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Abstract 

Chronopoulos, A.T., Nonlinear CG-like iterative methods, Journal of Computational and Applied Mathemat- 
ics 40 41992) 73-89. 

A nonlinear conjugate gradient method has been introduced and analyzed by J.W. Daniel. This method 
applies to nonlinear operators with symmetric Jacobians. Orthomin(l1 is an iterative method which applies to 
nonsymmetric and definite linear systems. In this article we generalize Orthomin(1) to a method which applies 
directly to nonlinear operator equations. Each iteration of the new method requires the solution of a scalar 
nonlinear equation. Under conditions that the Hessian is uniformly bounded away from zero and the Jacobian 
is uniformly positive definite the new method is proved to converge to a globally unique solution. Error bounds 
and local convergence results are also obtained. Numerical experiments on solving nonlinear operator 
equations arising in the discretization of nonlinear elliptic partial differential equations are presented. 

Keywords: Nonlinear algebraic systems, iterative methods, Orthomin. 

1. Introduction 

in 
Nonlinear systems of equations often arise when solving initial- or boundary value problems 
ordinary or partial differential equations. We consider the nonlinear system of equations 

F(x) = 0, (I I) . 

where F(x) is a nonlinear operator from a real Euclidean space of dimension N or Hilbert 
space into itself. The Newton method coupled with direct linear system solvers is an efficient 
way to solve such nonlinear systems when the dimension of the Jacobian is small. When the 
Jacobian is large and sparse, some kind of iterative method may be used. This can be a 
nonlinear iteration (for example, functional iteration for contractive operators), or an inexact 
Newton method. In an inexact Newton method the solution of the resulting linear systems is 
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approximated by a linear iterative method. The following are typical steps in an inexact Newton 
method for solving the norllinear system (1.1). 

(1) Choose x0. 
For j = 0 Untii Convergence do 

(2) Solve iteratively: F’(x,) A,t = -F( x,3; 
(3) x,+ 1 =x, + A,; 

EndFor. 

Step (2) often consists of an inner linear solver iteration. If the linear iterative method is a 
Krylov subspace method (e.g., conjugate gradient, Chebyshev), then the Jacobian is only 
required for performing Jacobian times vector operations. The explicit computation of the 
Jacobian requires additional sparse storage and computation time. Efficient methods to 
compute directly sparse Jacobians have been proposed [19]. Alternatively, the Jacobian times 
vector operation can be approximated [4,16] using the following divided difference: 

F’(x& = 
F( x0 + EL*) - F( x0) 

. 
E (1 2) . 

A very important question is how to terminate the inner and outer iterations in an inexact 
Newton algorithm. Let the outer iteration terminate if 

ii F(q) :; < E, (13) . 
where e is a given error tolerance. The following two possibilities for terminating the inner 
iteration and retaining convergence for an inexact !Yewton algorithm have been studied. Chan 
and Jackson [5] proved that the inexact Newton method converges if the Jacobian is a uniformly 
definite operator in the neighborhood of the solution and the inner iteration stopping criterion 
is 

II%%) + F’k) AnIl G E. (14) . 

Dembo et al. [lo] proved that if we choose 0 < 7, < t < 1, for all n, and if the inner iteration 
stoppicg criterion is 

IIF(x,)+F’(x,) A,II~,11F(x,)lk (15) . 
then the convergence of the inexact Newton algorithm is locally at least linear. Thus, we can 
choose Q = 7 < 1 and obtain linear convergence rate in an inexact Newton algorithm. 
Superlinear or quadratic convergence for the outer Newton iteration can be obtained if the 
linear residual norm is o( II F( x,) 11) or 0( 11 F( xn) 112), respectively. For quadratic convergence 
the Jacobian F’(x) needs to be locally Lipschitz continuous. We note that several inner 
iterations may still be required to obtain convergence (linear or higher rate) with this stopping 
criterion. 

Nonlinear steepest descent methods for the minimal residual and normal equations have 
been studied by many authors (cf. [22,23]). Fletcher and Reeves [15], and Daniel [7] have 
obtained a nonlinear conjugate gradient method which converges if the Jacobian is symmetric 
and uniformly positive definite. These nonlinear methods reduce to the standard conjugate 
gradient methods for linear systems. These methods are based on exact line search at each 
iteration and thus must solve a scalar nonlinear minimization problem in order to determine 
the steplengths. Several authors have suggested inexact line sear& and have given conditions 
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under which these methods would still converge [1,12,14]. This is done to avoid solving exactly 
the scalar minimization problem whose derivative evaluation involves evaluation of the nonlin- 
ear operator. 

In the last two decades many Krylov subspace iterative methods have been derived for 
solving nonsymmetric linear systems of equations. These methods are generalizations of the 
conjugate gradients methods for symmetric and positive definite linear systems. Some outstand- 
ing examples are the generalized conjugate residual method (GCR), Orthomin( k) [13,25] and 
the generalized conjugate gradient method (GCG; [2]. 

In this article we undertake the task of deriving a nonlinear generalization of Orthomin(1). 
This new method is calied Nonlinear Orthomin(1). This method consists of an iteration which 
reqttires computation of a nonlinear steplength. It coincides with t1.e linear Orthomin(1) if the 
operator equation is linear. We prove global and local convergence results for this new method. 
We also provide asymptotic residual error bounds. We compare the Nonlinear Orthomin( 1) in 
terms of performance to the inexact Newton-Orthomin(l) algorithms with stopping criteria 
(1.3), (1.4) and (1.3)-( 1.5). We present two test problems. These are operator equations arising 
in the discretization of nonlinear elliptic partial differential equations. The Nonlinear Or- 
thomin( 1) demonstrated superior performance to the inexact Newton-Orthomin( 1). 

In Section 2, we review the Orthomin method. In Section 3, we derive a nonlinear extension 
to Orthomin(1). Under assumptions on the Jacobian and Hessian of the nonlinear systems we 
show that this method converges to a globally unique solution. In Section 4, we prove local 
convergence results and give asymptotic residual error bounds. In Section 5, we describe 
practical details in implementing the Newton-Orthomin(1) and Nonlinear Orthomin(1) meth- 
ods. We also describe the preconditioned Nonlinear Orthomin(1) method with right constant 
operator preconditioning. In Section 6, we show some numerical experiments for nonlinear 
systems arising from the discretization of linear boundary value problems in PDEs. In Section 
7, we draw conclusions and describe future work on this subject. 

2. The Orthomin method 

In this section, we review the Orthomin(k) method [13,25]. Let us consider the system of 
linear equations 

Ax =f, (2 1) . 

where A is a large and sparse matrix of order N. Direct methods may be inefficient for solving 
this problem because of the large amount of work and storage involved. Iterative methods can 
be used to obtain an approximate solution. 

Assume that A is Symmetric Positive Definite (SPD). Then the Conjugate Gradient method 
(CG) applies. Solving a SPD linear system by use of the CG method is equivalent to minimizing 
a quadratic error functional 

E(x) = (x - h)‘A(x -h), 

where h = A-If is the solution of the system. In infinite precision arithmetic the exact solution 
is reached in at most N iterations. The conjugate residual (CR) method is a variant of the 
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conjugate gradient method in which the residual norm E(x) = 11 Ax -f ;I* is minimized at every 
iteration. 

The generalized conjugate residual (GCR) [13] is an extension of CR which applies to 
nonsymmetric systems provided that the symmetric part of the matrix i( AT +A) is positive 
definite. This method also terminates (in infinite arithmetic) in at most N steps. However, the 
storage requirements increase at every step. Vinsome [25] proposed the Orthomin(k), as a 
practical version of GCR, where the latter has the drawback of keeping all the previous 
direction vectors. Let Pr denote the approximate inverse operator of A in a right precondition- 
ing for the system (2.1). 

Algorithm 2.1. Orthomin( k 1. 
(0) Choose x,. 
(1) Compute r0 = f -Ax,. 
(2) p. = Pr rO. 

For n = 0 Step 1 Until Convergence Do 

(3) 

(4) 
(3 

(6) 

7 0 I 

EIldSOI-. 

kl? 4%) 
‘,= (Ap,, Aa; 

X lZ+1 =x, +c,*pf#; 

r n+1= ‘n - c, 4, ; 

nii=Prr,+,+ ib:p,, A 
P where b,f’ = - ( p r rn+17 APj) 

i =i,, (APj, APj~ ’ ’ “’ 

A&+ 1 =A Pr r,,,, + k bi”APj, where j,, = min(O, n - k + 1); 
. . 

J =J,, 

Eisenstat et al. [13] proved that Orthomin( k), k > 0, converges. Note that if the matrix is 
symmetric, Orthomin(1) is the CR method. Orthomin applied with right preconditioning 
minimizes the residual norm of the unpreconditioned system, while left preconditioning 
minimizes a preconditioned residual norm. 

3. The Nonlinear Orthomidl) method 

In this section, we generalize the Orthomin(l) iteration to a nonlinear iteration which 
requires the solution of a scalar equation to determine the steplength. We then prove a global 
convergence result under assumptions that the Hessian and the Jacobian are uniformly 
bounded and the Jacobian is uniformly definite. 

Let F(x) be an operator mapping of the Euclidean space R” (or, even more generally, a real 
Hilbert space) into itself. The notation F’(x) and F”(x) will be used to denote the Frechet and 
GSteaux derivatives, respectiveiy. Also, for simplicity B;n’ and F,,!’ will denote F’(x,) and 
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F “( x,), respectively. We seek to solve iteratively the nonlinear system of equations F(X) = 0. In 
the linear case, F(x) =Ax -b and F’(x) =A. 

Assume that F’(x) and F”(x) exist at all x and that there exist scalars 0 < m < M, 0 < B, 
independent of x, so that the following conditions are satisfied for any vectors x and u: 

m II u II* G (F’(x)u, u) GM II v II*, (3.la) 

II F”(x) II < B, (3.lb) 

m* II u II* < (( F’(x)~F’(x))u, u) Q M* II v II*. (3.lc) 

Remark 3.0. The rightmost inequality in (3.la) and the leftmost inequality in (3.1~) are can be 
derived from the remaining inequalities. To see this we use the Schwarz inequality and the 
rightmost inequality in (3.1~) to obtain the rightmost inequality in (3.la). We also use the 
Schwarz inequality and the leftmost inequality in (3.la) to obtain the leftmost inequality in 
(3. lc). 

Condition (3.la) states that the symmetric part of the Jacobian is uniformly positive definite. 
This stems from the identity (F ‘( x)u, u) = <$[ F’(x) + F’(x)~]u, u). Note that (3.1~) is satisfied 
if for example the Jacobian and its inverse are bounded: II F’(x) II CM and II F’(x)-’ II < l/m 
imply m* II ull* < (F’(xJTF’(x)u, u) < M* II v II*. 

Under assumptions (3.1) we consider the following nonlinear generalization of Orthomin(1). 

Algorithm 3.1. Nonlinear Orthomin( 1). 
(0) Choose x0. 
(1) po=r,= -F(x,). 

For n = 0 Until Convergence Do 
(2) Select the smallest c, > 0 to solve min, , 0 11 F( x, + cp,) 11; 

(3) X n+l =xn + “,Pn; 

(4) r n+l = -F(xn+l); 

(5) pn+l =r,+, +b,p,, where b, = - 
(F F,‘+lPn) 

“~~~“p ,,* ; 

n+l n 

EndFor. 

The selection of scalars c, and b, guarantees that the two orthogonality conditions 

(r,, F,‘Pn-,) =O (3 2) . 

and 

(F,‘Pn9 F,‘Pn-*) =O (3 3) . 

hold. Under the assumptions (3.1) the following lemma holds true for Algorithm 3.1. 

Lemma 3.2. Let {r’,} be the nonlinear residuals und { p,,} be the direction uectors in Algorithm 3.1; 
then the following identities hold true: 

ii) (my Fn’Pn) = (my F,‘rn); 
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(ii) (F3b O,A = II 0, i12; 

(iii) (Fn)pn, A) = (F,‘r,, c,) +-bi-,(F,‘p,-,, P,A 

(iv) II F,‘r, II’ = II F,‘P,~ II’ + bZ- Jl C’P,- ! 112: 

II P,, II ; 

(vi) II p,, II < M II rc II; rm 
(vii) II r,+ 1 II < II rn II. 

Proof. The orthogonality relations (3.2) and (3.3) combined with step (5) of Algorithm 3.1 imply 
(i)-(iv-i). Equality (iii) is used in proving inequality (v) as follows: 

n1 ’ G I@,, F,‘r,)( G I( P,,, F,‘P,,)( G II P,, II ~~F,:P,II <Ml1 P,II’. 

Equality (iv) is used in proving inequality (vi) as follows: 

mYI Pn II’ G II CP, II’ G II c-r, II’ G M’ll ‘n II’. 
Inequality (vii) follows from the definition of c,. 0 

Remark 3.3. Let ,f,,(c) denote the scalar function $ 11 F(x,, + cp,) l12. Its first and second 
derivatives are given by 

f,‘(c) = (F(x, + CP,,), F’(q, + CP,)P,,), (3 4) . 

f;(c) = ((F”(x, + CP,)P,,., P,,), F(x, + CP,,)) + IIF’@ +cp,.)~,,ll~. (3 5) . 

The following upper and lower bounds on f:(c) can be computed from (3.9, the assumptions 
(3.1) and Lemma 3.2: 

II P,I!V( m’ - B II r. II) Q nz ‘II Pn II2 - 41 P, II2 II r,* II ~ftw, (3 6) . 

f:(c) G II pn II”( M2 + B II r, II) G 11 pn II”( N2 + B !I r. II). (3 71 . 

We next prove that if assumptions (3.1) hold, then the nonlinear Orthomin(1) iteration 
converges to a globally unique solution. 

eorem 3.4. Under the assumptions (3.1) on the nonlinear operator F(x) the sequence x,, 
generated by Algorithm 3.1 is well-defined for any x0, it converges to a unique solution x * of the 
nonlinear system F( x> = 3 and 

I! xrl -_Y” 11 < ‘,, F(x,) ,,. 
m 

Pro& The proof is divided in four parts. 
Firstly, we prove the existence of c,, in step (2) of Algoritnm 3.1. The derivative of the real 

function f, at zero 

f,‘(Q) = -(L Cw 
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is negative because of assumptions (3.1). So there exists c > 0 such that ]I F(x,, + cp,,) iI< II r,* 11. 
We must prove that there is a c > 0 such that f,(O) <f,(c). This would imply that there exists a 
c, > 0 where f,(c) assumes a local minimum. We use the value theorem for the operator F(x) 
to obtain the following equation: 

(F(Y) -F(x), (Y -xl) = (F'WY -4, (Y-X)). 

Combining this with condition (3.la) we obtain the inequality 

~~~Y-x~~~~IIF(Y)-F(x)II lly -x11. 
This inequality implies that 

~II~-xll4lF(~)-F(x)ll. (3 8) . 

For x =x, and y =x, + cpn we conclude that F(y) grows unbounded for c + 00. This proves 
that there is a c > 0 such that f,(O) <f,(c). 

Secondly, we obtain a lower bound on the steplength c,. Taylor’s expansion gives fJc,J = 0 
= f,‘(O) + c,&‘< C,), where C = tnc, for some t in (0, 1). We solve for cn. We then use the 
upper bound in equality (3.7; and Lemma 3.2(G) to obtain 

m3 m llcl II” (%9 F,‘m) 
~2(~2+WqJI) ’ IIpnl12(M2+Bll~Jl) ’ (Ipnj(2(hz2+Bll~nll) ‘cn’ (3 9 . 

Thirdly, we prove that the sequence of residual norms decreases to zero. For C = tc for some 
t in [0, l] we have 

fn(c) = $1 rn II2 - c(r,, Fir,) + $c2fi(E). 

To obtain the upper bound on f&c) we use (3.la), (3.7) and Lemma 3.2(vi): 

f,(c) d 3 - 
[ 

M2 
mc + $c”( B II rn I! + M2) 7 1 11 r, 112. 

Now by inserting 

m3 

’ = M’( M2 + B II r. II) 

we obtain the following bound on the residual error: 

tllr,+1112=f,(c,)~f,(c)~; 
m3 

l- M2(M2+Bllr011) 1 II II 
2 

?I ’ 

Since M is the dominant term in the bound expression it follows that II r, II+ 0. 
Finally, we prove that the sequence of iterates converges to a unique solution of the 

nonlinear operator equation. By use of (3.8) with x =x, and y =x,,+~ we obtain that the 
sequence x, is a Cauchy sequence. Thus it converges to x * and F( x*) = 0. The uniqueness 
and the error bound inequality in the theorem statement follow from (3.8) with x =x, and 
y=x*. cl 



so A. T. Chronopotrlos / Nonlineur iterative methods 

4. Asymptotic steplength estimates and error bounds 

In this section, we obtain asymptotic estimates of the steplengths c, near the solution. We 
then obtain residual error bounds and pro?e a local convergence result. 

Firstly, we prove a lemma giving bounds on the nonlinear steplengths. 

Lemma 4.1. We consider assumptiorrs (3.1) and the additional condition on the initial residual 
11 r, II< m’/(2B). Let c, and pr be as in Theorem 3.4; then the inequalities 

m3 2&z 
-- @*m’ %A m (4 1) . 

and 

II c,p, II d 2M II rn II (4 2 . ; 
hold. 

Proof. To prove the rightmost inequality in (4.1) we follow the proof of (3.9). We solve 
f,‘(c,) = 0 =f,‘to, + c,f,“(c,, f or c,. Then we use the lower bound in (3.6) and Lemma 3.2(i) to 
obtain 

(Cl, F,‘r,) II rn II II F,‘P, II 

‘,’ II P,112(m2 -Nlr,ll) ’ I/PnJ12(m2-BIIr,II) l 
(4 3) . 

NOW, using (3.1~1, Lemma 3.2(v) and the condition on the initial residual II rO II< m2/(2B), we 
obtain 

The 
The 

M II rn II ~312 

Cm’ IIpnII(m2-BII~~II) g2 m * 

leftmost inequality in (4.1) is proved from (3.9) and the condition on the initial residual. 
inequality (4.2) follows from (4.3) and (3.1~). q 

‘We next obtain asymptotic estimates of the steplengths c,. 

Proposition 42. 

(F ‘r rn) 1 n NY (r;,lrny m) l 

IIFnpp~12 (1 +E,) %I' IIF'pn112 (1 -En)' where %I = '('Irn 'I)- 

Proof. We will prove only the rightmost inequality. The leftmost inequality is proved similarly. 
The derivative of f, by use of (3.4) and expansion into second-order derivative terms becomes 

where (F,“p,, p,) = (FYx,, + ctjp,,)p,,, p,,) for some ti with 0 < ti < 1 and i = 1, 2. Now devel- 
oping the ‘inner product and using our assumptions (3.1) and Lemma 3.2 we obtain 

f;(c) < -(F,‘r,, r,,) + Cl1 F,‘Pn 11’ + cB!l Pn !!‘[$ClI f;,‘Pn 11 + II r, II + $“Bll pn II”)- 
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Thus, for c = c, we obtain 

(F ,‘r, 3 cl) G cfzll F,‘P, II2 + Cnll F,‘Pn II*% 9 
where 

en= ~$+Mi:hll + Ilr, II+ fcg?llp,lI’]. 
n n 

Using condition (3.1~) and inequality (4.2) in Lemma 4.1 we obtain 

En G E II rn II, 
where 

EZ- ~~[3M”+1+2M%lIr,I)]. cl 

We next prove a lemma relating the norms of two successive residuals in Algorithm 3.1. 

Lemma 4.3. Under the assumptions of Theorem 3.4 ‘we obtain the following asymptotic diflerence 
of the residual error E(x,) = II r, II2 of two successive iterates: 

E(Xn+,) -E(xn) = -c,(rn, Fir,) + O( II r,, II”). 

Proof. From the identity E(x,+J - E(x,) = (rn+_! - rn, rn+,) - (rn, rn - rn+J by expanding in 
Taylor’s series around x, + 1 and x,, respectively the first and second term we obtain 

E(x,+ * )-E(x,)=([F,‘+,(-cnPn)+fC,Z(F~Pn~Pn)]~ ‘n+l) 

-(rn7 ICnF,‘Pn + $cz(FiPn9 Pn)]), 

where n + 1=x,+, + tc, pn and ii = x, + SC, p, for some t, s in (0, 1). Since r, + 1 is orthogonal 

to F,‘+lPn and by using Lemma 3.2(i) and Lemma 4.1 the above expression gets reduced to 

-cn(rnY F,‘rn) + +clf[((FhPn9 Pn), ‘n+*) - (rn, (FiPnr Pn))]* 

Now the difference in the square brackets is easily seen to be bounded by 2BM*ll r, iI3 using 
assumptions (3.lb) and Lemma 4.1. q 

Now, we use the previous lemma to obtain an asymptotic residual error bound for iterates in 
Algorithm 3.1. 

Proposition 4.4. Under the assumptions of Theorem 3.4 we obtain the following inequality on the 
residual errors : 

E(xn+l) G ECxnldn~ 

where d, = [l - m2/M2 + o,] and an = 2M*ll rn 11. 
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Proof. By Lemma 4.3 we need to have an estimate of c&r,,, F,:r,). Using conditions (3.1), 
Lemma 3.2 and Proposition 4.2 we prove the following inequality: 

Now using Lemma 4.3 we obtain 

Ekz+,) 41r,l12 I m2 1 
1 - jjy (1 +E 

n 
) 1 +O(llr,ll”) BW,) 1 I I - $ + O(llr,II”)= 

The last term in this inequality is 

m2 
E(x,) l- z+c, 1 

1 
, where 0,, = 2BM2 I! rn 11. q 

In the following theorem we prove local convergence for the Nonlinear Orthomin(1) 
iteration and give an error bound estimate. Under assumptions (3.1) and an additional 
assumption on the initial residual norm it is proved that the iteration remains inside a ball 
centered at x0 with the appropriate choice of a radius 6,. 

Theorem 4.5. Let x0 be selected such that 

1 
)Ir,ll<m and di= 

where o2 = 2BM2 11 r,, 11. Let 6, denote 2M2/(1 - d,) II r0 11; the sequence x, generated by 
Algorithm 3.1 remains in the ball B(x,, 6,) and it converges to x *, which is the unique solution of 
F(x) = 0. Furthermore, dz = (1 - m2/M2) -I- o,, decreases to 1 - m2/M2 and 11 x, -x” II< 
aOdod, - - - d, _ ,. 

Proof. From Lemma 4.1 we obtain II c,pJ < 2M2 Ii r0 II < 6,. So, x, =x0 + cop0 is in B(x,, S,). 
Let 5, denote 2M” II r, II/(1 -d,). We will prove that B(x,, 6,) cB(x,, 6,). This follows 

. . [Ifz()fIl tile fQilutiir?g ii~~cjua~i@ if ;yc prey c that the rightmost term is bounded by 6,: 

lb-qJ~II~--~, Il+llx, -QJIB~~ +2M2 Iboll. (4 4) . 
Proposition 4.4 implies that I] rl 11 G d, II r0 II. This inequality and d, < d, imply that 

This proves that the last term in (4.4) is less that 6,. 
Since II m- 1 II < II rn II and d n+ 1 G d,, we can prove by induction that the iterate x, generated 

in Algorithm 3.1 satisfies the hypothesis of this theorem. 
Now II r,, II2 G di- 1 * . * dz II r. II2 < di” II r0 II2 implies that the sequence of residuals rn con- 

verges to 0. Also, 

n+k-1 

II x n+k -x,II~2M2 C IIrjIIG ~ll~olln~~*~o~~ ...dj_l 
j=n j=n 
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proves the sequence of iterates X, converges to x* E B(x,, 6,) and F(x*) = 0. When k 
approaches infinity, the inequality becomes 

for some constant C,. 0 

5. Implementation details 

We next describe four aigorithms based on Newton-Orthomin(1) and Nonlinear Orthomin(1) 
with different choices of stopping criteria. We then present the right preconditioning of the 
nonlinear system (1.1) with constant preconditioning matrix. 

(1) Newton-O th r omin(1). This is the inexact Newton method with stopping criteria (1.3), 
(1.4) (described in the Introduction) for the outer and inner iterations, respectively. 

(2) Nonlinea r 0 th r omin(1). This is Algorithm 3.1. The algorithm halts when the norm of the 
nonlinear residual F( x,) is less than a tolerance E. 

(3) Restarted Newton-Orthomin(1). This is the inexact Newton method with stopping criteria 
(1.3)-(1.5) (described in the Introduction) for the outer and inner iterations, respectivvely. 

(4) Restarted Nonlinear Orthomin(1). The algorithm halts when the norm of the nonlinear 
residual F(x,,) is less than a tolerance E. However, it restarts setting x0 =x, when 

II f’(x,,) 11 G rln 11 F(x,) II- 
Algorithms (1) and (2) are nonlinear extensions of the linear Orthomin(1) Algorithm 2.1. 

This means that if the problem is linear, algorithm (1) will perform only one outer iteration. It 
also will perform the same number of inner iterations as algorithm (2). Algorithms (3) and (4) 
are restarted algorithms. If the problem is linear, then the restarted algorithms (3) and (4) 
generate the same iterates. 

In the implementation, algorithms (2) and (4) are based on modification of Algorithm 3.1 in 
order to avoid exact line searches. The steplength to Proposition 4.2 can be approximated by 
the formula 

Also, we approximate 

brl 
(F n’r, 3 F,'PrJ 

Z- 

II F,‘Prl II2 
in order to save computational work. The only vector product computed is F,‘r, and this is used 
to approximate F,‘p, = F,‘r, + b,, _ 1 Fi_ I pn _ 1. This is generally expected to lead to a stable 
method because the Jacobian does net vary much in a single iteration. 

We briefly discuss here the right preconditioning of Algorithm 3.1 with a constant precondi- 
tioner Pr. The matrix Pr is assumed to be an approximation to the inverse of the Jacobian 
F’(x) (i.e., F’(x) Pr = I). The problem F(x) = 0 is transformed to G(y) = F(Pr y) = 0, where 
y = Pr-lx. Note that the Jacobian of the transformed problem is G’(y) = F’(x) Pr. Now, it is 
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easy to check that Algorithm 3.1 applied to G(y) = 0 yielding approximants y can be 
transformed lo yield approximants x,. The only changes required are in steps (1) and (5). 
These steps became ( 1’) and (S’), respectively: 

(1’) pO= Pr r9= -F(x,); 

(5’) pn+r = Pr rn+, +bnpn, where b, = - 
(K+1 Pr cz+19 F,‘+lPn) 

IIF,‘,*Ptzl12 l 

Most of the computational work is attributed to Jacobian (F’(X)) evaluations, Jacobian times 
vectors and functions (iF( x)) evaluations. Algorithms (1) and (3) require one Jacobian, one 
function evaluation per outer iteration and one Jacobian times vector operation per inner 
iteration. Algorithms (2) and (4) require one Jacobian, one functrbn evaluation and one 
matrix-vector product per iteration. If the Jacobian times vector operation is approximated as 
in (I-2), then no Jacobian evaluation is required. By using (1.2) algorithms (1) and (3) require 
one function evaluation per outer and one function evaluation per inner iteration. However, 
algorithms (2) and (4) require two function evaluations per iteration. For the preconditioned 
methods one matrix times vector product per iteration (by the matrix Pr1 must be added to the 
work for all algorithms. 

6. Numerical tests 

In this section, we present two nonlinear elliptic partial differential equation problems whose 
discretization gives rise to nonlinear algebraic systems with nonsymmetric Jacobians. We use 
the four algorithms described in the previous section. We compare their execution times on a 
CRAY-2 vector computer. 

Problem 6.1. Let us consider the nonlinear differential equation 

-Au+$Iux+yu3=f(x, y), (6 1) . 
where u and 
z&y) = exzty 

f are defined on the unit square [0, l] x [O, l]. We determine f(x, y) so that 
is the solution of (6.1) with inhomogeneous Dirichlet conditions imposed on the 

boundary. We discretize the problem using a central difference approximation for A and 
upwind first-order approximation for u,. Thus we obtain a system of nonlinear equations 
F(x) = 0 of order N = nz with n, being the number of interior grid points in each direction. 
The same prcblem with p = 0 and y = 1 was used in [US]. 

Problem 6.2. Let us consider the nonlinear differential equation 

-Ala+pu,+y ef’=f(x, y), (6 2) . 

where u and f are defined on the unit square [0, 11 x [0, l]. Again we determine f(x, y) SO 
that u(x, y) = exz+Y’ is the solution of (6.2) with inhomogeneous Dirichlet conditions imposed 
on the boundary. This is a simplified form of the Bratu problem [17]. It is known that for y 2 0 
there exists a unique solution to the problem. We discretize this problem in the same way as 
Problem 6.1. 
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Table 1 
Problem 6.1. Nonlinear Orthomin(l) and Newton-Orthomin(1) (y = 1, /3 = 10) 

m NIT Ntimes OIT IIT 

16 27 0.0243 4 58 

MAX-ITT 

16 

Times 

0.0427 
32 44 0.0662 4 109 32 0.1372 
64 77 0.2505 4 215 64 0.6200 

128 151 1.6035 5 525 128 4.8985 
160 183 2.9454 5 661 160 9.1898 
200 220 5.4893 5 852 200 22.4173 

Table 2 
Problem 6.1. Restarted Nonlinear OrthominW and Newton-Qrthomin(1) (y = 1, /3 = 10) 

fi NIT Ntimes OIT IIT MAX-IIT Times 

16 25 0.0222 15 28 2 0.0259 
32 43 0.0622 16 40 4 0.0595 
64 84 0.2804 19 86 s 0.2?76 

128 171 1.9352 21 172 16 1.7147 
160 202 3.3169 21 205 20 3.1165 
200 235 6.0235 22 263 24 5.8935 

Table 3 
Problem 6.1. Nonlinear OrthominCl) and Newton-OrthominW (y = 1, p = 30) 

NIT Ntimes OIT IIT MAX-IIT Times 

16 26 0.025 1 4 50 16 0.0461 
32 52 0.0786 4 98 32 0.1323 
64 113 0.3911 4 197 64 0.5515 

128 280 3.0074 4 392 128 3.6663 
160 379 6.1082 4 500 160 6.9018 
200 535 16.3794 4 644 200 16.7861 

The constants y and p are u&d to control the nonlinearity of the problems and the 
nonsymmetry of the Jacobians. We considered y = 1, p = 10 or 30. The Jacobian of this 
problem for small enough mesh size can be proven to satisfy conditions (3.1) locally in OV”. Thus 
nonlinear Orthomin(1) can be used to solve the nonlinear discretized problems. The Jacobian is 
closer to symmetry in the case of p = 10. In the case of p = 30, although the Jacobian has a 
more significant skew symmetric part, it is also closer to linearity. 

For the test problems described here the linear part of the Jacobian was computed once 
initially and it was stored in five diagonals. The nonlinear part consisting of a single diagonal 
was computed explicitly whenever needed. It was computed once in each outer iteration of 
algorithms (1) and (3). However it was computed once in every iteration of algorithms (2) and 
(4). 

In Tables 1-8, we show numerical results on solving Problems 6.1 and 6.2 using the 
algorithms (l)-(4) with ILU(0) vectorizable preconditioning [6,21,24]. Right preconditioning 
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Table 4 
Problem 6.1. Restarted Nonlinear OrthominU) and Newton-OrthominW (y = 1, /? = 30) 

fi NIT Ntimes OIT IIT MAX-UT Times 

56 23 0.02 15 15 20 3 0.01809 

32 41 0.0626 15 36 5 0.0511 
64 78 0.2827 17 68 11 0.2175 

128 109 1.2906 21 173 25 1.7402 
160 141 2.3649 21 168 27 2.5152 
200 197 5.066 21 217 42 5.2995 

Table 5 
Problem 6.2. Nonlinear OrthominW and Newton-OrthominW (y = 1, /3 = 10) 

NIT Ntimes OIT IIT MAX-UT Times 

lb 23 0.0194 4 54 16 0.0443 
32 38 0.0494 4 108 32 0.1299 
64 73 0.2072 4 209 64 0.5091 

128 135 1.2548 4 400 128 3.0540 
160 158 2.1547 4 418 160 5.8677 
200 233 5.2345 4 682 200 15.9824 

Table 6 
Problem 6.2. Restarted Nonlinear Orthomin(1) and Newton-OrthominW (y = 1, p = 10) 

v@ NIT Ntimes OIT IIT MAX-IIT Times 

16 24 0.0210 14 26 2 0.0225 
32 41 0.0555 17 42 4 0.0543 
64 84 0.2535 19 88 7 0.2401 

128 164 1.5348 20 167 14 1.3579 
160 189 2.6093 21 197 18 2.3018 
200 233 6.1126 21 261 22 7.0066 

Table 7 
Problem 6.2. Nonlinear Orthomirit 1) and Newton-Orthomin(1) (y = 1, fi = 30) 

fi NIT Ntimes OIT IIT MAX-IIT Times 

16 26 0.0242 4 47 16 0.0432 
32 50 0.0705 4 97 32 0.1197 
64 109 0.3297 4 186 64 0.4676 

128 264 2.4841 4 371 128 2.8146 
160 367 5.2559 4 454 160 5.1785 
200 509 15.4821 4 551 21 12.3918 



A. T. Chronopoulos / Nonlinear iteratil 11 methods 57 

Table 8 
Problem 6.2. Restarted Noniinear OrthominW and Newton-OrthominCli (y = 1, p = 30) 

a NIT Ntimes OIT IIT MAX-IIT Times 

16 20 0.0190 15 21 3 0.0183 
32 35 0.0474 15 35 5 0.0445 
64 66 0.1968 18 82 11 0.2135 

128 134 1.2832 19 135 23 1.0743 
160 161 2.2292 20 137 28 1.5894 
200 157 3.3931 20 200 40 3.5133 

was used with the ILU(0) preconditioning obtained from the discrete linear part of the 
differential operators. The error tolerance was E = lo-“. The initial vector was chosen to be the 
average of the solution in the four vertices of the square domain x0 = f[l + 2e’ + e*]. The 
stopping criterion parameter 7 was chosen q = i. This choice was observed to be best 
compared to q =O.l,..., 0.9. Varying 7 between iterations was not considered. 

The flags used in the tables are defined as follows. Firstly, for algorithms (1) and (3): 
OIT = number of outer (Newton) iterations, IIT = total number of inner iterations, MI-IIT 
= maximum number of inner linear iterations in a single Newton step. The maximum number 
of linear iterations allowed was set at YTX. Secondly, for algorithms (2) and (4): NIT = number of 
nonlinear iterations. The execution times (Ntimes for algorithms (2), (4) and Times for 
algorithms (13, (3)) are given in seconds on a single vector processor of CRAY-2 at the 
University of Minnesota. Although the computations -were not performed in a single-user 
mode, the load of the machine was low. Severai runs were performed and timings with 
variations 0.001 seconds were observed. 

7. Conclusions and future work 

We have presented and analyzed a nonlinear iterative method for solving nonlinear algebraic 
systems of equations. This method is a generalization of existing methods for linear systems of 
equations. We show that under certain uniform assumptions on the Jacobians and Hessians the 
method is guaranteed to converge globally to a unique solution. We also prove local conver- 
gence results and give asymptotic error bound estimates. These results extend the work of other 
authors [8,15] to deriving nonlinear methods for nonsymmetric Jacobians. 

It is well known that Krylov subspace iterative methods for linear systems require the 
formation of a small-dimensional subspace on which they project to obtain an approximation to 
the solution. What we suggest here is the inversion of the Newton linear iterative method to a 
nonlinear iteration Newton method. 

The test results show that the Nonlinear Orthomin(1) algorithms are in most cases more 
efficient than the Newton-Orthomin(1) algorithms. The number of (inner) iterations can be 
used as a rough indicator to explain the difference in efficiency of the methods. However, each 
iteration of the Nonlinear Orthomin(1) is more costly than the corresponding inner iterations 
of Newton-Orthomin(1). For P = 10 the Jacobians are close to symmetric. This explains the 
superiority of the Nonlinear Orthomin(1) algorithm. For p -I- 30 the Jacobians are sufficiently 
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nonsymmetric but closer to linear than for /3 = 10. For p = 10, Nonlinear Orthomin( 1) is slower 
than the restarted Newton-OrthominU) or the restarted Nonlinear Orthomin(1). In this case a 
method based on GCR [13] or GCG [2] with more vectors in storabe must be used for the linear 
problems. We did not consider nonlinear extensions of these methods here. In general the 
restarted methods gave unexpected number of iterations as a function of ILX. The Newton-Or- 
thomin(1) showed the worst performance in all cases. 

The method presented here requires the solution of a scalar nonlinear equation. In a future 
publication we will investigate inexact line search approaches similar to [l&12] for determining 
the parameters in these nonlinear methods. 
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