
Performance Evaluation of a 100-TeraOps Parallel System

A. T. Chronopoulos and Y. Gong
Wayne State University

email:chronos@cs.wayne.edu

H. Grebel and S. G. Ziavras
New Jersey Institute of Technology

Newark, New Jersey 07102

Abstract

This work deals with the performance evaluation of an MIMD distributed shared-

memory parallel computer capable of achieving 100 TeraOps. This machine was the result

of the one of the eight “point design ” projects supported by NSF to investigate the PetaOps

machines designs for the first decade of the next millennium. The machine consists of

cards of eight silicon processors and their memories. The eight processors are connected

via a crossbar switch. The interconnection network between the cards is based on the

Generalized Hypercube (GH) topology with optical links instead of wires.

In this work, we review the salient features of the design. We then study the commu-

nication operations for this design and the efficient mapping of linear algebra operations

and algorithms. Finally, we evaluate the performance of these operations. Our perfor-

mance evaluation demonstrates that the machine delivers overall a high performance and

thus it is a very promising future design.

Key Words: Generalized Hypercube, 100 TeraOps, Performance Evaluation, Op-

tical Interconnection Network .

1

1 Introduction

High-performance computing is expected to continue providing leadership in suc-

cesses in science, engineering and technology in the next millennium. If the current pace of

developments in semiconductor and optical technologies is maintained it is predicted that

computer systems with a sustained rate of one PetaOps (i.e.
�������

Operations per second)

will be available in the first decade of the next century.

NSF-sponsored ’point design’ studies demonstrated the feasibility of systems at-

taining 100 TeraOps (i.e.
�������

Operations per second) by the year 2005 using computer

and network components rates as projected by the Semiconductor Industry Association

(SIA), [4], [10], [11], [13], [16], [21], [19], [23].

Many past and current massively parallel computers are based on meshes or k-ary

n-cubes (e.g. Cray T3E, Intel Paragon, Tera and the designs in [6], [14]). We consider the

generalized hypercube GH(d,k), where 	 = size of a single dimension and
 = dimension

of GH . Figure 2.1 illustrates the 2-D GH(d,k), with
��� and 	���� . Unlike the mesh

or k-ary n-cubes, the generalized hypercubes have all their nodes, in each dimension, fully

interconnected. The diameter of a 2-D GH(d,k) is only 2 and the bisection width is 	������ .
The word nodes will refer to the GH nodes, throughout this paper. However, the number

of interconnection links in each dimension increases linearly with the number of nodes 	
[2].

Many research projects have been devoted to parallel processing using optical com-

ponents [1], [9], [15], [17]. Recent studies in optical engineering have shown that it is

feasible to implement interconnections with wavelength selectivity for channel allocation

[3], [18], [20], [22].

Our ’point design’ is a distributed memory system based on the GH(2,k). We as-

sume that the system has k=36 nodes in each dimension. We deal with the problem of the

high number of interconnection links in each dimension of the 2-D GH by using optical in-

2

terconnections [23]. The nodes in each dimension are interconnected via an optical network

with wavelength selectivity for each source/target node selection. Lasers are used to con-

vert the electronic signals to light. Each node consists of eight MIMD processing elements

(PEs) equipped with a cache and a local memory. The PEs of a node are interconnected via

a full crossbar switch [23].

The basic communication functions of GHs have been studied in [8]. The objective

of this paper is to review the salient features of our system design (see [23]) and to present

a study of the mapping of basic operations and linear algebra algorithms and their perfor-

mance. Although, the focus of study of the operations/algorithms is for the point design

the obtained results (with minor modifications) would apply to any GH based system.

The following notations will be used throughout the paper.

��� = total number of nodes in GH

����� = number of PEs per node

����� = Total parallel time

���
	����� = Parallel computation time

���
	��� = Parallel communication time

���
�� = node local memory fetch/store time

��� = Dimension of vectors

������� = Computation time for a 64-bit multiplication/addition/division

����� = Communication time for a 64-bit word between two adjacent nodes of GH

������� = time for local memory fetch/store of one word on a node.

The following types of mapping will be used to map vectors or matrices onto the 2-

D GH: (a) For dense matrix computations, we map the matrices via 2-D block checkerboard

3

partitioned mapping (BCPM) [7], [12]. (b) For other vector computations except those

involving grid mappings we use block striped partitioned mapping (BSPM). In this case

the contiguous vector blocks are first mapped to a logical linear array, which is mapped

onto the 2-D GH in row major snake-like fashion [12]. (c) For the 3-D grids, we apply 3-D

BCPM (see [12] for the 2-D grids BCPM).

In section 2, we present the generalized hypercube topology and evaluate the basic

communication functions and operations. In sections 3-4, we discuss the mapping onto

the GH(2,k) of basic linear algebra vector/matrix operations and linear systems solvers and

evaluate their performance. In section 5, we present the performance related features of the

architecture. In section 6, we present the performance rates for the various operations and

linear algebra algorithms.

2 Basics of communication primitives/operations on the GH

The GH topology architecture has been studied in [2], [8]. Due to its high degree

of node connectivity, it offers a viable alternative to the shared memory and other dis-

tributed memory architectures. In this section, we summarize all the major communication

primitives and operation primitives for the GH. These primitives are basic communication

kernels used in implementing parallel computations on the GH.

Study has been conducted by using spanning tree approach for four fundamental

communication primitives, under store-and-forward (SF) communication model with bidi-

rectional all-port assumption [8]. We use the same model for communication and we ignore

the startup cost in our estimated timings, for simplicity of expression.

Assuming that each source node transmits a message of size � words, then the

number of communication time steps (from [8]) is summarized in Table 2.1:

4

Primitive Time steps
One-to-all Broadcasting � ��� � �
�� ���
All-to-all Broadcasting � ����	�
��� ���� 	�
�� ���
One-to-all-Scattering � ����	�
��� ���� 	�
�� ���
All-to-all-Scattering � � � 	 � � �

Table 2.1. The Communication time steps obtained for the GH Network.

We next discuss the following important operation primitives for the GH: (a) reduc-

tion, (b) prefix sums, (c) circular shift and (d) irregular gather/scatter. These operations are

frequently used in the implementation of parallel algorithms.

We will describe the operations (a)-(d) on a vector of size � (with ��� � � �). We

assume the vector �� has been distributed to the PEs, so that each PE is assigned a subvector

of size ������ . Table 2.2 summarizes the complexity for each case (a)-(d), which we discuss

in detail next.

Operation �
	 �
� �
	��� �����

Prefix-sums �������� � �! ����� ��� "�������� �����
Reduction �������� � �! ����� ��� ������ �����

Circular q-shift N/A
� �� ��� N/A

Irregular gather/scatter case (i) N/A 	 � � ��� � �����

Irregular gather/scatter case (ii) N/A � 	�
$#%� ���� � 	�
�� ��� ��� � �����

Table 2.2. Operation primitives performance complexity.

(a) Reduction: We first apply the operation involved in the reduction locally on the GH

node. This requires ������ � �
operations. Then we apply GH row-wise node exchange and

reduction, followed by column-wise exchange and reduction.

(b) Prefix-sums: Initially at each GH node, the partial prefix sums of subvectors (each of

size ������) are computed. The entire sum of each the subvector assigned to each GH nodes

must be sent to other GH nodes to complete their prefix sums, by applying GH neighbor

node exchanges row-wise then column-wise. During the node row-wise exchange, we also

compute the full row sum in every node of the row. Then the full row sums are exchanged

5

column-wise. Finally, we add the full sums received from lower row node indices than the

current nodes to the partial sum of the current node. ��	����� is the same as in (a). Unlike (a),

in (b) we must store locally on each PE �� � � results.

(c) Circular q-shift: We must apply circular ������
 � �
shift to subvectors of �� (of size

� �) in the 2-D mesh. In the wrap-around 2-D mesh topology, circular q-shift requires all

data to be shifted by ������

� � along rows and to be shifted by ��� �

� �
	 along columns.

There is a correction shift by ”1” after the row shift along the first column [12]. In the case

of GH, we can combine the two column operations above in one time step because of full

connectivities along column nodes. Since a row/column shift cost equals one time step, the

communication cost is
� �� ��� .

(d) Irregular gather/scatter: This algorithm can be illustrated in the following loops:

do i = 1, N

idx(i) = rand(N);

do i = 1, N

b(idx(i)) = a(i);

We have several different cases depending on the distribution of idx(i) indices to GH nodes.

We focus on the two distinct worst cases in terms of remote PE communication. The re-

maining cases fall in between these two. Case(i): the indices idx(i) are uniformly dis-

tributed on the GH nodes. This setting requires one all-to-all scattering with � � � � from

any node to the rest of the nodes, which yields ��	��� = 	 � � ��� . Case (ii): All idx(i) indices

are mapped to only one GH node. Then this node must apply a one-to-all scattering with

� � � to all the nodes, thus � 	��� = � 	�
 # � ���� 	�
�� ��� ��� .

6

3 Basic Linear Algebra Operations

In linear algebra, several basic operations are frequently used as components in the

design of large scale complex parallel computing problems. We can categorize them in two

groups, ����� � ��� ���	�
��� �� ����� and ��� � � �� ���	�
��� �� ����� . In the following sections, we study

how to parallelize these operation on the GH.

3.1 Vector Operations

We can summarize the basic vector operation definitions in Table 3.1 and the paral-

lel time in Table 3.2. We then explain the complexity in each case.

Operation Definition
Inner product ���� ������ ��

Saxpy �� � � �� � ��
Outer product � ��!� �� �
Table 3.1. Vector operations

Operation �
	����� ��	��� ����

Inner product
� ������ � "� � � � �! � � ��� � �! ����� ��� � �� � � ����

Saxpy
� ������ ����� � �#" � ������ ����

Outer product � #����� ����� �$ � ��� � #����� ����
Table 3.2. Vector operations performance complexity.

(a) Inner product: We assume that the result is needed by all PEs. The ’+’ and ’ % ’ on

�� � � entries are performed by each PE. The node summation takes � � � �
operations and

the summation of all nodes is a reduction.

(b) Saxpy operation: It does not require any communication. Scalar multiplication and

vector summation are done at each local processor. The computation time is
� �� � � ����� .

(c) Outer product: This operation actually generates a matrix. We use block checkerboard

partitioning (BCP) mapping onto the 2-D GH [12]. Let subvectors of �� / �� with �$ � elements

7

each be distributed among the first row/column nodes on each node. The subvectors �� / ��
are broadcast simultaneously in GH node rows/columns, respectively.

3.2 Matrix Operations

We use BCP mapping onto the 2-D GH for all the dense matrix operations ((a)-

(c) next). We study the (a) matrix transpose, (b) matrix % vector multiplication, and

(c) matrix % matrix multiplication and (d) structured sparse matrix % vector operation

((i) block tridiagonal (BT) and (ii) Finite difference method (FDM) grid. We show the

complexity for (a) - (d) in Table 3.3. and we next explain the algorithm mapping and

complexity in each case.

Operation �
	 �
� ��	��� ����

Matrix Transpose N/A
� 	 � #�� � �� 	 $ � � ��� � �� ��� � #� � � �����

Dense Matrix % Vector � � � #����� � ���� $ � � ��� ����� � �$ � ��� � � #����� �����
BT Sparse Mat. % Vect.

� � �� � � ��� � � � ��� � �� � � �����
FDM grid Sparse Mat. % Vect.

� � ������ ��� � �
	 � � � �! ��� � ������
Matrix % Matrix

� �������� ��� � � #� ��� � � #� �����

Table 3.3. Matrix operations performance complexity.

(a) Matrix Transpose: We combine the BCPM and BSPM algorithms [12] in order to get

an efficient matrix transposition for the 2-D GH. Figures 3.1-3.2 illustrate this technique.

All nodes, except the diagonal node, have
� � � �

distinct paths along rows as well as
� � � �

paths along columns. It takes a maximum of 3 time steps for any path to reach

the destination node. For instance, source node � ��� sends parts of it submatrix to �� ,
��� , ��� , � � � , � � � , and � ��� in the first step of the three steps. All other nodes work similarly

without link conflicts. Then

��	��� � � �
"� � � � �! ���

where � � � #� .

8

(b) Dense Matrix % Vector Multiplication: We assume BCPM for the matrix A and we

assume that the vector �� is distributed to the top row of GH nodes and the result vector ��
is stored in the rightmost column of GH. The subvector of �� is broadcast in GH columns.

After the local multiplication, a single-node-accumulation is used along rows to form the

summation. So � 	��� =
� �$ � ��� .

The computation per node involves �$ � x �$ � multiplications, �$ � x �$ � � �
additions, and

�$ � � � additions in the accumulation phase. Since each node has � � PEs, the computation

time is:

��	���
��� � � �
��� � �

�
� � � � � ��� �����

(c) Structured sparse matrix % vector multiplication: We discuss only important cases,

which result from the discretization of partial differential equations (PDE) models on

bounded 3-D domains.

(i)Block Tridiagonal: Let A be a block tridiagonal matrix. We consider the important

case where the diagonal blocks are pentadiagonal matrices and the off diagonal blocks are

diagonal matrices. These matrices result from the PDEs solved numerical via FDM. We

assume the dimension of each block is � � � � % � � � � and ��� � � � � . This matrix can also

be viewed as a special seven diagonal matrix. We apply BSPM. Each node is assigned

� � rows. Each node needs only � � � � elements of �� from its linear array two immediate

neighbors. Both neighbor exchanges can be done at the same time. Thus, � 	��� = � � � � ��� .

There are seven non-zero elements per row and so six additions and seven multiplications

are performed per row. Therefore, the computation time is
� � �� � � ����� .

(ii)FDM grids: We map PDE domain of �
� � � % � � � � % � � � � grid points with regular grid

point ordering to the 2-D GH nodes (see [12] for the 2-D FDM grid case). There are N

grid points in total and each node is assigned � � grid points. Each node need only exchange� � � � � � boundary points with all six adjacent nodes. All data exchanges on six boundaries

9

can occur simultaneously. Thus we have:

��	 � � �
�
�

� � � � �! ��� (1)

The computation time for finite difference grids is the same as in (a).

(d) Matrix % Matrix Multiplication: We consider matrices / � mapping via the BCP

onto the 2-D GH . We use Cannon’s algorithm [12]. An initial alignment of submatrices
and � is applied, which takes time = � #� ��� . After the initial alignment, one block submatrix

multiplication is performed. Then
� � � � / � submatrix shifts are applied each one being

followed by one block submatrix multiplication. Each submatrix takes time = � #� ��� . Thus:

�
	��� �
� � �

� �
�

 ��� �
� �
� �

���

4 Systems of linear equations

In this section, we discuss the Gaussian elimination, the Jacobi relaxation and the

conjugate gradient algorithms.

4.1 Gaussian Elimination

We use the cyclic BCPM, see Figure 4.1. Our goal is to minimize the nodes idling.

From Figure 4.1, we can observe that the amount of communication does not remain con-

stant for all iterations. The communication consists of broadcasting row A[k,j] along GH

node-columns and column A[i,k] along GH node-rows, in the GH node handling the part

of matrix where Gaussian elimination is still active. Each such node must transmit a sub-

vector of row entries followed by a subvector of column entries. For the first
� � iterations,

at most �$ � elements are broadcast row-wise/column-wise. For the next
� � iterations, at

most �$ � � �
entries are broadcast; and so on. So, we have: communication time is:

��	 � �
� �

�
�
�
� �

 � �
�
� � � �! � � � � � ��� ���

10

� ���
� �

�� � � �� � � �
�
� � �

� �
� �
� � � � ��� (2)

The additions and multiplications involved (for a full submatrix assigned to a GH node) are

in the order of � �$ � � . Also, for every
� � iterations, the dimension of this submatrix is

decreased by one, so we have:

��	���
� �
� �
���

�� � �
� �

� � � � �
� � � ��� � � � � � � �	�
 �����

� ����� � �
���

�� � � ��� �
� �
� � � � �

�
�����

� ��� � � � � � � � � � � � � �
(3)

For the backsubstitution, only the right most column of
� � GH nodes perform the compu-

tation. (a) All the entries of a matrix row required for this operation are sent in GH rows to

the last GH column, which costs � #� time steps. (b)The nodes involved in the computation

send the computed results column-wise to all unfinished nodes. Due to the cyclic block

checkerboard mapping, this takes (N-1) time steps. steps. So we have:

�
	��� � �
� �
� � � � �� ��� (4)

For the Cholesky algorithm, the communication cost is of the same order as the Gaussian

elimination, but only half of the matrix need be stored.

4.2 Jacobi Relaxation

The 3-D grid Jacobi relaxation main computation is:

3-D Jacobi:

do m=1, nc /* number of species */

11

do k=1, nz

do j=1,ny

do i=1,nx

do mp=1,nc /* number of Jacobi iterations */

� � ������ 	 � � ��� � � � � � � � � � � ����� 	 � � � � � � � � ����� 	 � � � � � � 	��� � � � 	 � � � �
� � � � � � � 	 � � � � � � 	����� 	 � � � � � � � � 	����� 	 � � � � � � � � 	����� 	 � �

Enddo

The k, j and i loops can be viewed as a three dimensional cube of total size � � % ��
 %���� .

This cube can be evenly divided into � subcubes, each of size (size � � % ��
 % �� � � , and

be distributed among all GH nodes. The communication cost of this algorithm only occurs

at the six boundary faces of each subcube. All other elements can be obtained locally. All

the � � % ��� elements of � � � � � �
remain constant for the k,j and i indices, so they can be

stored in the node’s local memory. Both � and
�

need to be exchanged between adjacent

nodes at the boundaries. Communication is required only for � � loops. Therefore, the

overall communication for the algorithm is:

�
	��� � ��� % ��� ����� (5)

where ��� is the total number of grid points on the six boundary faces of a node. The

computation takes in ��� % ��� � ��� �� % ��� additions and � � � % ��� multiplications, where ���
is the total number of grid points for a subcube. So the total computation is:

�
	����� � � � % ����� ��� � %���� ��	 (6)

The first term of the computation refers summation of the parenthesized b-terms for the

� � -indices, which can be computed at � ��� �
and stored in the node memory for reuse

for � � � �
.

12

4.3 Conjugate Gradient

We discuss the Conjugate Gradient applied to a block tridiagonal linear system. The

communication and computation costs are calculates from the costs of its basic operations

(saxpy, inner product, matrix-vector multiplication). All we need is to combine the cost of

the various operations. For the truncated Incomplete Cholesky (IC) preconditioner, �
 is

computed by solving � �
 � �
 which can be approximated by solving:

(1) � � �� �
 (2) � � �� � � � (3) �
 � ���� � ,

where
��

is a diagonal matrix and
��

is lower triangular matrix. We use truncated power se-

ries approximation and we truncate after 2 series terms [12]. The parallel time per iteration

can be expressed as:

��� = (a) Matrix-vector multiply for � �
 � �
 for �

(b) + communication for � �
 � �

(c) + time for matrix-vector multiply

(d) + time for inner product

(e) + time for saxpy

= � ����� ������ (For (a) � � 11 � ��� ������ for each of (1)&(3) and � ��� ������
for (2))

+ ��� 	 � � ��� � � � ������ ����� (For (b) � � 4 neighbors exchange)

+ ��� 	 � � ��� � � � ������ ����� (for (c) � � 4 neighbors exchange)

+ � ������ ����� � ��� (For (d) � � 3 inner product)

+ ��� � #����� ����� (For (e) � � 3 saxpy operations)

5 Architectural Features of the 100 TeraOps Parallel Computer

Fig 5.1, shows the logical GH(d,k) network for
 � , 	�� � � and � � � � % � � .
By using optical channels with laser technology, a physical hardware architecture of 2-D

GH results [23]. We consider the key delays communication/computation delays involved

13

with this new architecture. We assume that each node is a card of of � � = 8 PEs, each PE

has a 16MB(ytes) cache and its own local memory of size= 32 GB(ytes), and the PEs and

their memories are interconnected (in the card) via a crossbar switch.

For communication between processor and memory on the same node, shown in Figure

5.2, the time and rate taken is:

�� ��� �
�

� � � ��� � �
�

 � � � ��� � �
�

 � � � ��� � �
�

 � � � ��� � �
�

� � � ��� � �
��� ��� ����� �	� �

 � � � �
�

� ��������� % ��� � � %
� � � � �� � � � � �
 � � �

��� � ����� � � � �� �
 � � � �����

For communication between processors and memory on the different nodes, shown in Fig-

ure 5.3, we have:

� ��� � ����� � � ��� ����� �
�

� � � ��� � �
 � � � ��� � �

�

� � � ��� � �
�

� � � ��� �
�
 � � � ��� � �

�

� � � ��� � � ��� ��� � ��� �	� �

 � � � �

�
� ��� � ��� � ��� � � %

� � � � �� � � � � �
 � � �
��� � � � ����� � �����

If we use DMA transfer between memory to other nodes, we have:

� ��� � ��� ��� �
�

� � � ��� � � � � � ���

 � � � � � � � ��� � %

� � � � �� � � � � �
 � � �
����� � �����

(7)

Let fetch/store refer to node memory access throughout rest of the paper. We note that
��� � ��� ��� for fetch/store of contiguous vectors of elements and � � � � �	� � � ��� ��� � � ,
otherwise.

The design complies with the following time delays, which are compatible with the

SIA projections (see [19]).

��� � = The memory clock-cycle time, which is
�� � � �"! = 2 ns

14

����� = Number of floating point units (FPUs) in a PE = 10

����� = Number of fetches/stores of ten 8 byte words from/to memory per cycle = 10

����	 � ���� � ! �
� ���

Since the PE functional units are assumed to be pipelined, the peak performance of the

system is � � � % � % ��� TeraOps = 103.6 TeraOps. Table 5.1 shows the local/remote com-

munication rates. The CPU/local memory equals
���� � % � �
 � ��� . The bisection bandwidth

equals
� � % � � % � � % ����� � ����� in each direction of the 2 half of the GH.

Type of Data Transfer Bandwidth
CPU/local-memory 40 GBs

CPU/remote memory on the same card 1.469 GBs
CPU/remote memory on another card 1.075 GBs

Memory/memory via DMA 6 GBs
Bisection bandwidth 69.9 TeraBs

Table 5.1. The Communication time steps obtained for point design network.

6 Numerical Performance Analysis

We now provide performance evaluation characteristics for the vector/matrix oper-

ations and algorithms of the preceding section. We consider two values for the dimension

: (i) � � � � �
for the vectors and matrices involved in dense matrix operations/algorithms,

(ii) � � ��� � , for all other cases. We assume that the numbers are 8-Byte floating point

numbers. We will demonstrate only the evaluation of inner product, matrix transpose and

Jacobi relaxation. We then provide a table summarizing the run-times and expected per-

formance for the remaining cases. We assume that efficient cache utilization is achieved by

using the BLAS-2, 3 formulations of the matrix algorithms (see [7], [5] and the references

therein).

(a)Inner Product: There are ������ � � � � � � local memory fetches for entries of each �� and

�
 . These fetches can be overlapped with computation on the local nodes. We ignore the

15

startup time. The estimated execution time is:

� �
� �
��� � � "� � � � �! � � ��� � �� �� � �

��� � ����� � � ��� �����

� � % � � � � � � � � � � � � � �! � % % ��� � �� � � % � � ��� � ���

� � � � � � � � � ��� � � ��� ��� � � �
The estimated execution rate is

��� � ���� ���
�
	 � ��� � � � ��� � TeraOps.

(b)Matrix Transpose: We can use DMA transfer in this operation. The estimated execu-

tion time is:

� � � �
"� � � � �� ��� ��� �

� �
��� �

� �
��� �

� � � � � � � � � � � ��� � � � � �
The estimated execution rate is

� � � � � � � � � � ��� � ����������� � ��� � � � ���� �� ��� � � � � � � TeraBs

(c)Jacobi Relaxation: Let nx=nx=nz=1000 and nc=5. We map the the Jacobi relaxation

grid cube onto the � � % � � GH nodes (see Figure 6.1) by configuring the GH nodes in a
� % � % � �

virtual cube. Then each node is assigned
� ��� % � ��� % � ���

�
� ��� � � � � grid

points. This will result in 4 subcube faces with
� ��� % � ���

�
elements and 2 subcube faces

with
� ��� % � ��� elements. The total number of gridpoints at six boundary faces for each

node end up to be 24720. The number of grids points per PE is � � = 771604/8 = 96451. The

number of communicated elements per PE is 24720/8 = 3090. if we overlap local fetches

with computation, the total estimated execution time is:

� � � ��� % � � ��� % � � % � � � � � ��	��� � � ��� � % ��� ���
� � � � � � � � � � ��� � � � � � � � � �

The estimated execution rate is
� ��� � �� � � ����
�
 	 � � �
����� � � � � TeraOps.

Table 6.1 summarizes the performance analysis results of all algorithms we discuss

in previous sections. Note for the items with (*) � � ��� �
and for the rest � � ��� � .

16

Problem Execution Time Execution Rate
Perfix-sums 1.958 � � 51.2 TeraOps
Reduction 0.994 � � 51.2 TeraOps

Circular q-shift 410.5 ��� 1.95 TeraBs
Irregular Scatter (A) 205 � � 3.89 TeraBs
Irregular Scatter (B) 3796 � � 0.21 TeraBs

Inner Product 3.90 � � 51.2 TeraOps
Saxpy 3.86 ��� 34 TeraOps

Outer Product � � � � � � � 99.8 TeraOps
Matrix Transpose � � � � � � 74.6 TeraBs

Dense Matrix % Vector � � ��� � ��� 49.9 TeraOps
B.T. Matrix % Vector 43.97 ��� 24 TeraOps

FDM Grid Matrix % Vector 18.1 ��� 37 TeraOps
Matrix % Matrix � � � � � % ��� � � � 99.8 TeraOps

Gaussian Elimination �
� � � % ��� ��� ��� 98 TeraOps

Jacobi Relaxation 430.8 � � 92.8 TeraOps
Conjugate Gradient

��� � � % ����� � � � 38.2 TeraOps
Table 6.1. Timings/performance results of various GH algorithms.

7 Conclusions

We have made a study of the efficient mapping of many widely used communica-

tion and computation kernels and linear algebra algorithms onto a ’point design’ parallel

computer. This parallel computer is based on the GH topology with its multiple port links

in each dimension being implemented by optical components. We then presented a perfor-

mance evaluation of the point design based on a very important set of kernels and linear

algebra algorithms. We note that the single Saxpy and inner product do not reach the peak

rate sustained by the design. This is not negative because dense and structured sparse linear

algebra algorithms can be expressed in terms of matrix times vector or matrix times matrix

operations (see [7], [5] and the references therein), which run near the peak rate. Our

results show that this design can lead to viable future PetaOp computer.

Acknowledgement: This work was supported in part by NSF Grant ASC-9634775.

17

References

[1] G. A. Betzos and P. A. Mitkas, Perf ormance Evaluation of Massively Parallel Pro-

cessing Architectures with 3D Optical Interconnections, Applied Optics, 1998, pp.

315-325.

[2] L.N. Bhuyan and D.P. Agrawal, Generalized Hypercube and Hyperbus Structures for

a Computer Network, IEEE Trans. Comput., Vol. 33, No. 4, 1984, pp. 323-333.

[3] L. Camp, R. Sharma, and M. Feldman, Guided-Wave and Free Space Optical Inter-

connect for Parallel Processing Systems: A Comparison, Applied Optics, Vol. 33,

1994, pp. 6168-6180.

[4] A. A. Chien and R. K. Gupta, MORPH: A System Architecture for Robust High Perfor-

mance Using Customization , 6th Symp. Frontiers Massively Parallel Computation,

Special Session on NSF/DARPA New Millennium Computing Point Designs, 1996,

pp. 363-370.

[5] A. T. Chronopoulos and C. D. Swanson, Parallel Iterative S-step Methods for Unsym-

metric Linear Systems, Parallel Computing. Volume 22/5, 1996, pp. 623-641.

[6] W.J. Dally, et. al., The Message-Driven Processor: A Multicomputer Processing Node

with Efficient Mechanisms, IEEE Micro, Vol. 12, Apr. 1992, pp. 23-39.

[7] J. J. Dongarra and D. W. Walker, Software Libraries for Linear Algebra Computations

on High Performance Computers SIAM Review, Vol. 37, No. 2, 1995.

[8] P. Fragopoulou, S. G. Akl and H. Meijer, Optimal communication Primitives on the

Generalized Hypercube Network Journal of parallel and distributed computing, 32,

173-187, 1996.

[9] E. Frietman, W. van Nifterick, L. Dekker, and T. Jongeling, Parallel Optical Intercon-

nects: Implementation of Optoelectronics in Multiprocessors Architecture, Applied

Optics, Vol. 29, 1990, pp. 1161-1167.

18

[10] G. Gao, K. Likharev, P. Messina and T. Sterling , Hybrid Technology Multithreaded

Architecture, 6th Symp. Frontiers Massively Parallel Computation, Special Session

on NSF/DARPA New Millennium Computing Point Designs, 1996, pp. 363-370.

[11] P. M. Kogge, S.C. Bass, J.B. Brockman, D.Z. Chen, abd E. Sha, Pursuing a Petaflop:

Point Designs for 100 TF Computers Unsing PIM Technologies, 6th Symp. Frontiers

Massively Parallel Computation, Special Session on NSF/DARPA New Millennium

Computing Point Designs, 1996, pp. 363-370.

[12] V. Kumar, A. Grama, A. Gupta and G. Karypis, Kumar, V. et al., Introduction to Par-

allel Computing Design and Analysis of Algorithms, The BenjaminCummings Pub-

lishing Company, Inc. 1994.

[13] V. Kumar, A. Sameh, A. Grama and G. Karypis, Architecture, Algorithms and Ap-

plications for Future Generation Supercomputers , 6th Symp. Frontiers Massively

Parallel Computation, Special Session on NSF/DARPA New Millennium Computing

Point Designs, 1996, pp. 363-370.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, W.D. Weber, A. Gupta, J. Hennessy, M.

Horowitz, and M. Lam, The Stanford FLASH Multiprocessor, IEEE Computer, March

1992, pp. 63-79.

[15] A. Louri and H. Sung, 3D Optical Interconnects for High-Speed Interchip and Inter-

board Communications, IEEE Computer, Oct. 1994, pp. 27-37.

[16] Z. B. Miled, R. Eigenmann, J. Fortes and V. Taylor, Hierarchical Processors-and-

Memory Architecture for High Performance Computing, 6th Symp. Frontiers Mas-

sively Parallel Computation, Special Session on NSF/DARPA New Millennium Com-

puting Point Designs, 1996, pp. 363-370.

[17] V. Morozov et al., Analysis of a Three-Dimensional Computer Optical Scheme Based

on Bidirectional Free-Space Optical Interconnects, Optical Engineering, 1995, pp.

523-534.

19

[18] I.R. Redmond and E. Schenfeld, A Free-Space Optical Interconnection Network for

Massively Parallel Processing, IEEE Las. Electr. Opt. Soc. Newslett., June 1995, pp.

10-13.

[19] T. Sterling, P. Messina and P. H. Smith, Enabling Technologies for Petaflops Comput-

ing, The MIT Press, 1995.

[20] T. Szymanski, A Fiber Optic Hypermesh for SIMD/MIMD Machines, Proceed. of

Supercomputing ’90 Conf., Nov. 1990, pp. 103-110.

[21] J. Torrellas and D. Padua, The Illinois Aggressive Coma Multiprocessor Project (I-

ACOMA), 6th Symp. Frontiers Massively Parallel Computation, Special Session on

NSF/DARPA New Millennium Computing Point Designs, 1996, pp. 363-370.

[22] S.C. Tsay and H. Grebel, Design of TransverseHolographic Optical Interconnect,

Applied Optics, Vol. 33, 1994, pp. 6747-6752.

[23] S.G. Ziavras, H. Grebel, and A.T. Chronopoulos, A Low-Complexity Parallel System

for Gracious, Scalable Performance. Case Study for Near PetaFLOPS Computing, 6th

Symp. Frontiers Massively Parallel Computation, Special Session on NSF/DARPA

New Millennium Computing Point Designs, 1996, pp. 363-370.

20

