zero if we introduce it in the Lagrangian. The
optimal solution satisfies the following Kuhn–Tucker conditions:

∂L
∂ui
= di(φi + ui − vi)− α + δi + ηi = 0, i = 1, . . . , n (47)

∂L
∂vi
= −di(φi + ui − vi)+ g


n−

i=1

vi


+α − δi + ψi = 0, i = 1, . . . , n (48)

552 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555
∂L
∂α
= −

n−
i=1

ui +

n−
i=1

vi = 0 (49)

φi + ui − vi ≥ 0,
δi(φi + ui − vi) = 0, δi ≤ 0, i = 1, . . . , n

(50)

ui ≥ 0, ηiui = 0, ηi ≤ 0, i = 1, . . . , n (51)
vi ≥ 0, ψivi = 0, ψi ≤ 0, i = 1, . . . , n. (52)

In the following, we find an equivalent form of Eqs. (47)–(52) in
terms of βi. Adding Eqs. (47) and (48) we have, −g(

∑
vi) = ηi +

ψi, i = 1, . . . , n. Since g > 0, either ηi < 0 or ψi < 0 (or both).
Hence, from Eqs. (51) and (52), for each i, either ui = 0 or vi = 0
(or both). We consider each case separately.

– Case I: ui = 0, vi = 0: Then, we have βi = φi. It follows from
Eq. (50) that δi = 0. Substituting this into Eqs. (47) and (48)
gives

di(βi) = α − ηi ≥ α (53)

di(βi) = α + g(λ)+ ψi ≤ α + g(λ). (54)

From the above, we have

α ≤ di(βi) ≤ α + g(λ). (55)

This case corresponds to neutral nodes.
– Case II: ui = 0, vi > 0: Then, from Eq. (52), we haveψi = 0. We

consider the following subcases.
• Case II.1 vi < φi: Then, we have 0 < βi < φi. It follows from

Eq. (50) that δi = 0. Substituting this into Eqs. (47) and (48)
gives
di(βi) = α − ηi ≥ α (56)

di(βi) = g(λ)+ α. (57)
This case corresponds to active sources.
• Case II.2 vi = φi: Then, we have βi = 0 and Eqs. (47) and (48)

gives
di(βi) = α − δi − ηi ≥ α (58)

di(βi) = α + g(λ)− δi ≥ α + g(λ). (59)
Thus, we have
di(βi) ≥ α + g(λ). (60)
This case corresponds to idle sources.

– Case III: ui > 0, vi = 0: Then, we have βi > φi. It follows from
Eqs. (50) and (51) that δi = 0 and ηi = 0. Substituting this into
Eq. (47), we have

di(βi) = α. (61)

This case corresponds to sinks.

Eq. (49) may be written in terms of βi as

n−
i=1

βi = Φ. (62)

Using Eqs. (57) and (61), the above equation becomes−
i∈S

d−1i (α)+
−
i∈N

φi +
−
i∈Ra

d−1i (α + g(λ)) = Φ (63)

which is the total flow constraint. �

Definition A.4. From Theorem 2.3, the following properties which
are true in the optimal solution can be derived and their proofs
are similar to those in [26]. The conditions in Property A.1 help
to partition the nodes into one of the four categories. Once the
node partition is known, the optimal loads for each node can be
calculated based on Property A.2. Property A.3 states that the job
flow out of the sources equals the job flow into the sinks.
Property A.1.

di(0) ≥ α + g(λ), iff βi = 0 (64)

di(φi) > α + g(λ) > di(0), iff 0 < βi < φi (65)

α ≤ di(φi) ≤ α + g(λ), iff βi = φi (66)

α > di(φi), iff βi > φi. (67)

Remark A.1. Property A.1 states that at an optimal solution (α):
the differential node delay of a sink node (α) is greater than its
initial (prior to load balancing) differential node delay (Eq. (67));
the differential node delay of an active source node lies between
its initial differential node delay and the differential node delay
when the node has no load (this delay consists of the differential
node delay at a sink and the differential communication delay due
to sending a job through the network to a sink) (Eq. (65)); the
differential node delay of a neutral node is the same as its initial
differential node delay and lies between that of a sink and an active
source (Eq. (66)); and the differential node delay of an idle source
node is not less than the differential node delay of an active source
(Eq. (64)).

Property A.2. If β is an optimal solution to the problem in Theo-
rem 2.2, then we have:

βi = 0, i ∈ Rd (68)

βi = d−1i (α + g(λ)), i ∈ Ra (69)

βi = φi, i ∈ N (70)

βi = d−1i (α), i ∈ S. (71)

Remark A.2. Property A.2 states that the optimal load of an idle
source node is 0 (Eq. (68)); the optimal load of a neutral node is the
same as its initial load (job arrival rate) (Eq. (70)); and the optimal
loads of an active source node and a sink node are given by their
inverse (functions) differential node delays (Eqs. (69) and (71)).

Property A.3. If β is an optimal solution to the problem in Theo-
rem 2.2, then we have λ = λS = λR, where λS =

∑
i∈S[d

−1
i (α)−φi]

and λR =
∑

i∈Rd
φi +

∑
i∈Ra [φi − d−1i (α + g(λS))]. �

Remark A.3. Property A.3 states that, at an optimal solution, the
total job traffic through the network is the same as the traffic from
all the source nodes which is the same as the traffic to all the sink
nodes.
Based on the above properties, we have the following definitions
for an arbitrary α (≥0):

S(α) = {i|di(φi) < α} (72)

λS(α) =
−
i∈S(α)

[d−1i (α)− φi] (73)

Rd(α) = {i|di(0) ≥ α + g(λS(α))} (74)
Ra(α) = {i|di(φi) > α + g(λS(α)) > di(0)} (75)

λR(α) =
−

i∈Rd(α)

φi +
−

i∈Ra(α)

[φi − d−1i (α + g(λS(α)))] (76)

N(α) = {i|α ≤ di(φi) ≤ α + g(λS(α))}. (77)

Eq. (72) denotes the set of sink nodes, Eq. (73) denotes the job
traffic into the sinks, Eq. (74) denotes the set of idle source nodes,
Eq. (75) denotes the set of active source nodes, Eq. (76) denotes the
job traffic from the sources, and Eq. (77) denotes the set of neutral
nodes.

Thus, if an optimal α is given, the node partitions in the optimal
solution are characterized as Rd = Rd(α), Ra = Ra(α),N =
N(α), S = S(α) and λ = λS = λR = λS(α) = λR(α). �

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 553
Appendix B

Proof of Theorem 3.1. We restate the problem introducing the
variables uj

i and v
j
i which denote the user j’s network traffic into

node i and network traffic out of node i respectively. From the
balance of the total traffic of user j in the network, we have

λj =

n−
i=1

uj
i =

n−
i=1

v
j
i . (78)

The load β j
i of user j on node i can then be written as

β
j
i = φ

j
i + uj

i − v
j
i, i = 1, . . . , n. (79)

Using the above equations, the problem in Eq. (19) becomes

min
uji,v

j
i

Dj(u, v)

=

 1
φj

n−
i=1

(φ
j
i + uj

i − v
j
i)

(µ
j
i − (φ

j
i + uj

i − v
j
i))
+

t
n∑

i=1
v
j
i

φj


g−j − t

n∑
i=1
v
j
i


 (80)

subject to the following constraints:

−

n−
i=1

uj
i +

n−
i=1

v
j
i = 0 (81)

uj
i − v

j
i + φ

j
i ≥ 0, i = 1, . . . , n (82)

uj
i ≥ 0, i = 1, . . . , n (83)

v
j
i ≥ 0, i = 1, . . . , n. (84)

We ignore the stability constraint (Eq. (22)) because at Nash
equilibrium it is always satisfied and the total arrival rate (Φ) does
not exceed the total processing rate of the system. The objective
function in Eq. (80) is convex and the constraints are all linear. This
implies that the first-order Kuhn–Tucker conditions are necessary
and sufficient for optimality [42]. The total arrival rate of user j (φj)
is constant.
Let αj, δi ≤ 0, ψi ≤ 0, ηi ≤ 0, denote the Lagrange
multipliers [42]. The Lagrangian is

L(uj, vj, αj, δ, ψ, η) = φjDj(uj
i, v

j
i)+ α

j


n−

i=1

v
j
i −

n−
i=1

uj
i



+

n−
i=1

δi(u
j
i − v

j
i + φ

j
i)+

n−
i=1

ψiu
j
i +

n−
i=1

ηiv
j
i . (85)

The optimal solution satisfies the following Kuhn–Tucker condi-
tions:

∂L

∂uj
i

= f ji (φi + ui − vi)− α
j
+ δi + ψi = 0, i = 1, . . . , n. (86)

∂L

∂v
j
i

= −f ji (φi + ui − vi)+ g j


n−

l=1

vl


+ αj
− δi

+ ηi = 0, i = 1, . . . , n. (87)

−

n−
i=1

uj
i +

n−
i=1

v
j
i = 0 (88)

φ
j
i + uj

i − v
j
i ≥ 0,

δi(φ
j
i + uj

i − v
j
i) = 0, δi ≤ 0, i = 1, . . . , n.

(89)
uj
i ≥ 0, ψiu

j
i = 0, ψi ≤ 0, i = 1, . . . , n. (90)

v
j
i ≥ 0, ηiv

j
i = 0, ηi ≤ 0, i = 1, . . . , n. (91)

In the following, we find an equivalent form of Eqs. (86)–(91) in
terms of βi. We consider two cases:

– Case I: uj
i−v

j
i+φ

j
i = 0: From Eq. (79), we have β j

i = 0 and since
φ

j
i > 0, it follows that vji > 0. Eq. (91) implies ηi = 0. Then from

Eqs. (87) and (89), we get f ji (βi) = α
j
+ g j(λ)− δi ≥ α

j
+ g j(λ).

This case corresponds to idle sources.
– Case II: uj

i − v
j
i + φ

j
i > 0: From Eq. (89), we have δi = 0.

• Case II.1: vji > 0: Then, 0 < β
j
i < φi

j and from Eq. (91) we
have ηi = 0. Eq. (87) implies,
f ji (βi) = α

j
+ g j(λ). (92)

This case corresponds to active sources.
• Case II.2: vji = 0:

Case II.2.1: uj
i = 0: Then, β j

i = φ
j
i .

From Eqs. (86) and (90), we have f ji (βi) = α
j
− ψi ≥ αj.

From Eqs. (87) and (91), we have f ji (βi) = α
j
+ g j(λ)+ ηi ≤

αj
+ g j(λ). This case corresponds to neutral nodes.

Case II.2.2: uj
i > 0: Then, β j

i > φ
j
i .

From Eq. (90), we have ψi = 0. Substituting this in
Eq. (86), we have
f ji (βi) = α

j. (93)
This case corresponds to sink nodes.

Eq. (88)may bewritten in terms ofβ j
i as

∑n
i=1 β

j
i = φ

j
i and using

the Eqs. (92) and (93), this can be written as−
i∈Sj
(f ji)
−1(βi|β ji=α

j)+
−
i∈N j

φ
j
i +

−
i∈Rja

(f ji)
−1(βi|β ji=α

j+g j(λ)) = φ
j (94)

which is the total flow constraint for user j. �

Definition B.1. From Theorem 3.1, the following properties which
are true in the optimal solution can be derived and their proofs
are similar to those in [25]. The conditions in Property B.1 help to
partition the nodes into one of the four categories for user j. Once
the node partition for user j is known, her/his optimal loads can be
calculated based on Property B.2. Property B.3 states that the job
flow out of the sources equals the job flow into the sinks for each
user j.

Property B.1.

f ji (βi|β ji=0
) ≥ αj

+ g j(λ), iff β
j
i = 0 (95)

f ji (βi|β ji=φ
j
i
) > αj

+ g j(λ) > f ji (βi|β ji=0
), iff 0 < β

j
i < φ

j
i (96)

αj
≤ f ji (βi|β ji=φ

j
i
) ≤ αj

+ g j(λ), iff β
j
i = φ

j
i (97)

αj > f ji (βi|β ji=φ
j
i
), iff β

j
i > φ

j
i . (98)

Remark B.1. Property B.1 states that at an optimal solution (αj),
for each user: the differential node delay of a sink node (α)
is greater than its initial (prior to load balancing) differential
node delay (Eq. (98)); the differential node delay of an active
source node lies between its initial differential node delay and
the differential node delay when the node has no load (this delay
consists of the differential node delay at a sink and the differential
communication delay due to sending a job through the network to
a sink) (Eq. (96)); the differential node delay of a neutral node is
the same as its initial differential node delay and lies between that
of a sink and an active source (Eq. (97)); and the differential node
delay of an idle source node is not less than the differential node
delay of an active source (Eq. (95)).

554 S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555
Property B.2. If β j is an optimal solution to the problem in Eq. (19),
then we have:

β
j
i = 0, i ∈ Rj

d (99)

β
j
i = (f

j
i)
−1(βi|β ji=α

j+g j(λ)), i ∈ Rj
a (100)

β
j
i = φ

j
i , i ∈ N j (101)

β
j
i = (f

j
i)
−1(βi|β ji=α

j), i ∈ S j. (102)

Remark B.2. Property B.2 states that for each user, the optimal
load of an idle source node is 0 (Eq. (99)); the optimal load of
a neutral node is the same as its initial load (job arrival rate)
(Eq. (101)); and the optimal loads of an active source node and a
sink node are given by their inverse (functions) differential node
delays (Eqs. (100) and (102)).

Property B.3. If β j is an optimal solution to the problem in Eq. (19),
thenwe haveλj = λjS = λ

j
R, whereλjS =

∑
i∈Sj [(f

j
i)
−1(βi|β ji=α

j)−φ
j
i]

and λjR =
∑

i∈Rjd
φ

j
i +

∑
i∈Rja
[φ

j
i − (f

j
i)
−1(βi|β ji=α

j+g j(λS)
)]. �

Remark B.3. Property B.3 states that, at an optimal solution, the
total job traffic through the network of user j is the same as the
traffic from all the source nodes of user j which is the same as the
traffic to all the sink nodes of user j.
Based on the above properties, we have the following definitions
for an arbitrary αj (≥0):

S j(αj) = {i|f ji (βi|β ji=φ
j
i
) < αj

} (103)

λ
j
S(α

j) =
−

i∈Sj(αj)

[(f ji)
−1(βi|β ji=α

j)− φ
j
i] (104)

Rj
d(α

j) = {i|f ji (βi|β ji=0
) ≥ αj

+ g j(λ|
λj=λ

j
S (α

j)
)} (105)

Rj
a(α

j) = {i|f ji (βi|β ji=φ
j
i
) > αj

+ g j(λ|
λj=λ

j
S (α

j)
)

> f ji (βi|β ji=0
)} (106)

λ
j
R(α

j) =
−

i∈Rjd(α
j)

φ
j
i +

−
i∈Rja(αj)

[φ
j
i − (f

j
i)
−1

× (βi|β ji=α
j+g j(λ|

λj=λjS (α
j)
)
)] (107)

N j(αj) = {i|αj
≤ f ji (βi|β ji=φ

j
i
) ≤ αj

+ g j(λ|
λj=λ

j
S (α

j)
)}. (108)

Eq. (103) denotes the set of sink nodes for user j, Eq. (104)
denotes the job traffic into the sinks for user j, Eq. (105) denotes
the set of idle source nodes for user j, Eq. (106) denotes the set of
active source nodes for user j, Eq. (107) denotes the job traffic from
the sources for user j, and Eq. (108) denotes the set of neutral nodes
for user j.
Thus, if an optimal αj is given, the node partitions in the optimal
solution are characterized as Rj

d = Rj
d(α

j), Rj
a = Rj

a(α
j),N j

=

N j(αj), S j = S j(αj) and λj = λjS = λ
j
R = λ

j
S(α

j) = λ
j
R(α

j). �

References

[1] I. Ahmad, A. Ghafoor, Semidistributed load balancing for massively parallel
multicomputer systems, IEEE Trans. Softw. Eng. 17 (10) (1991) 987–1004.

[2] S. Ali, T.D. Braun, H.J. Siegel, A.A. Maciejewski, N. Beck, L. Boloni,
M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, Charac-
terizing resource allocation heuristics for heterogeneous computing systems,
Adv. Comput. 63 (2005) 91–128.
[3] E. Altman, T. Basar, T. Jimenez, N. Shimkin, Routing in two parallel links: game-
theoretic distributed algorithms, J. Parallel Distrib. Comput. 61 (9) (2001)
1367–1381.

[4] Amazon elastic compute cloud. http://www.amazon.com/.
[5] T.E. Anderson, D.E. Culler, D.A. Patterson, The NOW team, a case for now

(networks of workstations), IEEE Micro. 15 (1) (1995) 54–64.
[6] X. Bai, D.C. Marinescu, L. Boloni, H.J. Siegel, R.A. Daley, I.-J. Wang, A

macroeconomic model for resource allocation in large-scale distributed
systems, J. Parallel Distrib. Comput. 68 (2) (2008) 182–199.

[7] T.D. Braun, H.J. Siegel, A.A. Maciejewski, Y. Hong, Static resource allocation
for heterogeneous computing environments with tasks having dependencies,
priorities, deadlines, and multiple versions, J. Parallel Distrib. Comput. 68 (11)
(2008) 1504–1516.

[8] Y.C. Chow,W.H. Kohler,Models for dynamic load balancing in a heterogeneous
multiple processor system, IEEE Trans. Comput. C-28 (5) (1979) 354–361.

[9] R. Cubert, P. Fishwick, Sim++ referencemanual, in: CISE, University of Florida,
July 1995.

[10] J. Dongarra, A. Lastovetsky, An overview of heterogeneous high performance
and grid computing, in: Engineering the Grid: Status and Perspective,
American Scientific Publishers, 2006.

[11] P. Dubey, Inefficiency of nash equilibria, Math. Oper. Res. 11 (1) (1986) 1–8.
[12] A.A. Economides, J. Silvester, A game theory approach to cooperative and

non-cooperative routing problems, in: Proc. of the Telecommunication Symp.,
1990, pp. 597–601.

[13] R. Freund, H.J. Siegel, Heterogeneous processing, IEEE Comput. Mag. 26 (6)
(1993) 13–17.

[14] D. Fudenberg, J. Tirole, Game Theory, The MIT Press, 1994.
[15] L. Georgiadis, C. Nikolaou, A. Thomasian, A fair workload allocation policy for

heterogeneous systems, J. Parallel Distrib. Comput. 64 (4) (2004) 507–519.
[16] P. Ghosh, K. Basu, S.K. Das, A game theory-based pricing strategy to

support single/multiclass job allocation schemes for bandwidth-constrained
distributed computing systems, IEEE Trans. Parallel Distrib. Syst. 18 (3) (2007)
289–306.

[17] P. Ghosh, N. Roy, S.K. Das, K. Basu, A pricing strategy for job allocation inmobile
grids using a non-cooperative bargaining theory framework, J. Parallel Distrib.
Comput. 65 (11) (2005) 1366–1383.

[18] D. Grosu, A.T. Chronopoulos, Noncooperative load balancing in distributed
systems, J. Parallel Distrib. Comput. 65 (9) (2005) 1022–1034.

[19] D. Grosu, A.T. Chronopoulos, M.Y. Leung, Load balancing in distributed
systems: an approach using cooperative games, in: Proc. of the 16th IEEE Intl.
Parallel and Distributed Processing Symp., Ft Lauderdale, Florida, USA, April
2002.

[20] D. Grosu, A.T. Chronopoulos, M.Y. Leung, Cooperative load balancing in
distributed systems, Concurr. Comput. Pract. Exp. 20 (16) (2008) 1953–1976.

[21] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling, Wiley-
Interscience, 1991.

[22] H. Kameda, J. Li, C. Kim, Y. Zhang, Optimal Load Balancing in Distributed
Computer Systems, Springer Verlag, London, 1997.

[23] S.U. Khan, I. Ahmad, Non-cooperative, semi-cooperative, and cooperative
games-based grid resource allocation, in: Proc. of the Intl. Parallel and
Distributed Proc. Symp., Rhodes, Greece, April 2006.

[24] J.-K. Kim, D.A. Hensgen, T. Kidd, H.J. Siegel, D.S. John, C. Irvine, T. Levin,
N.W. Porter, V.K. Prasanna, R.F. Freund, A flexible multi-dimensional QoS
performance measure framework for distributed heterogeneous systems,
Cluster Comput. 9 (3) (2006) 281–296 (special issue on Cluster Computing in
Science and Engineering).

[25] C. Kim, H. Kameda, Optimal static load balancing of multi-class jobs in a
distributed computer system, in: Proc. of the 10th Intl. Conf. on Distributed
Computing Systems, May 1990, pp. 562–569.

[26] C. Kim, H. Kameda, An algorithm for optimal static load balancing in
distributed computer systems, IEEE Trans. Comput. 41 (3) (1992) 381–384.

[27] Y.A. Korilis, A.A. Lazar, A. Orda, Capacity allocation under noncooperative
routing, IEEE Trans. Automat. Control 42 (3) (1997) 309–325.

[28] E. Koutsoupias, C. Papadimitriou, Worst-case equilibria, in: Proc. of the 16th
Annual Symp. on Theoretical Aspects of Computer Science, 1999, pp. 404–413.

[29] Y.K. Kwok, K. Hwang, S. Song, Selfish grids: game-theoretic modeling and
NAS/PSA benchmark evaluation, IEEE Trans. Parallel Distrib. Syst. 18 (5) (2007)
621–636.

[30] H. Lee, Optimal static distribution of prioritized customers to heterogeneous
parallel servers, Comput. Oper. Res. 22 (10) (1995) 995–1003.

[31] J. Li, H. Kameda, A decomposition algorithm for optimal static load balancing
in tree hierarchy network configuration, IEEE Trans. Parallel Distrib. Syst. 5 (5)
(1994) 540–548.

[32] J. Li, H. Kameda, Optimal static load balancing in star network configurations
with two-way traffic, J. Parallel Distrib. Comput. 23 (3) (1994) 364–375.

[33] J. Li, H. Kameda, Load balancing problems for multiclass jobs in dis-
tributed/parallel computer systems, IEEE Trans. Comput. 47 (3) (1998)
322–332.

[34] A. Mas-Collel, M.D. Whinston, J.R. Green, Microeconomic Theory, Oxford Univ.
Press, New York, 1995.

[35] M. Mavronicolas, P. Spirakis, The price of selfish routing, in: Proc. of the 33rd
Annual ACM Symp. on Theory of Computing, July 2001, pp. 510–519.

[36] A. Muthoo, Bargaining Theory with Applications, Cambridge Univ. Press,
Cambridge, UK, 1999.

http://www.amazon.com/

S. Penmatsa, A.T. Chronopoulos / J. Parallel Distrib. Comput. 71 (2011) 537–555 555
[37] L.M. Ni, K. Hwang, Adaptive load balancing in a multiprocessor system with
many job classes, IEEE Trans. Softw. Eng. SE-11 (5) (1985) 491–496.

[38] M. Koh, On-demand computing using network.com, in: Proceedings of the
International SymposiumonGrid computing, April 7–11, 2008, Taipei, Taiwan.

[39] A. Orda, R. Rom, N. Shimkin, Competitive routing in multiuser communication
networks, IEEE/ACM Trans. Netw. 1 (5) (1993) 510–521.

[40] S. Penmatsa, A.T. Chronopoulos, Cooperative load balancing for a network
of heterogeneous computers, in: Proc. of the 20th IEEE Intl. Parallel
and Distributed Processing Symposium, 15th Heterogeneous Computing
Workshop, Rhodes Island, Greece, April 2006.

[41] S. Penmatsa, A.T. Chronopoulos, Price-based user-optimal job allocation
scheme for grid systems, in: Proc. of the 20th IEEE Intl. Parallel and Distributed
Processing Symposium, 3rd High Performance Grid Computing Workshop,
Rhodes Island, Greece, April 2006.

[42] G.V. Reklaitis, A. Ravindran, K.M. Ragsdell, EngineeringOptimization:Methods
and Applications, Wiley-Interscience, 1983.

[43] K.W. Ross, D.D. Yao, Optimal load balancing and scheduling in a distributed
computer system, J. ACM 38 (3) (1991) 676–690.

[44] T. Roughgarden, Stackelberg scheduling strategies, in: Proc. of the 33rd Annual
ACM Symp. on Theory of Computing, July 2001, pp. 104–113.

[45] K. Rzadca, D. Trystram, A. Wierzbicki, Fair game-theoretic resource manage-
ment in dedicated grids, in: Proc. of the 7th IEEE Intl. Symp. on Cluster Com-
puting and the Grid, Brazil, May 2007, pp. 343–350.

[46] N.G. Shivaratri, P. Krueger, M. Singhal, Load distributing for locally distributed
systems, Comput. 25 (12) (1992) 33–44.

[47] A. Stefanescu, M.V. Stefanescu, The arbitrated solution for multi-objective
convex programming, Rev. Roum. Math. Pure Appl. 29 (1984) 593–598.

[48] R. Subrata, A. Zomaya, B. Landfeldt, A cooperative game framework for QoS
guided job allocation schemes in grids, IEEE Trans. Comput. 57 (10) (2008)
1413–1422.

[49] R. Subrata, A. Zomaya, B. Landfeldt, Game theoretic approach for load
balancing in computational grids, IEEE Trans. Parallel Distrib. Syst. 19 (1)
(2008) 66–76.

[50] X. Tang, S.T. Chanson, Optimizing static job scheduling in a network of
heterogeneous computers, in: Proc. of the Intl. Conf. on Parallel Processing,
August 2000, pp. 373–382.
[51] A.N. Tantawi, D. Towsley, Optimal static load balancing in distributed
computer systems, J. ACM 32 (2) (1985) 445–465.

[52] H. Yaiche, R.R. Mazumdar, C. Rosenberg, A game theoretic framework for
bandwidth allocation and pricing in broadband networks, IEEE/ACM Trans.
Netw. 8 (5) (2000) 667–678.

[53] Y. Zhang, H. Kameda, S.L. Hung, Comparison of dynamic and static load-
balancing strategies in heterogeneous distributed systems, IEE Proc. Comput.
Digit. Tech. 144 (2) (1997) 100–106.

[54] Q. Zheng, C.-K. Tham, B. Veeravalli, Dynamic load balancing and pricing in
grid computing with communication delay, J. Grid Comput. 6 (3) (2008)
239–253.

Satish Penmatsa received his M.S. and Ph.D. in Computer
Science from the University of Texas at San Antonio in
2003 and 2007 respectively. He is currently with the
Department of Mathematics and Computer Science at
the University of Maryland Eastern Shore. His research
interests are in the areas of parallel and distributed
systems, high performance computing, grid computing,
wireless networks, game theory, science and engineering
applications. He is a member of IEEE, IEEE Computer
Society, and the ACM.

Anthony T. Chronopoulos received his Ph.D. in Com-
puter Science from the University of Illinois at Urbana-
Champaign in 1987. He is currently a Professor in
Computer Science at the University of Texas at San Anto-
nio. He has published 39 journal and 51 refereed confer-
ence proceedings publications in the areas of Distributed
Systems, High Performance Computing and Applications.
He has been awarded 13 federal/state government re-
search grants. His work is cited in over 220 non-coauthors’
research articles. He is a senior member of IEEE (since
1997).

	Game-theoretic static load balancing for distributed systems
	Introduction
	Load balancing for single-class jobs
	Load balancing for multi-user jobs
	Motivation and contribution
	Related work
	Organization

	Cooperative load balancing for single-class jobs
	System model
	Cooperative load balancing

	Non-cooperative load balancing for multi-user jobs
	System model
	Non-cooperative game among the users

	Performance evaluation of CCOOP
	Effect of system utilization
	Effect of heterogeneity
	Effect of system size
	Effect of communication time

	Performance evaluation of NCOOPC
	Effect of system utilization (ρ)
	Effect of heterogeneity
	Effect of system size
	Effect of communication time

	Conclusions and future work
	Acknowledgments
	Appendix A
	Appendix B
	References

