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SUMMARY

Loops are the richest source of parallelism in scientific applications. A large number of loop scheduling
schemes have therefore been devised for loops with and without data dependencies (modeled as dependence
distance vectors) on heterogeneous clusters. The loops with data dependencies require synchronization via
cross-node communication. Synchronization requires fine-tuning to overcome the communication overhead
and to yield the best possible overall performance. In this paper, a theoretical model is presented to determine
the granularity of synchronization that minimizes the parallel execution time of loops with data dependencies
when these are parallelized on heterogeneous systems using dynamic self-scheduling algorithms. New for-
mulas are proposed for estimating the total number of scheduling steps when a threshold for the minimum
work assigned to a processor is assumed. The proposed model uses these formulas to determine the syn-
chronization granularity that minimizes the estimated parallel execution time. The accuracy of the proposed
model is verified and validated via extensive experiments on a heterogeneous computing system. The results
show that the theoretically optimal synchronization granularity, as determined by the proposed model, is
very close to the experimentally observed optimal synchronization granularity, with no deviation in the best
case, and within 38.4% in the worst case. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A large number of algorithms has been devised for parallelizing and scheduling nested loops with
and without data dependencies. In the case of loops with data dependencies, these dependencies are
modeled as dependence distance vectors, and their existence incurs synchronization via cross-node
communication during the execution of the parallelized loops. Ideally, the frequency of the cross-
node communications should be set so that the synchronization overhead is kept to a minimum,
while achieving the maximum degree of parallelism. In the coarse-grain decomposition approach,
the problem domain, also called iteration space, is partitioned into chunks of iterations of equal
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or variable size, which are assigned to the existing processors. The class of self-scheduling algo-
rithms is an important class of coarse-grain algorithms. Self-scheduling algorithms dynamically
assign chunks of variable sizes to processors. They differ in the way they calculate the size of
the chunk assigned to each processor. The self-scheduling algorithms were initially designed for
loops without data dependencies, with a target on single-core processors and cluster systems [1–8].
Recent research results have been reported for designing loop self-scheduling methods for multi-
core, graphics processing unit, grid, and cloud systems [9–16]. The loop self-scheduling algorithms
have recently been shown to efficiently be applicable for parallelizing loops with data dependen-
cies, by inserting synchronization points at specific intervals throughout the execution of the work
assigned to each processor [17, 18]. These new loop-scheduling algorithms target heterogeneous
cluster systems, and have been implemented using an extended version of the master–worker model
[18]. In the traditional master–worker model, the iteration space of an application containing loops
with data dependence distance vectors is partitioned into chunks, and the chunks are assigned to
workers by the master upon request. However, because of the data dependencies, the loop iter-
ations in one chunk depend on loop iterations in other chunks. Hence, when the iterations need
data for their local computations or when data are required in other workers’ iterations for remote
computations, in the extended master–worker model, the workers communicate with their neighbor-
ing co-workers at predefined synchronization intervals. The resulting synchronization mechanism
involves partitioning of each chunk of iterations into subchunks. A large subchunk size signifies
that inter-processor synchronization occurs less frequently at the cost of less parallelism and often
poorer load balance [19]. It is therefore of interest to provide a model for determining the optimal
granularity of synchronization, because inter-processor communication is one of the most important
factors for performance degradation when parallelizing loops with data dependencies.

When scheduling applications on heterogeneous distributed systems, three major issues must be
addressed: (i) heterogeneity, both machine and network related; (ii) variable workload, when the
system is not dedicated and the workload varies unpredictably; and (iii) communication overhead,
associated with distributing the work and/or exchanging data during the computation. To address
heterogeneity in parallel and distributed systems, loop-scheduling schemes must take into account
the delivered computational power of each computer in the system. The delivered computational
power depends on CPU speed, memory, cache structure, and even the program type. Load balanc-
ing methods adapted to distributed environments take into account the computational powers of
the machines [7, 17, 20–23]. These computational powers are used as relative weights that scale
the size of the task assigned to each processor. The execution of loops with data dependencies on
homogeneous or heterogeneous computing systems follows a pipeline execution (as explained later
in Section 3). Pipelining is an approach that enables parallelism through explicit synchronization,
although it involves a trade-off between synchronization granularity and degree of parallelism [19].
In this work, a theoretical value is derived for the synchronization granularity that minimizes the
parallel execution time. Via extensive experimentation, the theoretically determined synchroniza-
tion granularity is shown to be very close to the empirically observed synchronization granularity
that gives the minimum parallel execution time.

The following notation is used in Table I:

� CSS: Chunk self-scheduling
� PSS: Pure self-scheduling
� GSS: Guided self-scheduling
� FSS: Factoring self-scheduling
� TSS: Trapezoid self-scheduling
� TFSS: Trapezoid factoring self-scheduling
� DTSS: Distributed TSS
� ArchConsc: Architecture conscious
� WF: Weighted factoring
� AWF: Adaptive weighted factoring
� AF: Adaptive factoring
� VOL: Volume of a polytope
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Table I. Classification of several existing scheduling methods for loops with and without
data dependencies on homogeneous and heterogeneous systems.

Loops without data dependencies

Homogeneous systems Heterogeneous systems

CSS [1], PSS [2], ArchConsc [37], WF [6],
GSS [3], FSS [4, 39], AF [7], TFSS [21],
TSS [5], Bitonic [37] DTSS [40], AWF [8],

VOL [20], HSS [22]

Loops with data dependencies

Homogeneous systems Heterogeneous systems

CB, IB, RSB, BP [29],
OPS comm/comp ovrlp [24], Loop tiling w. data alloc. [32],
2-D OrthoTiling [25], Var. size loop tiling [33],
RT-PPL [30], Loop tiling [26], DMPS [17], SAS [23],
RT w. & w/o caching [31], SW-CSS, FSS, GSS, TSS [18],
Time min tiling [27], h-DCSS, DTSS, DFSS, DGSS, DTFSS [34], h-CSS [35]
Sparse tiling [28]

� HSS: History-aware self-scheduling
� CB: Coordinate bisection
� IB: Inertial bisection
� RSB: Recursive coordinate bisection
� BP: Block partitioning
� OPS: Optimal packet size
� RT-PPL: Runtime scheduling for partially parallel loops
� DMPS: Dynamic multi-phase scheduling
� SAS: Self-adapting scheduling
� SW: synchronized & weighted
� h: synchronization granularity

Related work. In Table I, a classification of several existing approaches to scheduling loops
with and without data dependencies for homogeneous and heterogeneous systems is given. Even
though the focus of this work is on loops with data dependencies, Table I includes selected work on
scheduling loops without data dependencies as well, because the dynamic loop-scheduling methods
proposed therein have been used and modified to schedule loops with data dependencies in hetero-
geneous systems [17, 18]. The upper part of Table I presents the systems and applications that the
earlier methods were originally devised for. This paragraph however elaborates on the past results
referenced in the lower part of Table I as it is closely relevant to the work proposed here. A signifi-
cant amount of work exists for determining the optimal partitioning (tile size, block size, and grain
size) of loops with data dependencies for homogeneous systems ([24–28] and references therein).
Ponnusamy et al. [29] used the inspector/executor model to predict the communication requirements
of the code (assuming the data access patterns may change), and carry out communication optimiza-
tion at runtime for irregular concurrent problems. Huang et al. [30] presented a scheduler that divides
a partially parallel loop into independent wavefronts (called chunks), and then concurrently executes
the iterations within a chunk. Lowenthal et al. [31] proposed a method for accurately selecting at
runtime the block size in pipelined programs, in which the computation assigned to each processor
is performed in blocks. The block size (the amount of computation before sending a message) is
selected at runtime according to the workload variations that occur with highly irregular programs.
However, the problem of finding the optimal partitioning of loops with data dependencies for het-
erogeneous systems has not been studied to the same extent. Boulet et al. [32] were the first to apply
loop tiling on heterogeneous systems. They divide fully permutable loops into equally sized tiles
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and allocate blocks with more tiles to faster processors. In order to achieve a good tile allocation,
they use an algorithm that selects the best possible allocation based on a cost function. They avoid
assigning variable size tiles in order to simplify code generation. Chen and Xue [33] assign tiles of
variable size to processors based on a function that minimizes the parallel execution time according
to a computation and a communication cost model. In their computation model, the computa-
tional power is modeled by CPU speed and memory size, whereas the communication cost model
isolates the effects of send and receive operations, and quantifies network congestion. None of the
aforementioned works for scheduling loop tasks for heterogeneous systems deal with the case of
dynamically computing and allocating chunks of computations to processors. To the best of our
knowledge, the work in [17] and [18] is the first to apply self-scheduling schemes to loops with data
dependencies by inserting synchronization points throughout the parallel execution. The scheduling
schemes used therein employ heuristic methods to determine the subchunk size. Hence, a method to
determine the optimal subchunk size based on a theoretical model offers significant advantages,
especially considering that a poor choice of the subchunk size leads to severe performance
degradation, whereas the cost of finding the optimal value through exhaustive search is clearly
prohibitive. In this work, the optimal synchronization granularity is studied for the scheduling
schemes highlighted in bold font in Table I, namely h-DCSS, DTSS, DFSS, and DGSS.

Contributions. A theoretical model is developed in this paper for calculating the optimal
granularity of synchronization, which minimizes the parallel execution time of loops with data
dependencies that are parallelized using dynamic self-scheduling algorithms on heterogeneous
systems. The case of limited and unlimited number of processors in a heterogeneous system is
investigated, and the proposed model is applied for the CSS, FSS, GSS, and TSS self-scheduling
algorithms on a heterogeneous distributed system. Previous efforts to address the same problem
were presented [34, 35]. The work in this paper improves on both as follows. The communica-
tion model used herein is more sophisticated than the one in [34]. The current communication
model parameters are application-independent and are estimated with the help of the mpptest
from the perftest suite [36]. In contrast to the communication model used in [34], the current
communication model takes into account the effects of message size and network contention on
the communication cost, as the mpptest benchmark was specifically designed for this purpose at
Argonne National Laboratory. The mpptest benchmark also exposes scalability issues. Compared
with the work in [34], the current work also studies the case where the number of (virtual) workers
is equal to the total number of chunks produced by a specific loop-scheduling scheme. Furthermore,
new and significantly more extensive experimental tests were conducted for three computational
kernels (Floyd–Steinberg, Needleman–Wunsch, and heat diffusion) on a larger heterogeneous sys-
tem with different CPU characteristics and interconnection network. In [35], the total parallel
execution time in the general case, where the total number of chunks exceeds the number of avail-
able workers, is based on a detailed analysis of the special case where the total number of chunks is
equal to the number of available workers. This approach indicates that the parallel execution times
of all pipelines are approximately the same. This assumption holds when CSS and DCSS are the
algorithms of choice, as the chunk sizes remain constant throughout the parallel execution. How-
ever, when the chunk sizes change, as is the case with decreasing chunk size algorithms (TSS, FSS,
GSS, and their distributed versions), the model in [35] is no longer suitable.

The model presented in this work is designed to account for variable chunk sizes by directly cal-
culating and using the corresponding (variable) chunk size for each scheduling step to estimate the
total parallel execution time. Moreover, in the present work, the worker’s heterogeneity is addressed
via the use of the virtualization concept. Herein, virtualization is defined as the transformation of an
array of physical heterogeneous processors into an array of virtual homogeneous processors using
the following simple principle: the slowest physical worker is considered as a single virtual worker,
and each worker that is k times faster than the slowest worker corresponds to k virtual workers.
The number of the original physical heterogeneous workers is m and the number of the resulting
virtual homogeneous workers is A. Using this concept, the case ofm heterogeneous workers can be
addressed as a case of A homogeneous workers. As stated later in the article, the difference between
the physical heterogeneous workers and the virtual homogeneous workers is that communications
occur only between physical workers, a fact taken into account by the model proposed herein.
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In addition to the work in [34] and [35], new formulas are given in this work for estimating
the total number of scheduling steps for the case where there is a threshold on the minimum
chunk size assigned to a processor (cf. Table II). The total number of scheduling steps influences
the total parallel execution time, as a large number of steps can incur a large scheduling and/or
communication overhead. Accurately calculating the total number of chunks plays a significant role
in efficiently estimating the performance of the self-scheduling schemes, and having a threshold on
the minimum chunk size assigned to a processor yields a smaller number of scheduling steps. In this
approach, the chunks computed by a self-scheduling algorithm (taking into account the threshold
on the minimum chunk size) are also weighted according to each worker’s computational power, as
described in detail in Section 2. Finally, this work includes a review and a classification of existing
approaches to scheduling loops with and without data dependencies on heterogeneous systems
(cf. Table I).

Organization. Section 2 contains an overview of the class of self-scheduling algorithms. The
pipelining paradigm for scheduling loops with data dependencies is described in Section 3. The
computation and communication models used to estimate the parallel execution time on heteroge-
neous systems are presented in Section 4.1, followed by the proposed theoretical model to determine
the optimal synchronization granularity for heterogeneous systems in Section 4.2. The experimen-
tal analysis and validation of the proposed model is discussed in Section 5. The conclusions and
directions for future work are summarized in Section 6.

2. OVERVIEW OF THE SELF-SCHEDULING ALGORITHMS FOR LOOPS WITHOUT
DATA DEPENDENCIES

Self-scheduling algorithms partition the problem domain, hereinafter referred to as iteration space,
modeled as a Cartesian coordinates space, into chunks of consecutive rows along one specific
dimension. This dimension is called the scheduling dimension, and its length is denoted by Uc
(see Figure 2). The processors of the heterogeneous system are called workers. Every worker has
a run queue, which contains all the jobs that run on that particular worker, including the applica-
tion of interest. For dedicated runs, the run queue contains only one job, that is, the application of
interest. The computational power of a worker is estimated using the normalized execution time of
a small size part (e.g., 5–10%) of the application [37]. Every job running on a worker is assumed
to take an equal share of its computing resources (i.e., space-sharing). The available computational
power of a worker is determined using the number of jobs in the run queue by dividing its actual
computational power with the number of jobs in its run queue. As shown in [38], the number of jobs
in the run queue is the best choice for workload descriptor. The idle workers request work from a
master processor. Timing the work assignment and the amount of assigned work play a significant
role in the performance of a self-scheduling algorithm. This is crucial in loops with data depen-
dencies, where it is imperative to preserve the execution order that satisfies the data dependencies.
Following is an overview of the self-scheduling schemes CSS, TSS, FSS, GSS, and DTSS as they
were initially proposed to handle loops without data dependencies (see the references in the upper
part of Table I). The simple versions of these schemes are the versions suitable for homogeneous
systems with single-user jobs (dedicated) execution mode. The distributed versions are suitable for
heterogeneous systems (see the references in the lower part of Table I). A master–worker model
with m workers is employed, where at the i-th scheduling step the master allocates a chunk of size
Vi to a worker. The following notation is used in this section:

� m: number of physical heterogeneous workers (P1, : : : ,Pm)
� A: number of virtual homogeneous workers (P1, : : : ,PA)
� N : number of scheduling steps
� Uc : the length of the scheduling dimension of the iteration space
� F : first chunk size of the problem
� L: last chunk size of the problem
� C : threshold for the minimum chunk size of a processor
� Vi : size of chunk i
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� Vj : size of a chunk in batch j (used by FSS)
� Ri : number of remaining iterations (used by GSS)
� Rj : number of remaining iterations in batch j (used by FSS)

� Chunk self-scheduling (CSS) [1, 2] assigns constant size chunks to each worker: 1 6 Vi D
constant 6 Uc

m
, where m is the number of workers. The chunk size is chosen by the user. If

Vi D 1 then CSS is the so-called pure self-scheduling. A large chunk size reduces scheduling
overhead but also increases the chance of load imbalance because it is difficult to predict the
optimal chunk size. As a compromise between load imbalance and scheduling overhead, other
schemes start with large chunk sizes in order to reduce the scheduling overhead and reduce the
chunk sizes throughout the execution to improve load balancing. These schemes are known as
variable chunk size algorithms, and their difference lies in the choice of the first chunk and of
the amount of variation between chunk sizes.
� In guided self-scheduling (GSS) [3], each worker is assigned a chunk given by the number of

remaining iterations divided by the number of workersm: Vi DRi=m, whereRi is the number
of remaining iterations. According to GSS, R0 is the total number of iterations, that is, Uc ,
and Vi D dRi=me, where RiC1 D Ri � Vi . Thus, Vi D d

Uc
m
.1 � 1

m
/ie. Using the chunk size

formula, it can be easily proved that the number of scheduling steps is N ' 1
ln d m

m�1 e
ln dUc

m
e.

If there is a threshold C for the minimum allowed chunk size, it can be easily proved that
N ' 1

ln d m
m�1 e

.ln dUc
m
e � lnC/. The initial chunk sizes are large in order to reduce the commu-

nication/scheduling overhead in the beginning. In the last steps, very small chunks are assigned
to improve the load balancing at the expense of increased communication/scheduling overhead.
� The factoring self-scheduling (FSS) [4] scheme schedules iterations in batches of m equal

chunks. In each batch j , a worker is assigned a chunk size given by a subset of the remaining
iterations (usually half) divided by the number of workers. The chunk size for the batch j is
Vj D d

Rj
˛m
e (thus Vi D d

Uc
m
. 1
˛
/jC1e) and RjC1 D Rj � .mVj /, where the parameter ˛ is

computed (by a probability distribution) or is sub-optimally chosen ˛ D 2. The total number
of steps is approximately equal to N ' 1.44m lndUc

m
e [39]. If there is a threshold C for the

minimum allowed chunk size, it can be easily proved that N ' m
�
1.44 lndUc

m
e � ln C

�
. The

weakness of this scheme is the difficulty to determine the optimal parameters. However, tests
show improvement on previous adaptive schemes (possibly) caused by fewer adaptations of the
chunk size.
� The trapezoid self-scheduling (TSS) [5] scheme linearly decreases the chunk size Vi . In TSS,

the first and last chunk size pair .F ,L/ may be set by the programmer. In a conservative selec-
tion, the .F ,L/ pair is determined as F D Uc

2m
and LD 1, where m is the number of workers.

This ensures that the workload of the first chunk is less than 1=m of the total load in most
loop distributions and reduces the chance of imbalance caused by a large first chunk. One
may improve this by choosing L > 1. The proposed number of steps needed for the schedul-
ing process is N D 2Uc

.FCL/
. If there is a threshold C for the minimum allowed chunk size,

then the last chunk is set to C . Consequently, the decrement between consecutive chunks is
D D .F �L/=.N � 1/, and the chunk sizes are V1 D F ,V2 D F �D,V3 D F � 2D, : : :. TSS
improves on GSS by decreasing the chunk size linearly.
� The distributed trapezoid self-scheduling (DTSS) [40] (and references therein) improves on

TSS by selecting the chunk sizes according to the available computational power of the work-
ers. The programmer may determine the pair .F ,L/ according to TSS, and the following

formula may be used in the conservative selection approach: F D Uc
2A

, where A D
mP
iD1

Ai ,

Ai being the available computational power of each worker, and L D 1. The total number of
steps is N D 2Uc

FCL
and the chunk decrement is D D .F � L/=.N � 1/. If there is a thresh-

old C for the minimum allowed chunk size, then L D C . The size of a chunk in DTSS is
Vi D Ak.F �D.Sk�1 C

Ak�1
2
//, where Sk�1 D A1 C : : :CAk�1, for k > 2, and S1 D A1.

In a dedicated homogeneous system, the chunks assigned by DTSS are equal to those assigned
by TSS. The important difference between DTSS and TSS is that in DTSS the next chunk is
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allocated according to the worker’s available computational power. Hence, faster workers get
more iterations than slower ones. In contrast, TSS simply treats all workers in the same way.

3. PIPELINE SCHEDULING OF LOOPS WITH DATA DEPENDENCIES

The following notation is used in this section:

� m: number of stages of a pipeline (equal to the number of physical workers)
� M : number of instances of a pipeline (equal to the number of synchronization points)
� subchunk: a subset of a chunk between two consecutive synchronization points
� J � Zn: the n-dimensional iteration space
� Us: the length of the synchronization dimension of the iteration space
� x D .x1, : : : , xn/ 2 J : a typical iteration point
� DS : the set of data dependence vectors
� dj 2DS : data dependence vector j , 16 j 6 r , r > 2
� p: number of pipelines (equal to the number of chunk assignment rounds)

The iteration space of a nested loop is typically modeled as a finite subset J of the n-dimensional
space Zn, where Z is the set of integers and n is the depth of the loop nest. Each point of this
n-dimensional space corresponds to a single iteration of the loop body. Without loss of generality,
it is assumed that the loops have index points .x1, : : : , xn/, where 1 6 xi 6 Ui , 1 6 i 6 n.
The data dependencies are modeled by n-dimensional vectors of Zn, called dependence distance
vectors [41], and their set is denoted by DS D fd1, : : : , drg, where r is the number of depen-
dence distance vectors. The data dependence distance vectors are assumed to be constant, that is,
the data dependencies are uniform. These constant dependence distance vectors give rise to cross-
node data dependencies when the computation of a data element in one worker in a certain node
requires some data element(s) from another worker in a different node. The existence of such data
dependencies can slow down and (in extreme cases) even serialize the parallel execution. These
dependencies are, nonetheless, common in scientific computations such as, for example, signal
processing, bioinformatics, partial differential equations, and computer graphics, to name a few.

Pipelining the computations of such applications can provide an efficient solution to addressing
the cross-node data dependencies in loops. In fine-grain pipelining, the pipeline parallelism can be
increased at the cost of increased communication overhead. Coarse-grain pipelining attempts to bal-
ance the parallelism with the communication overhead. In this work, the focus is on the coarse-grain
pipelining approach. Applying self-scheduling algorithms to nested loops with data dependencies
leads to a pipelined execution because of the data dependencies [34, 42]. Specifically, the iteration
space of an application containing a loop nest of depth n is modeled as an n-dimensional Cartesian
coordinates space, where one axis is called the scheduling dimension, its size being denoted by
Uc , whereas another axis (usually the one with the largest length) is called the synchronization
dimension, and its size is denoted by Us , as illustrated in Figure 2. The scheduling dimension of
the application is partitioned into chunks of iterations according to the rules of a self-scheduling
algorithm, and synchronization points are inserted along the synchronization dimension. Thus, it is
assumed that the application has at least two dimensions, that is, n> 2, such that the synchronization
and scheduling dimensions can be distinguished. If the application has more than two loops, that
is, n > 2, one can consider the two outer loops as the scheduling and synchronization dimensions,
respectively. In this work, the depth of a loop nest is assumed to be n> 2.

The projections of chunks on the scheduling dimension are denoted by Vi , i D 1, : : : ,N , where
N is the number of chunks given by the self-scheduling algorithm of choice. For a loop nest of depth
n, the chunks resulting from the partitioning along the scheduling dimension are n-dimensional par-
allelepipeds. Each chunk is assigned to a processor for execution upon a request for work made
by each worker to the master processor. The pipelined execution follows the extended master–
worker model, in which synchronization between workers is achieved by inserting equally spaced
synchronization points along the synchronization dimension. Because of the synchronization points,
each n-dimensional chunk is partitioned along the synchronization dimension into subchunks of
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equal size. The length of the subchunk along the synchronization dimension is the same for every
chunk and determines the granularity of synchronization between workers, denoted by h.

For a fixed number of processors, the number of chunks, N , is likely to be larger than the num-
ber of physical processors, m. This means that each processor will execute more than one chunk
in a cyclic fashion in successive assignment rounds. Each chunk assignment round corresponds to
a pipeline with as many stages as the number of workers m (see Figure 1). The total number of
assignment rounds yields the number of pipelines, denoted by p. In a pipeline organization, each
worker synchronizes with its neighbor, and synchronization is performed at predetermined points,
that is, the synchronization points. Assuming that M synchronization points are inserted along the
synchronization dimension (see Figure 2), the total number of steps required for the completion of a
single pipeline ismC.M �1/, which also corresponds to the latency of a pipeline withm stages. In
every pipeline, data produced at the end of one stage are fed to the next stage. The synchronization
granularity determines the amount of computation to be performed before sending a message and
plays a crucial role in the total parallel execution time. Smaller granularity implies more commu-
nication, whereas larger granularity may limit the inherent parallelism. It is therefore important to
establish the optimal synchronization granularity that minimizes the parallel execution time.

4. DETERMINING THE OPTIMAL SYNCHRONIZATION GRANULARITY

In this section, the process of virtualization is described first, that is, transforming the set of physical
heterogeneous processors into a set of virtual homogeneous workers to facilitate the derivation of a
general theoretical model for determining the optimal synchronization granularity. This is followed
by a description of the models used to estimate the computation and communication costs. To sim-
plify the presentation of the proposed model, a two-dimensional loop, that is, n D 2, is presented.
The proposed theoretical model for estimating the parallel execution time and determining the opti-
mal synchronization granularity is however not limited to two-dimensional loops. The following
notation is used in this section:

� Ak : available computational power of physical worker k
� tp: computation cost for a subchunk
� cp: computation time/iteration using the slowest physical worker
� tc : communication cost for a subchunk
� cd : start-up cost for transferring a message
� cc : network throughput for transferring a message
� tms: transmission time needed for the work request to reach the master and for the master’s

reply to reach the worker
� csch: scheduling overhead (master side)
� hopt : optimal synchronization granularity
� Twa: time for the master to assign work to workers
� Ttr : time for transferring the necessary data from one pipeline to the next (case when A <N )
� Tcomp: time spent in computation
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Figure 2. The iteration space of a two-dimensional loop with data dependencies is partitioned
into chunks along the scheduling dimension, and synchronization points are inserted along the

synchronization dimension.

� Tcomm: time spent in communication
� Tpar : total parallel execution time

4.1. The computation and communication cost models

Virtualization. Distributed versions of the self-scheduling algorithms (CSS, TSS, FSS, and GSS)
have been studied in the past ([8, 18, 21], and references therein). The approach adopted by
Distributed TSS (DTSS) of using the available computational power of the workers can be applied
to all other self-scheduling algorithms so that they can be efficiently used on non-dedicated
heterogeneous systems (see [21] and [18]). In this work, the distributed approach is accomplished
via virtualization of the physical processing elements. Them physical heterogeneous processors are
transformed into A > m virtual homogeneous processors .P1, : : : ,PA/, each with computational
power 1. A heterogeneous worker k is modeled as a set of Ak virtual homogeneous workers, where
Ak represents its available computational power. The total number of virtual processors is equal

to the total available power of the heterogeneous system, that is, A D
mP
kD1

Ak . Following the vir-

tualization of the physical workers, each pipeline consists of A stages (instead of m stages before
virtualization) and M instances. In contrast to the approach in [21] and [18], in this work the vir-
tualization method is directly used in the implementation of the algorithms. In the remaining of the
paper, the distributed algorithms applied to arrays of A virtual homogeneous processors are referred
to as DCSS, DTSS, DFSS, and DGSS.

A model is needed to determine the synchronization granularity that minimizes the parallel exe-
cution time of loops with data dependencies in a heterogeneous system. The following computation
and communication cost models are introduced towards this goal.
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Computation cost model. The computation cost is defined as a linear function of the com-
putation cost per iteration multiplied with the number of iterations. The computational power of
each virtual processor is assumed to be equal to the computational speed of the slowest physi-
cal processor. Therefore, the computation cost of a subchunk of size hVi (for a two-dimensional
loop) is:

tp D hVicp , (1)

where h is the synchronization granularity, Vi is the projection of chunk i along the scheduling
dimension, and cp is the computation time per iteration of the slowest worker (see Figures 4 and 5).

Communication cost model. The analysis of the communication is based on the two-sided MPI
communication model [36]. The cost of sending a message is assumed to be equal to the cost of
receiving a message. This is a simple yet realistic assumption, based on the fact that, in most cases,
the send and the receive operations are executed in pairs between the communicating workers. The
message size is an important factor in the performance of an MPI application. In many situations,
increasing the message size leads to better performance caused by increased bandwidth. To quantify
this behavior, a series of experiments have been conducted using mpptest of the perftest suite
[36]. The results of these experiments are shown in Figure 3.

The cost tc of communicating a message of size h between two workers is a piecewise linear
function of h. The allocation of bandwidth increases until the message size reaches a certain thresh-
old value. This threshold value is determined by a system tunable parameter usually called the eager
limit, which signifies the transition from the eager to the rendezvous MPI exchange protocol [36].
This transition induces a performance penalty that is clearly illustrated in Figure 3, indicating that for
messages of 4000 bytes, the bandwidth is approximately 1.5� 106 bytes/s. Therefore, the threshold
value for the test system considered is reached at 4000 bytes, and tc is determined as follows.

tc D

�
cd C hcc for msg.size< 4000 bytes
c0
d
C hc0c for msg.size> 4000 bytes

(2)

where cd and c0
d

capture the start-up cost (the time to send a zero-length message including the
hardware/software overhead of sending the message), whereas cc and c0c correspond to the net-
work throughput defined as 1

sustained bandwidth
, where sustained bandwidth is the ratio of the

amount of data sent over the actual time measured at the application level.
The following observations are made regarding the communication: (i) In a heterogeneous sys-

tem, processors may communicate at different speeds, even if the interconnection network is homo-
geneous. When several processors send a message at the same time, network congestion occurs.
Both of these aspects are taken into account in the proposed model via the communication param-
eters determined by the mpptest experiments; and (ii) The communication occurs only between
the m physical processors.

Figure 3. Bandwidth of MPI communications as a function of message size, illustrating the performance
penalty associated with the transition from the eager to the rendezvous protocol.
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4.2. The theoretical parallel execution model

When self-scheduling algorithms are utilized with an array of A virtual processors, they provide
better load balancing and, hence, better performance than if they were utilized with an array of m
physical processors. This is because more work is assigned to faster processors. The cases investi-
gated in this work are when AD N and A < N , meaning the number of virtual processors is equal
to or larger than the number of chunks. The first case .A D N/ is a novel contribution to the work
in [34]. The special case when A > N can be reduced to the case when A = N by dropping the
extra processors.

4.2.1. Case A D N . In this case, the number of available virtual processors is equal to the num-
ber of application chunks, and each processor is assigned exactly one chunk. This is the case of
coarse-grain parallelism, which is different from the case where there are as many virtual proces-
sors available as tasks (fine-grain parallelism). For simplicity, let us assume that DCSS is used to
partition the scheduling dimension into N equal chunks of size Vi D

Uc
A

, and that M synchro-
nization points are inserted in each chunk along the synchronization dimension at equal intervals h.
Figure 4 illustrates such an iteration space partitioned into N equal chunks (horizontal segments),
which are assigned to the A virtual processors.

The total parallel execution time in this case is the time needed to compute the A C .M � 1/
number of steps of the pipeline. Except from the first and last step, all other steps involve a receive,
a compute, and a send operation. The first virtual processor P1 requires only a compute and a send
operation and the last virtual processor PA only a receive and a compute operation. Recall that h
is the synchronization granularity, Uc and Us are the lengths of the scheduling and synchronization
dimensions, respectively, and M D Us

h
is the number of synchronization points. Also recall that cp

is the computation time per iteration of the slowest physical worker, N is the number of scheduling
steps, and Vi D

Uc
A

is the projection of the i-th chunk size on the scheduling dimension, as given by
the DCSS self-scheduling algorithm. Then the total computation time is:

T ADNcomp D
m

A
hUccp C .hVicp/.M � 1/ (3)

The first term of Equation (3) is the computation time of all the last subchunks of the pipeline.
This is illustrated by the vertically shaded rectangle in Figure 4. Because cp is used to denote the
computation time per iteration of the slowest worker, the first term must be scaled by m

A
. The second

term of Equation (3) represents the computation time of the .M�1/ instances of the pipeline. This is
shown in Figure 4 by the horizontally shaded rectangles. It is obvious that the total computation time
is the sum of all vertically and horizontally shaded rectangles, corresponding to the total number of
steps of the pipeline (see Figures 1 and 4).
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Figure 4. Case A D N . Space-time mapping of a two-dimensional loop and communication and
computation pattern for a single pipeline having A stages, M instances, and AC .M � 1/ number of steps.
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Data exchanges occur only between the m physical processors. The time to send or receive
a message , denoted by tc , is taken twice for a complete communication operation as given by
Equation (2). Thus, the time to perform all receive and send operations in this case is:

T ADNcomm D .m� 2/.2tc/C .M � 1/.2tc/ (4)

For a given problem size, the communication time is a linearly increasing function ofm. The first
term of Equation (4) represents the communication time between the m physical processors associ-
ated with the computation of the last subchunks (the first term of Equation (3)). The second term of
Equation (4) is the communication time associated with the computation of the M � 1 instances of
the pipeline (the second term of Equation (3)).

Because of the use of the master–worker model, the work assignment time is Twa D 2tmsC csch,
where tms D cd CVcc is the transmission time needed for the work request to reach the master and
for the master’s reply to reach the worker, and csch is the time needed by the master to compute the
next executable chunk size, called scheduling overhead. Therefore, the total parallel execution time
in this case is:

T ADNpar D T
ADN
comp C T

ADN
commC Twa (5)

Twa is taken only once because the work assignment time for every other chunk is overlapped with
the worker’s computation or communication operations, except for the first chunk of the problem.

The minimum parallel execution time T ADNpar is determined as a function of h. For the values of
N and Vi given by the DCSS self-scheduling algorithm (see Table II; for DCSS Vi is a constant
16 Vi 6 Uc

A
) the minimum parallel execution time can be found by differentiating T ADNpar and veri-

fying that the second-order derivative is positive. The values ofN and Vi are computed as described
in Section 2 by applying DCSS to an array of A processors.

Proposition 1
The parallel execution time T ADNpar as a function of h achieves its minimum value at:

hADNopt D

s
2UsAcd

cp.ViA�Ucm/� 2ccA.m� 2/
(6)

Proof
The interest is to find the synchronization interval h that minimizes T ADNpar . This, T ADNpar is
differentiated with respect to h, which yields:

d

dh
T ADNpar D 2cc.m� 3/C cp.Uc

m

A
� Vi /�

2Uscd

h2
(7)

and the solution of d
dh
T ADNpar D 0 is given by Equation (6). Mathcad [43] was used to obtain the sec-

ond derivative of T ADNpar at hADNopt . This verifies that d2

d.hADNopt /2
T ADNpar is indeed positive, and implies

that the solution of Equation (6) is a local minimum for T ADNpar . �

Table II. Scheduling steps and chunk sizes with threshold C (D L).

N Vi

DCSS Uc
Vi

Vi

DGSS 1

lnd A
A�1 e

.lndUc
A
e � lnC/ Uc

A
.1� 1

A
/i

DTSS 2Uc
FCL

F � .i � 1/D

DFSS A.1.44 lndUc
A
e � lnC/ Uc

A
. 1˛ /

iC1
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Remark
Note that for each of the distributed self-scheduling algorithms, the value of Vi in Equation (6) is cal-
culated using the formulas from Table II, which take into account the threshold C for the minimum
chunk size of a processor.

4.2.2. Case A < N . This is the general case when there are more application chunks than the total
available computational power, and each virtual processor is assigned more than one chunk in suc-
cessive assignment rounds. Each assignment round corresponds to one pipeline execution, and p
pipelines are considered. In practice, it may happen that not all virtual processors are used in the last
assignment round. The output of one pipeline is the input of the next pipeline. Figure 5 represents
a collection of p replications of Figure 1. The theoretical parallel execution time in this case is the
sum of the completion time of all p pipelines plus the time required to transfer data between the
p pipelines. The total parallel execution time corresponds to the completion time of the last sub-
chunk, illustrated in Figure 5 as “PA, subchunk M, pipeline p”. Each pipeline can be completed
in AC .M � 1/ steps (see Figures 1 and 4). Each step, except from the first and last, consists of
one receive, one compute, and one send operation. As in the previous case (when A D N ), the
steps performed in the first virtual processor of every pipeline consist only of one compute and one
send step, and the steps performed in the last virtual processor of every pipeline consist only of one
receive and one compute step.

The total computation time for all pipelines is p times the computation time of a single pipeline.
Assuming that VjAC1 (> 0) is the size of the last chunk of each pipeline, as given by one of the
self-scheduling algorithms, the total computation time for all pipelines is derived as follows:

T A<Ncomp D
m

A
cphUc C cph.M � 1/

p�1X
jD0

VjAC1. (8)
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Figure 5. Case A < N . Space-time mapping of a two-dimensional loop and communication and
computation pattern for p pipelines, each with A stages, M instances, and AC .M � 1/ number of steps.
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The first term of Equation (8) is the computation time of all the last subchunks. This is depicted
by the vertically shaded rectangles in Figure 5. Given that cp is the computation time per iteration
of the slowest workers, the first term must be scaled by m

A
. The second term of Equation (8) repre-

sents the computation time of theM �1 instances of every pipeline, corresponding to the p.M �1/
compute steps. This is also illustrated in Figure 5 by the horizontally shaded rectangles. It is obvious
that the total computation time is the sum of all vertically and horizontally shaded rectangles (see
Figures 1 and 5).

The total number of send and receive steps for all pipelines is: p..m� 2/C .M � 1//C .p� 1/.
By letting Ttr be the time taken to transfer the necessary data from one pipeline to the next, the
time required to perform all the receive and send operations, that is, the communication time for all
pipelines and for transferring the data between two adjacent pipelines is:

T A<Ncomm D p.m� 2/.2tc/C p.M � 1/.2tc/C .p � 1/Ttr (9)

As expected, the communication time is an increasing function of m and p. The first term of
Equation (9) represents the communication time associated with all the last subchunks (analogous
to the first term of Equation (8)) during the p.m � 2/ communication steps. Similarly, the second
term of Equation (9) is the communication time associated with the computation of all the M � 1
instances of each pipeline (analogous to the second term of Equation (8)). Ttr is the time required
to transfer the necessary data from one pipeline to the next given by 2.cd CUscc/ and taken p � 1
times (see Figure 5).

As in the previous case, the work assignment time is Twa D 2tmsCcsch, where tms D cdCV1cc .
Hence, the total parallel execution time when A <N is:

T A<Npar D T
A<N
comp C T

A<N
commC Twa (10)

Proposition 2 gives the value of h that minimizes the parallel time T A<Npar . Table II summarizes
the number of scheduling steps and the chunk sizes for the various self-scheduling schemes. In the
case of DCSS, Vi is a constant 1 6 Vi 6 Uc

A
. For the various N and Vi given by the different

self-scheduling algorithms (see Table II), the minimum parallel execution time can be found by dif-
ferentiating T A<Npar and verifying that the second-order derivative is positive. The values of N and
Vi are computed as described in Section 2 by applying the self-scheduling algorithms to an array of
A processors.

Proposition 2
The parallel execution time T A<Npar considered as a function of h assumes its minimum at:

hA<Nopt D

s
2 .Us p A cd /

.2m� 6/AccpCUccpm� cpA
Pp
jD0 VjAC1

(11)

Proof
To find the synchronization interval h that minimizes the total parallel execution time, T A<Npar is
differentiated with respect to h. This yields:

d

dh
T A<Npar D Uccp

m

A
� cp

p�1X
jD0

VjAC1C .2m� 6/ccp � 2
Uscd

h2
(12)

and the solution of d
dh
T A<Npar D 0 is given by Equation (11). Mathcad [43] was used in order to

obtain the second derivative of T A<Npar at hA<Nopt and verify that d2

d.hA<Nopt /2
T A<Npar is positive. This

means that hA<Nopt , as given by Equation (11), is indeed a local minimum for T A<Npar . �

Remark
Note that for each of the distributed self-scheduling algorithms, the value of VjAC1 in Equation (11)
is calculated using the formulas from Table II, which take into account the threshold C for the
minimum chunk size of a processor.
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5. EXPERIMENTAL VALIDATION

Experimental system setup. With the advent of the multi-core technology computer, clusters
nowadays are made of multi-processor nodes (SMP clusters). The experiments were performed
on a heterogeneous system that consisted of nodes taken from two different Linux SMP clusters
(kernel 2.6.24.2). The first cluster has 16 nodes (called clones). Each “clone” node has two quad-core
Intel® Xeon® chips based on the Intel Core 2 micro-architecture E5405 (12-M Cache, 2.00-GHz,
1333-MHz FSB), yielding a total of 128 processing cores. The second cluster also has 16 nodes
(called twins). Each “twin” node, however, has a dual-core Intel® CoreTM2 Duo Processor E8200
(6-M Cache, 2.66-GHz, 1333-MHz FSB).

A series of experiments was conducted using 16 cores (from two nodes) of the first cluster and
16 cores (from eight nodes) of the second cluster, interconnected by a Gigabit ethernet network
(see Section 5.1). To further evaluate the effectiveness of the proposed theoretical model, a second
experiment was conducted on the first cluster (clones) using a 10-Gbit Myrinet interconnection net-
work (see Section 5.2). The results presented next are the average of 10 runs for each of the two
experiments. In both experiments, a threshold of C=20 iterations on the minimum chunk size for all
self-scheduling schemes was used. The applications test cases and the loop-scheduling algorithms
have been implemented in C/C++, and the communication was implemented using the OpenMPI
1.4.2 distribution of MPI. The codes were compiled using the GNU C/C++ compiler (version 4.4.5
20100909) with the -O3 option.

For both experiments, three well-known computational kernels were used as application
test cases:

1. Floyd–Steinberg (F-S) is an image-processing algorithm that is used for the error-diffusion
dithering of a width by height gray-scale image. The boundary conditions are ignored. The
pseudocode, given next, is a two-dimensional nested loop with four data dependencies [44].

2. Needleman–Wunsch (DNA) is an algorithm used for the global sequence alignment of two
DNA sequences [45]. The two sequences to be compared are placed along the left (X) and
top (Y) margins of the scoring matrix. The similarity matrix is initialized with decreasing
values (0, -1, -2, -3, . . .) along the first row and the first column to penalize for consecutive
gaps. The elements of the similarity matrix SMŒn1,n2� are calculated by the following
recurrence equation:

SMŒi , j �D

8<
:
SMŒi , j � 1�C gp
SMŒi � 1, j � 1�C ss
SMŒi � 1, j �C gp

where gp is the gap penalty and ss is the substitution score. In this work, gp is -2 and ss is 1
if the elements match, and 0 otherwise.
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3. Heat diffusion (HEAT) is one of the most widely used scientific computational kernels in the
literature. Its loop body is similar to the majority of the numerical methods used for solving
partial differential equations. It computes the temperature in each point of its two-dimensional
domain based on two values of the current time step AŒi � 1�Œj �,AŒi�Œj � 1� and two values
from the previous time step BŒi C 1�Œj �,BŒi�Œj C 1�. The pseudocode is given next:

Estimation of communication parameters. The mpptest from the perftest suite [36]
developed at Argonne National Laboratory was used to quantify the communication parameters of
the experimental system. Mpptest can be used with any MPI implementation and is designed to
measure the performance of the point-to-point MPI message passing routines. mpptest was very
useful for the experiments because of its ability to measure communication performance with many
participating processes, thus, exposing network contention and scalability problems. The communi-
cation parameters are independent of the application kernel or scheduling algorithm and therefore
are the same for all test cases. In the experimental setup, the -roundtrip and -sync options of
mpptest were used to measure the round trip time of blocking send and receive calls of messages
of sizes from 100 to 10, 000 bytes. The results for the Gigabit ethernet interconnection network are
summarized in Figure 6.

As can be seen in Figure 6, the communication cost is almost constant in both regions, that is,
when the message size is less than 4000 bytes and when it is greater than or equal to 4000 bytes.
This implies that the effect of cc (network throughput) in Equation (2) is negligible and that only cd
(transfer start-up cost) contributes to the actual communication cost.

Estimation of computation parameters. To quantify the computation parameter(s), each com-
putational kernel was executed for a representative problem size of 10, 000 � 10, 000 iterations,
which amounts to �8.5% of the actual problem size for each kernel. During these runs, the

Figure 6. Round trip time of the experimental system with the Gigabit ethernet network as a function of the
message size.
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performance of each worker was measured and it was concluded that the twin workers are 1.3
times faster that the clone workers. Thus, each worker from the clones cluster was assigned a virtual
power of 1, and each worker from the twins cluster was assigned a virtual power of 1.3. The total
virtual power of the heterogeneous cluster was AD 16� 1C 16� 1.3D 36.8.

The scheduling overhead, csch, was also measured during the same test runs as earlier, for each
scheduling algorithm (DCSS, DTSS, DFSS, and DGSS), with the following results: 3.75 � 10�5 s
(DCSS), 4 � 10�5 s (DTSS), 8 � 10�5 s (DFSS), and 8.5 � 10�5 s (DGSS). Table III summarizes
the estimated computation, communication, and scheduling parameters.

Table III. Estimated parameters for the scheduling, and the communication and
computation models used to estimate the theoretical parallel execution time for

all computational kernels.

cd cc cslowp VP slow VP fast

F-S 0.003� 0.005 s 2� 10�8 s 4.3� 10�8 s 1 1.3
DNA 0.003� 0.005 s 2� 10�8 s 6.4� 10�8 s 1 1.3
HEAT 0.003� 0.005 s 2� 10�8 s 1.6� 10�8 s 1 1.3

DCSS DTSS DFSS DGSS
csch 3.75� 10�5 s 4� 10�5 s 8� 10�5 s 8.5� 10�5 s
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Figure 7. F-S: Theoretical versus actual (practical) parallel execution times .s/ and synchronization
granularity h for the DCSS and DTSS scheduling schemes.
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5.1. Experimental results using the Gigabit ethernet interconnection network

The following notation is used in this section:

� htopt : the theoretical optimal synchronization granularity
� h

p
opt : the practical optimal synchronization granularity

� hp: the practical synchronization granularity
� T tmin: the theoretical minimum parallel execution time using the htopt synchronization

granularity
� T

p
min: the practical minimum parallel execution time using the hpopt synchronization granularity

In this section, the actual performance of the self-scheduling algorithms for the earlier mentioned
computational kernels is compared with their theoretical performance as estimated by the model
proposed in this paper. To assess the actual performance, the F-S, DNA, and HEAT computational
kernels were executed for a problem size ofUs�Uc D 120, 000�100, 000 iterations using the DCSS,
DTSS, DFSS, and DGSS scheduling algorithms. The synchronization granularity, h, for the experi-
ments was in the range of 100, 200, : : : , 3000 iterations. The actual parallel execution times of these
runs were measured. To produce more accurate results, the experiments were repeated 10 times for
each computational kernel, and the average of the actual parallel execution times is reported. This
was followed by the estimation of the theoretical parallel execution time for all kernels and for all
self-scheduling algorithms using Equation (10), using the communication and computation param-
eters as they were determined previously (cf. Table III), for the same synchronization granularity
range considered in the actual runs, that is, h D 100, 200, : : : , 3000 iterations. The values for the
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Figure 8. F-S: Theoretical versus actual (practical) parallel execution times .s/ and synchronization
granularity h for the DFSS and DGSS scheduling schemes.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:2302–2327
DOI: 10.1002/cpe



2320 I. RIAKIOTAKIS ET AL.

number of scheduling stepsN and the chunk sizes Vi for each self-scheduling algorithm were calcu-
lated using the formulas in Table II. In both the actual test runs and in the theoretical estimations, the
total virtual power of the cluster of virtual homogeneous processors was assumed to be A D 36.8,
and that the threshold C for the smallest chunk size assigned to a worker was set to 20 iterations.

The results from both the actual runs and the theoretical estimations are presented in the following
plots (cf. Figures 7). One can see that the proposed model captures the system behavior accurately
because the theoretical curve follows closely the shape of the actual curve in all cases. To assess the
accuracy of the proposed theoretical model, the values of the synchronization granularity giving the
minimum practical parallel execution time for each kernel and every self-scheduling algorithm were
extracted from the plots. These values are denoted by hpopt . Next, the corresponding theoretical opti-
mal synchronization granularity values were estimated using Equation (11), and these values were
denoted by htopt . The theoretical and practical optimal synchronization granularity values are sum-
marized in Table IV. From Table IV, one can see that the estimated values of htopt are very close to
the actual ones, hpopt , with an average percentage difference of 13.92%. It must be noted that even
in the worse case, that is, for the F-S kernel, where the largest percentage difference of htopt and
h
p
opt was 38.38% for the FSS scheduling algorithm, the corresponding performance degradation of

the practical parallel execution time versus the theoretical parallel execution time is only 1.86% (or
+0.495 s). In addition, the best synchronization granularity estimates were obtained for the HEAT
computational kernel, where the percentage difference between the theoretical and practical optimal
synchronization granularity values is zero for DTSS and DGSS. Thus, for the same theoretical and
practical optimal synchronization granularity, the performance degradation of the practical parallel

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

P
ar

al
le

l T
im

e 
(s

ec
)

h

DNA kernel - DCSS Scheduling algorithm 

Practical Time Theoretical Time

30

40

50

60

70

80

90

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

P
ar

al
le

l T
im

e 
(s

ec
)

h

DNA kernel - DTSS Scheduling algorithm 

Practical Time Theoretical Time

Figure 9. DNA: Theoretical versus actual (practical) parallel execution times (s) and synchronization
granularity h for the DCSS and DTSS scheduling schemes.
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Figure 10. DNA: Theoretical versus actual (practical) parallel execution times (s) and synchronization
granularity h for the DFSS and DGSS scheduling schemes.

execution time versus the theoretical parallel execution time using DTSS is 19.27% (or +2.69 s),
whereas using DGSS is 0.99% (or +0.16 s). The values in Table IV indicate that one can efficiently
execute a parallel application using the theoretically determined optimal synchronization granularity
htopt , which, in practice, gives a parallel execution time very close to the smallest practical parallel
execution time.

In each plot in the Figures 7–12, the effects of the nonlinear communications, as indicated earlier
in the description of the communication model (cf. Figure 6), can be clearly identified. Specifically,
there is a sudden increase in both theoretical and practical parallel execution time when hp D 1000
iterations. This increase is correlated to the communication penalty as explained in Figures 3 and
6. The value of hp D 1000 iterations corresponds to the transition point of tc for message sizes
of 4000 bytes in Equation (2). In the implementation of each kernel, the iteration point values are
expressed in floating point numbers, which are 4 bytes long each. Therefore, a synchronization gran-
ularity value of hp D 1000 iterations signifies that workers exchange messages of 1000 floating
point numbers or 4000 bytes, during every synchronization event. This increase is more noticeable
in certain kernels, and specifically in the HEAT computational kernel. This is explained by the fact
that this kernel has the smallest computation cost value, cp , among all kernels (cf. Table II), which
indicates that the parallel execution time of this kernel is largely dominated by the communication
cost. It can be further concluded that as the ratio of communication time to the total parallel execu-
tion time increases, the value of hpopt that gives the minimum parallel execution time increases as
well. This conclusion is in agreement with the intuitive assumption that as the communication cost
increases, the synchronization granularity should increase, that is, synchronizations should occur
less frequently. For the HEAT computational kernel, the value of hpopt that gives the minimum actual
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Figure 11. HEAT: Theoretical versus actual (practical) parallel execution times .s/ and synchronization
granularity h for the DCSS and DTSS scheduling schemes.

parallel execution time is found to be, in all cases, very close to the transition value of hp D 1000
iterations. Finally, for the F-S and DNA kernels, the minimum actual parallel execution time is
achieved for synchronization granularity values below the transition value, that is, hp < 1000.

5.2. Experimental results using the Myrinet interconnection network

The second experiment was conducted on the first cluster using a 10-Gbit Myrinet interconnec-
tion network. The following configuration switches: -mca btl mx,sm,self have been used to
enable the use of the Myrinet interconnection network for all OpenMPI communications. The total
number of workers in this experiment was 24, coming from three nodes of the first cluster (3�8D 24
cores). The test case used was the Floyd–Steinberg computational kernel described earlier. As in the
first set of experiments, mpptest was used to estimate the communication parameters for the
Myrinet interconnection network. The results of the mpptest are depicted in Figure 13, in which
the two linear regions, before and after 4000 bytes, can be identified. The estimated communication
parameters for this case are summarized in Table V.

The computation model parameter was found to be the same as in the first experiment: for the
workers of the first cluster, cp D 4.34� 10�8 s. In this experiment, a homogeneous system with 24
physical workers was used, each worker having a virtual computational power of 1; thus, the total
virtual power of the cluster is 24. The problem size was Us�Uc D 64, 000�100, 000 iterations, and
the scheduling algorithm of choice was CSS. The threshold on the minimum chunk size was again
set to 20 iterations.
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Figure 12. HEAT: Theoretical versus actual (practical) parallel execution times .s/ and synchronization
granularity h for the DFSS and DGSS scheduling schemes.

Table IV. Theoretical optimal and actual synchronization granularities, theoretical minimum and
actual minimum parallel execution times and their percentage differences.

Sch. alg. htopt (iter.) h
p
opt (iter.)

jhtopt�h
p
opt j

h
p
opt

� 100 T tmin (s) T
p
min (s)

jT t
min
�T

p

min
j

T
p

min

� 100

F-S computational kernel, A=36.8 virtual homogeneous processors
DCSS 697 520 34.04% 24.46 23.38 4.65%
DTSS 698 780 10.51% 26.50 26.80 1.12%
DFSS 941 680 38.38% 26.12 26.62 1.86%
DGSS 872 780 11.79% 34.35 33.03 4.00%

DNA computational kernel, A=36.8 virtual homogeneous processors
DCSS 572 580 1.38% 32.73 34.841 5.98%
DTSS 572 740 22.70% 33.58 38.83 13.51%
DFSS 754 640 17.81% 37.33 38.60 3.28%
DGSS 698 620 12.58% 50.51 47.47 6.41%

HEAT computational kernel, A=36.8 virtual homogeneous processors
DCSS 980 920 6.52% 11.41 11.46 0.39%
DTSS 980 980 0.00% 11.27 13.96 19.27%
DFSS 980 880 11.36% 13.753 14.27 3.62%
DGSS 980 980 0.00% 16.58 16.42 0.99%

The measured parallel execution time for values of h ranging from 0 to 1100 iterations, as well as
the theoretically calculated parallel execution time given by Equation (10), are shown in Figure 14.
One can note that the graph of the theoretically calculated parallel execution time closely follows

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:2302–2327
DOI: 10.1002/cpe



2324 I. RIAKIOTAKIS ET AL.

Figure 13. Round trip time versus message size for Myrinet interconnection network.

Table V. Communication and computation model parameters for the
Myrinet case.

Message size (bytes) cc cd cp

6 4000 2.87� 10�9 s 5.54� 10�6 s
4.34� 10�8 s

> 4000 6.14� 10�10 s 2.35� 10�5 s

Figure 14. F-S: Theoretical versus actual (empirical) parallel execution times (s) and synchronization
granularity h for the CSS scheduling scheme on a system with Myrinet interconnection network.

that of the empirically measured parallel execution time. Specifically, the slope of the practical par-
allel execution time begins with a steep “fall” followed by a slight linear increase. The theoretical
parallel execution time captures the linear increase portion of the practical parallel execution time
curve, without capturing the steep fall portion. The minimum theoretically calculated parallel execu-
tion time was obtained for htopt D 30 iterations, whereas the minimum empirical parallel execution
time is very close to that, with a value of hpopt D 80 iterations. The theoretical and actual parallel
execution times plotted in Figure 14 indicate that there is no significant difference in the parallel exe-
cution time before and after the hD 1000 iterations transition point. This is in contrast to the results
presented in Section 5.1, in Figures 7–12, and is caused by the fact that the communication cost for
messages sent over the Myrinet interconnection network is much smaller and practically negligible
compared with the cost of performing the F-S kernel computations, which remains the same regard-
less of the interconnection network. Thus, in the Myrinet interconnection case, the total (actual and
theoretical) parallel execution times are dominated by the applications’ computation time.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:2302–2327
DOI: 10.1002/cpe



TOWARDS THE OPTIMAL SYNCHRONIZATION GRANULARITY FOR DYNAMIC SCHEDULING 2325

6. CONCLUSION AND FUTURE WORK

A theoretical model has been presented for determining the optimal synchronization granularity
when parallelizing applications containing loops with data dependence distance vectors on hetero-
geneous systems. New formulas were given for estimating the total number of scheduling steps,
under the assumption of a threshold on the minimum allowed chunk size assigned to a worker by a
self-scheduling scheme. Estimating the total number of scheduling steps has a significant impact on
the parallel execution performance. Hence, good estimates play a very important role in the efficient
estimation of the performance of the self-scheduling schemes when applied to scientific applica-
tions on heterogeneous systems. The proposed model is general and therefore applicable to every
self-scheduling algorithm and to any application containing constant data dependencies.

The significance and usefulness of the proposed model stem from mitigating the effects of a
poor choice of synchronization granularity, which leads to poor load balance and significant perfor-
mance degradation, while the cost of determining the best performance through exhaustive search
among all possible granularity values is clearly prohibitive. The theoretical optimal granularity of
synchronization determined by the proposed model has been shown to be very close to the actual
(empirical) optimal synchronization granularity. The accuracy of the proposed methodology is, in
all cases, confirmed by extensive experimental results on a heterogeneous system with two types of
interconnection network.

The plans for future work include: (i) study of the impact of intra-node communication (for multi-
core and SMP systems) on the performance of the proposed theoretical model; and (ii) augmentation
of the self-scheduling algorithms with the (offline) knowledge of the proposed theoretical model,
so that the optimal synchronization granularity can be determined on-the-fly and the algorithms can
automatically adapt it to any changes that may occur unexpectedly in the system.
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