
A Path-Driven Loop Scheduling Mapped onto Generalized Hypercubes

Hai Jiang (Member, IEEE),
A. T. Chronopoulos (Senior Member, IEEE)

Department of Computer Science
Wayne State University,

University of Texas, San Antonio
haj@cs.wayne.edu,

atc@cs.utsa.edu

G. Papakonstantinou,
P. Tsanakas

Dept. of Electrical and Computer Engineering
National Technical University of Athens

Athens, Greece

Abstract

One of the important issues in automatic code par-
allelization is the scheduling and mapping of nested loop
iterations to different processors. The optimal scheduling
problem is known to be NP-complete. Many heuristic static
and dynamic loop scheduling techniques have been studied
in the past.

Here we propose a new static loop scheduling heuris-
tic method called path-driven scheduling, under the as-
sumption that the loop dependence graph has been gener-
ated. This method clusters tasks according to the directed
paths on the dependence graph and assigns them to pro-
cessors in the target architecture. We make comparisons
with the free scheduling and the refined free scheduling al-
gorithms [8]. We schedule three widely used nested loops
on a generalized hypercube architecture. Our algorithm ex-
hibits the lowest communication cost compared to the other
two algorithms, while the execution cost is the same for all
three algorithms.

Key Words: Loop scheduling, path-driven schedul-
ing, path generation, path mapping, generalized hypercube.

1 Introduction

The problem of scheduling parallel program modules
onto multiprocessor computers is known to be NP-complete
in general cases [5]. Many heuristic scheduling algorithms
have been proposed in the literature [3], [5], [6], [8], [9],
[10], [11], [12], [13]. Some researchers introduced priority
based algorithms, such as list [6] and free scheduling [8].
Most of these are suitable for shared memory machines.
When these algorithms are applied to distributed memory
machines, performance will degrade quickly because of the
communication cost. On distributed memory machines, a
multi-stage method,clustering scheduling, is more practi-
cal [6]. It implements scheduling in two steps:task al-

location and task ordering. First task allocation clusters
tasks according todominant sequenceson processors and
make task priority deterministic. Then task ordering could
be achieved easily on the assigned processors.

The motivation behind this work is to find out an effi-
cient algorithm to schedule loop tasks on distributed mem-
ory system. Given a loop task graph, how tasks are clus-
tered will affect the whole performance of the scheduled
program. Once the clustering is applied, we can not change
much in global scheduling. In clustering, just grouping high
communication tasks together is not sufficient for reducing
parallel execution time. Task execution order and global
parallel running time still should be taken into account.

Directed paths on the graph reflect the traces of data
flowing streams. And clusters are the sets of nodes on a
task graph. If we cluster tasks according to data flow (or di-
rected paths), actually we could combine the considerations
of communication reducing and task execution ordering.
This makes task allocation and ordering no longer distinct
internally. Within such clusters, each node contains exactly
one immediate predecessor and one immediate successor.
So task ordering is optimized and naturally scheduling is
the consequence of data flow.

We introduce a heuristic path-driven scheduling and
mapping algorithm (P-D) in this paper to obtain the opti-
mized task clusters according to data flows and map them
onto the Processing Elements (PEs) of a target machine, the
generalized hypercube [1], [4], [14], heuristically. The rest
of the paper is organized as follows. The P-D scheduling al-
gorithm is described in Section 2. In Section 3, we discuss
the mapping on the PEs of the generalized hypercube. Sim-
ulation results are given in Section 4. Finally conclusions
are presented in Section 5.

2 Path-Driven Scheduling

A path-driven algorithm is suitable for problems with
invariant task computation cost. For such a nested loop

problem, since the P-D has taken the links into consider-
ation, the communication cost is not considered in the clus-
tering phase but it is dealt with in the mapping phase.

2.1 Directed Acyclic Graph model for nested loops

For a general program, we must detect the nested
loops and generate a directed acyclic graph (DAG) from
them. Our scheduling will be based on the ensemble DAG
of all loops.

Throughout this paper, we consider n-way nested
loops with lj and uj as the lower and upper bounds of
the jth loop. Without loss of generality, we assumelj
and uj are integer-valued constants andlj � uj for all1 � j � n. The iteration space (or index set) is expressed
by Jn = f(i1; i2; � � � ; in)j lj � ij � uj , for 1 � j � ng.
In the following sections, we only consider loop-carried de-
pendences [5]. So we treat all statements at each iteration
as a single element ofJn. And each iteration can be refer-
enced by its index vector�i = (i1; i2; : : : ; in).

For a data dependence, we use the following terminol-
ogy and notations:

1. Dependence vector:If a variablex is defined or
used at iteration�i, and redefined or used at iteration�j,
then there is a dependence vector�d between these itera-
tions based on the variablex, where�d = (d1; d2; : : : ; dn)t,dk = jk � ik, for 1 � k � n.
Using dependence vectors, we can denote all data depen-
dences among any iterations in this iteration space. All
three types of dependences,flow dependence, antidepen-
denceandoutput dependencewill be expressed in the same
way.

2. Dependence matrix:D = [�d1; �d2; : : : ; �dm], form 2 Z+ is the set of all dependence vectors in the itera-
tion space.

When parallelizing a nested loop, all dependences
have to be respected. In a flow dependence, variables are
defined at an earlier iteration�i and used at a later iteration�j. So data must be passed from�i to �j. In an output de-
pendence case, variables are defined at�i and are redefined
at �j. This just indicates a clear relation between the two
iterations. Their execution orders in a sequential program
should be respected in the parallel program scheduling. In
an antidependence case, variables used at�i as input are re-
defined at�j (�i < �j). Actually antidependence is some kind
of a restriction. Iteration�i uses some variables defined be-
fore �i in sequential program. And iteration�j overwrites
them. Thus no matter how we schedule iteration�i, it has to
be executed before iteration�j.

To detect an antidependence, we just need to check
the dependence vector�d. Let di0 be the first non-zero neg-
ative entry, i.e.,di = 0, 1 � i < i0, anddi0 < 0, then the
dependence vector�d indicates an antidependence. Since
antidependence deals with a relation between an iteration

and a later iteration with redefinitions of some common
variables, it has to be changed to indicate proper execution
order. One possible way is to convert it to a correspond-
ing flow dependence. Then we can assume there exists a
pseudo-data flow between two iterations. To change the di-
rection of dependence vector�d, we replace it with a vector�d0 = (d01; d02; : : : ; d0n)t, d0i = �di, 1 � i � n. From now
on, we will not distinguish between flow, pseudo-flow or
output dependence. We will just refer to them as depen-
dences.

From the iteration space and the modified dependence
matrix, we can generate a DAGG(V;E) with :

VerticesV = f v(i1; i2; : : : ; in) j �i = (i1; i2; : : : ; in);ll � il � ul; for 1 � l � ng
and edgesE = f ev(i1;i2;:::;in);v(j1;j2;:::;jn) j �i = (i1; i2; : : : ; in);�j = (j1; j2; : : : ; jn); such that9 �d 2 D with�j =�i+ �d g

Each iteration is a vertex on the DAG, because we
only consider loop-carried dependences. If a dependence
exists between two iterations, there is an edge between the
two corresponding vertices [8].

2.2 Generation of Scheduled Paths

The P-D schedules and maps tasks based on certain
parameters. Letu; v 2 V and the set of positive integers is
denoted byZ+, we define the following:

1. Predecessor Set:pre(v) = f u j eu;v 2 E g
2. Successor Set:suc(v) = f u j ev;u 2 E g
3. Earliest Schedule Level:esl(v) = � 1 if pre(v) = �maxu2pre(v)(esl(u)) + 1 otherwise

4. Graph Path:A set of vertices which are connected by
a sequence of edges on the DAG.

5. Critical Path Length:cpl(G(V;E)) = maxv2V (esl(v))
Critical paths are the longest graph paths on the DAG.
They dominate the execution time. The critical path
length is at least the same as the loop parallel time.

6. Latest Schedule Level:lsl(v) = � cpl(G(V;E)); if suc(v) = �minu2suc(v)(lsl(u))� 1; otherwise

7. Task Priority Value:Each task is assigned a priority
value� for selection in clustering. Smaller values in-
dicate higher priority. Forv 2 V ,�(v) = lsl(v)� esl(v):

8. Task Level Set:Tasks are classified by levels according
to theirEarliest Schedule Level. All tasks which could
be executed in parallel at time sloti 2 Z+ will be
scheduled attlsi, wheretlsi = fv j esl(v) = i; v 2 V; i 2 Z+g:

9. Scheduled Path (sp):Eachsp is a set of vertices se-
lected by the P-D. Each vertex of the DAG belongs to
only onesp. Critical Scheduled Paths (csp) are the
longestsp0s. Tasks of eachsp will be mapped to a
particular PE for execution.

10. Path Communication Set (pcs):Each scheduled path
communicates with others through this set of edges.
Forspi, i 2 Z+,pcsi = feu;v j eu;v 2 E; (u 2 spi andv 2 V � spi)jj (v 2 spi andu 2 V � spi)g:

11. Path Exchange Set:Two scheduled paths might need
to exchange data through a set of edges just between
them. Forspi; spj , i; j 2 Z+,pesi;j = feu;v j eu;v 2 E; (u 2 spi andv 2 spj)jj (v 2 spi andu 2 spj)g:
For a given DAG, the P-D assigns tasks to different

PEs and sets up the execution order. Generally, a task
scheduling algorithm consists of three steps [6]:

1. Partition the DAG into a set of distinct task clusters.
2. Reorder the tasks inside their clusters.
3. Map the clusters to PEs maintaining communication

efficiency.

Scheduled paths in the P-D are similar to task clus-
ters. The difference is that tasks on scheduled paths must
have data dependence relations, but this is not necessarily
true for the tasks in clusters. Scheduled paths are generated
according to data dependences. Initially a scheduled path
is a trace of data flow. Data stream passes through it from
the start to the end. And at the same time, task orders have
been fixed on thesp because of the dependences. During
the mapping, the costs of all communication links on the
same scheduled paths have been zeroed. So internally (on
each PE) the three separate scheduling steps are collapsed
into one step.

Given a DAG, the length of critical scheduled paths
will be constant regardless how they might be generated.
Longer scheduled paths contain more tasks, and possibly
more communication links since they are generated by data
dependences. In general if fewer PEs are used and if the
scheduled paths are longer, the expected efficiency of the
execution will be higher.

Scheduled paths are created to cover all the tasks in
a DAG. Some tasks are shared by several graph paths, as
in a DAG there are some joint nodes, (e.g. fork and join
points). These shared tasks could only belong to one sched-
uled path. Once a scheduled path is extracted, those task

vertices will not be isolated and cut off from the DAG as in
linear clustering methods [10]. They are sharable and stay
on the DAG to enable data flows passing through for the
detection of other scheduled paths. For example, if the par-
ent task is an unprocessed task, and its immediate children
have been assigned to some scheduled paths by their other
parents, these selected children could be used as pseudo-
tasks on the new scheduled path to let the parent find its un-
processed grand-children and place them on the same new
scheduled path. Both parent and its grand-children have
data links with the tasks in between (parent’s children).
Putting them on the same scheduled path will benefit the fu-
ture mapping in reducing communication distance. So the
P-D could generate longer scheduled paths naturally and
reduce the potential difficulty in merging them afterwards.

One could use heuristic methods in getting a subopti-
mal scheduled path. For the safest solution, we should enu-
merate all possible graph paths, then pick out the scheduled
paths in decreasing order of their lengths. But actually this
method is not practical. Both time and space costs are as
high as task duplication scheduling. We propose a heuristic
strategy of scheduled path generation as follows:

1. Determine the earliest schedule levels:Traverse
the DAG from top down to determine the earliest schedul-
ing levels (esl) of all tasks. If a task is independent, itsesl = 1. If a task only depends on tasks withesl = 1,
its esl = 2, and so on. If a task depends on some tasks
with esl � i (i.e. at least one task hasesl = i), this task’sesl = i+ 1.

2. Determine the latest schedule levels:The tasks
with the biggestesl are actually the exit-nodes on critical
scheduled paths. Thenlsl(task) =esl (task). From bottom
up, we traverse DAG again to determine thelsl for all tasks.
For a task, if its successors exist withlsl � i (at least one
task haslsl(task) =i), this task’slsl = i� 1.

3. Group tasks:Tasks should be grouped and placed
into different task level sets (tls). This is done according toesl, i.e., if a task’sesl = i, it’s placed intlsi. Those tasks
which have the same values ofesl andlsl are calledCriti-
cal Path Tasks(cpt). Eachtlsi contains at least onecpt.

4. Generate scheduled paths:All critical scheduled
paths are identified before the non-critical scheduled paths.
There could be several critical scheduled paths. First, we
scan thetask level settable from top down (i.e., fromtls1
to tlscpl) to select the start of a scheduled path, then iden-
tify other tasks from data dependences. Iftlsi is not empty,
we choose one critical path task at random. If none is avail-
able, we choose one with smallest priority value� (which
implies it belongs to a longer scheduled path), and mark it.
Then we check the successors of the selected task and select
an unmarked task with the smallest� . If none is available,
we choose one as a pseudo-task, and check its successors
until exit-tasks are reached. We mark the whole scheduled
path, and then restart to generate another one until all tasks
have been marked.

In this strategy, we can see that each scheduled path
contains at least one task. There might be some redun-
dant pseudo-tasks. They help to detect more tasks along
the same data streams. Once a scheduled path is created, its
tasks could be eliminated from the scheduling record, but
not from the DAG.

Algorithm (Scheduled Path Generation)

Input: DAGG(V;E) with tls(i); 1 � i � cpl
and�(j); 1 � j � jV j

Output: Listsp1; sp2; � � � ; spm, for somem � 1
1. m = 0
2. for i = 1 to cpl
3. while not all tasks intlsi are marked “selected”do
4. m = m+ 1; spm = �
5. selectv such that�(v) = minf�(u);8u 2 tlsi

andu is unmarkedg
6. spm = spm [fvg, and markv “selected”
7. j = i
8. while j < cpl do
9. if 9 u 2 suc(v) andu is unmarked
10. then select unmarkedx, �(x) = minf�(y),8 unmarkedy 2 suc(v)g
11. spm = spm [fxg
12. markx “selected”
13. else select a markedx 2 suc(v) at random
14. endif
15. v = x
16. j = j + 1
17. endwhile
18. endwhile
19.endfor

Task time-stamping: Once we get all scheduled paths,
we know whichsp0s tasks belongs to and their sequential
orders. But we still need to assign each task a time-stamp
to indicate at which step it could be run on a particular PE.
From the length ofcsp0s, we know the number of parallel
execution steps. Then along eachsp, there exists the same
number ofexecution time slots. Eachtime slotcan contain
only one task. Task time-stamping is needed to place each
task into a reasonable time slot on itssp according to the
dependences in the DAG. Theesl0s generated during the
scheduled path generation are used for the time-stamping
to fill out thetime slots.

Scheduled path optimization: Up to now, asp is a
trace of data flow. If it is not contiguous, it must be shar-
ing some tasks with others and the shared tasks are not on
the currentsp. It’s costly to let allsp0s always find some
available tasks beyond those shared ones during the sched-
uled path generation period. Then several broken shorter
scheduled paths could be created.

If each task on aspi is scheduled at an earlieresl than
all those on aspj , these two scheduled paths will be good
candidates for merging. If the last task onspi is connected

to the first task onspj through some other vertices in the
DAG, we call themrelated sp’s. The benefits of merging
them are:� To reduce the number of PEs for higher efficiency.� To make mapping easier for a non-fully connected

topology which might not be rich in communication
channels. Merging scheduled paths can reduce such
requests because the shared tasks need to exchange
data with other tasks on both original shortersp0s.
For general cases, any two scheduled paths whose

tasks are on differentlsl, i.e. with differentesl, can be
merged together. But this doesn’t guarantee that they are
related sp’s. If they arenon-related sp’s, they can not al-
ways reduce the communication cost because it depends on
the underlying non-fully connected topology. This problem
needs further investigation.

3 Mapping on Target Machine

In theory, all sp0s can be mapped onto any PEs
on a target physical machine. In a shared memory ma-
chine model, the underlying PE network topology could be
thought to be fully connected. Each PE is similar to all
others regarding the communication links and locations. In
this case, mapping is easy. Any scheduled path could be
mapped onto any PE.

For a distributed memory machine, communication
latency plays a big role. Different mappings might result
in different communication costs, and make longer the to-
tal parallel execution time. The heuristic mapping tries to
map scheduled paths to nearby PEs if they share more com-
munication links.

3.1 Detection of Scheduled Path Relationship

The communication frequency ofspi with all othersp0s will be denoted byjpcsij. This indicates the number
of links shared betweenspi and all others. Thesp with
bigger jpcsij should be mapped earlier than others. This
could make easier the mapping of subsequentsp0s.

For spi and spj , the communication frequency be-
tween them will be denoted byjpesi;j j. Thensp0s with
biggerjpesi;j j should be mapped to nearby PEs in order to
reduce the communication cost between them.

During mapping, these communication frequencies
are used to determine the mapping order and location.

3.2 Generalized Hypercube

The Generalized Hypercube topology architecture has
been studied in [1], [14]. Due to its high degree of node

(0,0)

(1,0)

(0,3)(0,2)(0,1)

(3,1)(3,0)

(2,3)(2,2)(2,1)(2,0)

(1,3)(1,2)(1,1)

(3,3)(3,2)

Figure 1: The 2-D generalized hypercubeGH(2;4)
connectivity, it offers a viable alternative to the shared
memory and other distributed memory architectures. Many
past and current massively parallel computers are based on
meshes or k-ary n-cubes (e.g. Cray T3E, Intel Paragon,
Tera and the design in [2]). Unlike the mesh or k-ary
n-cubes, the generalized hypercubes (GH(n;k), where:
n= number of dimensions and k= number of nodes in each
dimension) havek fully interconnected nodes in each di-
mension. As a result they have a very low diameter and a
very high bisection width. However, the number of inter-
connection links in each dimension increases linearly with
the number of nodesk [1].

GH is a symmetric topology. All PEs have the same
numbers and structures of links with others. Figure 1 illus-
trates the 2-DGH(n;k), with n = 2 andk = 4. The diam-
eter of a 2-DGH(n;k) is only 2 and the bisection width isk3=4.

3.3 Mapping on GH

We choose the 2-D generalized hypercube (GH(2;k))
as a network topology model to show how to map scheduled
paths to a physical machine. Between two PEs on the same
dimension ofGH(2;k), each communication takes a single
time unit. Otherwise, it takes twice this time.

We distinguish two cases: (a)np (number of paths)� p (number of PEs) (b)np > p. In (b) several sched-
uled paths are mapped onto each PE, which results in zero-
ing all communication links between them. But the parallel
time will be longer. In such cases, the mapping is split into
global and local mappings. Each PE has several scheduled
path slots. Initially, the global mapping is applied to map
a scheduled path on a PE by selecting one with the biggestjpcsij. Then for thelocal mapping, jpesi;j j should be used
to find an unselected scheduled path which has the most
communication links with the already mapped ones on the
current PE, and map the new one to a spare slot. This local
mapping process like this should continue until the local
slots are full or locally mapped scheduled paths have no
communication need with any others.

Because of the peculiarity of theGH(2;k), the global

mapping strategy could be formulated as the following al-
gorithm, whereas the local mapping remains the same. To
illustrate the global mapping algorithm, some terminology
for GH(2;k) is introduced.� Link Counters for Rows (or Columns):For each newly

selectedspi, each GH row (or column) maintains a
parameterlcri[j] (or lcci[j]) for the total numbers of
links betweenspi and all scheduled paths which have
been assigned on these rows (or columns). For each
GH row (or column)j,lcri[j] = X8 spl mapped on row j jpesi;ljlcci[j] = X8 spl mapped on column j jpesi;lj
We next present theglobal mappingstrategy on the

2-D GH.

1. Sortsp0s decreasingly according tojpcsij.
2. Select an unselectedspi with the biggestjpcsij.
3. Sort GH rows and columns according tolcri andlcci.
4. Find an available GH node(m0; n0) such thatlcri[m0] + lcci[n0] = maxflcri[m] + lcci[n], for any

GH node(m;n)g
5. Map the selectedspi to the GH node(m0; n0).
6. Activate the local mapping process to map moresp0s

to available local slots.

7. Repeat step 2, 3, 4, and 6 until allsp0s have been
mapped.

4 Simulated Experiments

In this paper, the parallel computation time is deter-
mined by the critical path length unless the target machine
runs out of PEs. The performance of the algorithms will
be evaluated by thenumber of inter-communication links
(nicl) among tasks on PEs. For a fully connected topology,nicl is just the number of links among all scheduled paths.
For a real target machine,nicl is the summation of commu-
nication costs amongsp0s on PEs expressed as the sum of
the total numbers of hops.

For the 2-D GH, on each dimension, PE nodes are
fully connected. Any communication along the same di-
mension will have weight = 1. Other communication be-
tween two scheduled paths with different rows and columns
will have weight = 2. The summation of them will indicate
the total communication cost.

Next, free scheduling, refined free scheduling and
path-driven scheduling are applied to a simple nested loop
example, the matrix multiplication and the Jacobi loops.
The comparison ofnicl0s will be reported on the fully con-
nected topology and 2-D GH.

40

30

20

10

41

31

21

11

42

32

22

12

43

33

23

13

44

34

24

14

00 01 02 03 04

Figure 2: The DAG for the simple nested loop example

4.1 Simple nested loop example

We consider the following nested loop example:

For i = 0 to 4 do
For j = 0 to 4 doa[i; j] = a[i; j � 2] + a[i� 2; j + 1]+a[i� 2; j � 2]
end

end

The dependence matrix isD = [�d1; �d2; �d3] = � 0 2 22 �1 2 �
and the dependence graph is shown in Figure 2.

Thetask level setsare shown in Table 4.1.esl Tasks
1 00 01 10 11
2 02 03 12 13 20 30
3 04 14 21 22 31 32
4 23 24 33 34 40 41
5 42 43
6 44

Table 4.1. Thetls0s for the simple nested loop example

If we apply the P-D on this example, thesp0s are gen-
erated as in Table 4.2. The()� entries are shared tasks.

Path Tasks at each time step
No. t0 t1 t2 t3 t4 t5
1 00 02 04 23 42 44
2 21 40 (42)� (44)�
3 01 03 22 24 43
4 10 12 14 33
5 11 13 32 34
6 20 (42)� (44)�
7 30 (32)� (34)�
8 31 (33)�
9 41 (43)�

Table 4.2. Thesp0s for the simple nested loop example

(0,0)

(1,0)

(0,3)(0,2)(0,1)

(3,1)(3,0)

(2,3)(2,2)(2,1)(2,0)

(1,3)(1,2)(1,1)

(3,3)(3,2)

85 4 7

9

3 1 2 6

Figure 3: Mapping the simple nested loop example onGH(2;4)
The total communication costs of the three scheduling

algorithms are listed in Table 4.3 and the mapping result onGH(2;4) is illustrated on Figure 3.

Scheduling nicl
Algorithm Fully connected GH(2;4)

Free 26 36
Refined Free 22 28
Path-Driven 20 20

Table 4.3. Comparison of communication costs for the
simple nested loop example

4.2 Matrix multiplication

We consider the matrix multiplication problem:

For i = 0 to 3 do
For j = 0 to 3 do

Fork = 0 to 3 doc[i; j] = c[i; j] + a[i; k] � b[k; j];
end

end
end

The total communication costs of the three scheduling
algorithms are listed in Table 4.4.

Scheduling nicl
Algorithm Fully connected GH(2;8) GH(2;3)

Free 115 135 158
Refined Free 115 135 158
Path-Driven 92 96 63

Table 4.4. Comparison of communication costs for the
Matrix Multiplication

4.3 Jacobi loops

We consider the Jacobi loops:

For i = 0 to 2 do
For j = 0 to 2 do
Fork = 0 to 2 do
For l = 0 to 2 doa[i; j; k; l]= 16 � (a[i� 1; j + 1; k; l]+a[i; j � 1; k; l] + a[i� 1; j; k + 1; j]+a[i; j; k � 1; l] + a[i� 1; j; k; l+ 1]+a[i; j; k; l� 1]);
end

end
end

end

The total communication costs of the three scheduling
algorithms are listed Table 4.5.

Scheduling nicl
Algorithm Fully connected GH(2;8) GH(2;3)

Free 246 311 367
Refined Free 246 311 367
Path-Driven 202 220 171

Table 4.5. Comparison of communication costs for the
Jacobi loops

5 Conclusion

In this paper, we study a path-driven scheduling and
mapping, from the DAG generation to the target machine
mapping. This is particularly useful for distributed mem-
ory systems where communication cost is higher than com-
putation cost. We consider a 2-D Generalized Hypercube
as a target machine. This method is general enough, and
without any extensions, it could be applied to non-uniform
nested loops and other distributed memory target machines.

We have implemented the proposed algorithm and
tested it. We made comparisons of our algorithm with
two other existing algorithms by simulation on three widely
used loops. Our algorithm outperforms the other algorithms
in terms of estimated communication time while all three
algorithms have the same estimated execution time.

Future research could be taking variable computation
and communication costs into consideration.

Acknowledgement: This work was supported in part by
NSF Grant ASC-9634775, by a CRAY/SGI and in part by
the PENED-95 research project of the Hellenic Secretariat
of Research and Technology.

References

[1] L.N. Bhuyan and D.P. Agrawal, Generalized Hyper-
cube and Hyperbus Structures for a Computer Net-
work, IEEE Trans. Comput., Vol. 33, No. 4, 1984, pp.
323-333.

[2] W.J. Dally, et. al., The Message-Driven Processor: A
Multicomputer Processing Node with Efficient Mech-
anisms,IEEE Micro, Vol. 12, Apr. 1992, pp. 23-39.

[3] S. Darbha and D. P. Agrawal, Optimal Scheduling
Algorithm for Distributed-Memory Machines,IEEE
Trans. on Parallel and Distributed Systems, Vol. 9,
No.1, 1998, pp. 87-95.

[4] P. Fragopoulou, S. G. Akl and H. Meijer, Optimal
communication Primitives on the Generalized Hyper-
cube NetworkJournal of Parallel and Distributed
Computing, 32, 173-187, 1996.

[5] H. El-Rewini, T. G. Lewis and H. H. Ali,Task
Scheduling in Parallel and Distributed Systems, Pren-
tice Hall, 1994.

[6] A. Gerasoulis and T. Yang, A Comparison of Clus-
tering Heuristics for Scheduling Directed Acyclic
Graphs on Multiprocessors,Journal of Parallel and
Distributed Computing, 16, 1992, pp. 276-291.

[7] C. H. Huang and P. Sadayapan, Communication-Free
Hyperplane Partitioning of Nested Loops,Journal of
Parallel and Distributed Computing, 19, 1993, pp. 90-
102.

[8] N. Koziris, G. Papakonstantinou and P. Tsanakas, Op-
timal Time and Efficient Space Free Scheduling for
Nested Loops,The Computer Journal, 39(5), 1996,
pp. 439-449.

[9] Y-K. Kwok and I. Ahmad, Dynamic Critical-Path
Scheduling : An Effective Technique for Allocating
Task Graphs onto Multiprocessors,IEEE Trans. on
parallel and Distributed Systems, 7(5), 1996, pp. 506-
521.

[10] G. C. Sih and E. A. Lee, A Compile-Time Scheduling
Heuristic for Interconnection-Constrained Heteroge-
neous Processor Architectures,IEEE Trans. on Par-
allel and Distributed Systems, 4(2), 1993, pp. 75-87.

[11] W. Shang and J. Fortes, Time Optimal Linear Sched-
ules for Algorithms with Uniform Dependencies,
IEEE Trans. Comput., 40(6), 1991, pp. 723-742.

[12] J. Sheu and T. Tai, Partitioning and Mapping Nested
Loops on Multiprocessor Systems,IEEE Trans. Par-
allel Distr. Systems, 24, 1991, pp. 430-439.

[13] B. Shirazi, M. Wang and G. Pathak, Analysis and
Evaluation of Heuristic Methods for Static Schedul-
ing, Journal of Parallel and Distributed Computing,
10, 1990, pp. 222-232.

[14] S.G. Ziavras, H. Grebel, and A.T. Chronopoulos, A
Low-Complexity Parallel System for Gracious, Scal-
able Performance. Case Study for Near PetaFLOPS
Computing,6th Symp. Frontiers Massively Parallel
Computation, Special Session on NSF/DARPA New
Millennium Computing Point Designs, 1996, pp. 363-
370.

