A Parallel Krylov-Type Method for
Nonsymmetric Linear Systems

Anthony T. Chronopoulos' and Andrey B. Kucherov?

! Division of Computer Science, University of Texas at San Antonio,
6900 North Loop 1604 West, San Antonio, TX 78249, USA
atc@cs.utsa.edu
2 Department of Computational Mathematics and Cybernetics, Moscow State
University,

Vorobjevy Goru, 119899, Moscow, Russia

Abstract. Parallel Krylov (S-step and block) iterative methods for
linear systems have been studied and implemented in the past. In this ar-
ticle we present a parallel Krylov method based on block s-step method
for nonsymmetric linear systems. We derive two new averaging algorithm
to combine several approximations to the solution of a single linear sys-
tem using the block method with multiple initial guesses. We implement
the new methods with ILU preconditioners on a parallel computer. We
test the accuracy and present performance results.

1 Introduction

The s-Step Orthomin forms, at each iteration, s independent direction vectors
using repeated matrix-vector products of the coefficient matrix with a single
residual vector ([4]). Then the solution is advanced simultaneously using the s
direction vectors. The orthogonal s-Step GCR/Orthomin was introduced in
M]. In the Orthogonal s-Step GCR/Orthomin (OSGCR(s)/OSOmin(k,s)) ([5]), a
Modified Gram-Schmidt method (MGS) is used to orthonormalize the direction
vectors within each block. We note that OSGCR(s) is the same as OSOmin(0,s).

An alternative approach to the s-step methods, in terms of parallel properties,
is offered by the block methods. The block methods use a number of linearly
independent initial residual vectors. This number is called the blocksize of
the method. The residual vectors are used to compute simultaneously a block of
direction vectors which are orthonormalized via MGS (much like in OSOmin).
These direction vectors are then used to advance the solution and compute the
new residual vector. Several authors have studied the block methods see for
example [2] , [3], [8], [9] , [10] , [12] , [I4] and the references therein.

A block OSGCR/OSOmin for the solution of nonsymmetric linear systems
if obtained by turning the OSGCR/OSOmin into a block algorithm as in the
references above. We want to use this method to solve a linear system with a
single right handside on a parallel computer. One can use many initial guesses

B. Monien, V.K. Prasanna, S. Vajapeyam (Eds.): HiPC 2001, LNCS 2228, pp. 104-[I14] 2001.
(© Springer-Verlag Berlin Heidelberg 2001

A Parallel Krylov-Type Method for Nonsymmetric Linear Systems 105

and then combine the final solution approximations into one by an averaging
scheme. Such a scheme was mentioned in [6], for the Conjugate Gradient method.

The convergence study of the s-step methods can be found in [4], [5]. Here
we simply derived block algorithms in order to increase the parallelism of the
methods. The block algorithms are expected to exhibit similar convergence prop-
erties in reference to (the class of) the matrix of coefficients as in the s-step
methods, assuming that the initial residual vectors are linearly independent. By
varying the parameters k, s in the OSGCR(s)/OSOMin(k,s) method we obtain
methods mathematically equivalent to other widely used Krylov methods (e.g.
OSOmin(k,1) is equivalent to Omin(k), OSGCR(s) is equivalent to Odir(s) and
GMRES(s)) (see [4]). Thus, we only test the block OSOmin method for various
k, s and we expect these comparisons to hold for other widely used methods.

The article follows the following structure. In section 2, the block s-step
method is presented. In section 3, new solution averaging block methods for
solving a linear system with a single right hand side are proposed. In section 4, a
partial differential equation problem discretization which generates a large sparse
matrix and a parallel preconditioner are described. In section 5, implementation
and test results are presented. In section 6, we draw conclusions.

2 Block OSGCR/OSOmin

For integers i, k, s and 1 < i, k, let j; = 1 for OSGCR(s) j; = max(1,i—k+1) for
OSOMin(k,s). In OSGCR and OSOmin, each iteration generates a block of s di-
rection vectors, which are denoted by the matriz P; = [p}, ..., pi]. Firstly, AP; is
obtained from the column vectors [Ar;, A%r; , ..., A®r;], by simultaneously AT A
-orthogonalizing them against the preceding blocks of direction vectors and then
orthogonalizing them amongst themselves. Then the direction vectors P; are
formed using the same linear combinations (as in AP;) starting with the vectors
[7i, Ar; 5 ..., A*~1r;]. The norm of the residual ||7;y1]|2 is minimized simultane-
ously in all s new direction vectors in order to obtain x;,1. All orthogonalizations
apply the Modified Gramm Schmidt algorithm (MGS) [5].

Let us assume that we are to solve a single linear system Ax = f of dimension
n with b righthand sides. We next present the block OSGCR(s)/OSOmin(k,s)
(BOSGCR(b,s)/BOSOmin(b.k,s)). We note that BOSGCR(b,s) is the same as
BOSOMIN(b,0,s). The following notation facilitates the description of the algo-
rithm. We omit here the iteration subscripts which appear in the algorithm. Let
b denote the block size, for example the number of initial solutions. The matrices
F (right hand sides), X (solution vectors), R (residual vectors) are of dimensions
n X b. The matrices P (direction vectors), AP (matrix times direction vectors),
@, S (used in the orthonormalization of AP and similar transformations on P,
respectively) are of dimension n x bs. And U is upper triangular of dimension
bs x bs. The (parameter) matrix of steplengths « is of dimension bs x b. Note
that if (the b righthand sides are distinct) then f; # f;, for ¢ # j; else (for a
single righthand side f; = f, for i =1,...,b.

106 A.T. Chronopoulos and A.B. Kucherov

Algorithm 1 BOSGCR(b,s)/BOSOmin(b.k,s)

Initialization

Set F = [fi,...,fp], Compute the initial residuals Ry = F — AX; and set
Qo =5y=0.

Iterations

For i=1,2,... until convergence do

1. Compute P; = [Ru ARZ, . 7A571Ri]
and (set) APZ = [AR,L', A2R7;7 RPN ,ASRIL'}
2. Orthogonalize AP; against the matrices
Qi-1,...,Q; and update P;
If (i > 1) then
i—1
14Pz = APZ —' Zj:ji QJ(QJTAPl)
Pii=P - Y _. S;(QTAP)
EndIf
3. Compute QR-decomposition (via MGS) of AP; and obtain S;
AP, = QiU;
4. Compute the steplengths/Residuals/Solutions
a; = Q] R;
Ri+1 =R; - Qiai
Xit1 = X; + Siq;
EndFor
5. If(b distinct righthand sides) then exit Else Combine the b solutions X1
to obtain a single solutions

3 Solution Averaging Algorithms

In this section we discuss how a single system could be solved using Algorithm1.
In order to apply some block method, in which b vectors are iterated, to solving
of a single right hand side system

Ar=f (1)

one must obtain b linearly independent initial guesses. Output of block iterations
gives us b approximate solutions. It is reasonable that on input we have only one
initial guess Z(, and want to get only one solution (approximation) at the end.
If we use a preconditioned method, in which a preconditioning matrix depends
upon some parameter and easy to construct, it would be natural to obtain b
initial guesses, choosing b different parameter values. For an application of this
approach see the end of the next section.

We now derive a new Solution Averaging algorithm which extracts a single
approximate solution with a optimal from b final iterates. Let

X; =W 2® 2P (2)

Ry = [, e, e (3)

% v

A Parallel Krylov-Type Method for Nonsymmetric Linear Systems 107

be final block solution and block residual vector respectively. Since the right
hand side is the same we can write

R'i = feT - AX“ (4)
where el = [1,1,...,1] is a unit vector of size b. For brevity we shall omit the
index ¢. Multiplying the last equation by some b -vector one can obtain

1R = [~ Al X¢) (5)
eTe ™ eT¢

So, a residual 7 = f — AZ of a vector

_ 1
T = Exf (6)
equals to .

Now we are ready to formulate an optimization problem for an averaging vector

£

Find ¢ = argming||7||. (8)
By direct computations we get
g Rell = gyt RURE)
Then using the Cauchy-Schwarz inequality
(€76 < (E"(RTR)E)(e" (RTR)"e) (10)
we obtain . ¢TRT Rt
e 2 TR TR -
It is seen now that a minimal value of ||7|| equals
1| [— (12)
eT(RTR) e
which is attainable if and only if
¢=c(R"R) e, c¢#0 (13)

for any nonzero scalar c. We choose ¢ = 1 for simplicity. An equation RT R = e
should be solved with a special care, since usually columns of matrix R are
very close to linearly dependent vectors and RT R is badly conditioned. QR-
decomposition with column pivoting is an appropriate tool for factorizing the
matrix RTR. We apply MGS with column pivoting to compute R = QrW,
where QLQr = Iyxp, W is an upper triangular b x b-matrix, and then find £
from the equation WTW¢ = e.
Therefore we obtain a Solution Averaging algorithm as follows

108 A.T. Chronopoulos and A.B. Kucherov

Algorithm 2 Solution Averaging I

For b solution guesses X = [z, ... z®]T compute
residuals R = [r(M), ... r®]T = feT — AX
where: e = [1,...,1]T

Iterate with Algorithm 1 and compute R and X
Compute the QR-decomposition R = QrW
(by applying MGS with column pivoting)
Back-Solve two b x b linear systems WTW¢ = e,
Compute:

an average solution: T

aeX¢
an average residual: 7 = ﬁRf

an estimate for the average residual:
1

Il = g

Another algorithm for combining the residuals can be derived from an averag-
ing scheme proposed for the CG method with multiple initial guesses [6]. There,
it was mentioned (without providing an algorithm) that the average residual can
be obtained by optimally chosing coefficients & of the expansion

b—1
7= T’(b) + Z (’I‘(m) — r(b))g[m] (14)

m=1

This condition implies that the 2-norm of the average solution 7;, must be min-
imized. We use QR Decomposition with column pivoting to solve this problem
and we obtain and implement the following residual averaging algorithm. We
omit the iteration subscripts for simplicity.

Algorithm 3 Solution Averaging I1

For b solution guesses X = [z, ..., 2®]T compute
residuals R = [r(M) ... r®]T = feT — AX
where: e = [1,...,1]T

Iterate with Algorithm 1 and compute R and X
Compute QR-decomposition R = QW

where: R = [r() —p®) pb=1) 0T

(by applying MGS with column pivoting)
Back-Solve a (b — 1) x (b — 1) system

We¢ = _QTRr(b)

Compute: an average residual/solution:

r = ,,,(b) + 2%72111 (fr(m) — r(b))ng]

7g=z® 1 S (2 — 2®)¢m]

4 Test Problem and Preconditioning

We consider right preconditioning because it minimizes the norm of the resid-
ual error. Left preconditioning is similar (see [7]), but it minimizes the norm

A Parallel Krylov-Type Method for Nonsymmetric Linear Systems 109

of the preconditioned residuals. Let B~! be the preconditioning matrix. The
transformed system is
(AB™)(Bz) = f, (15)

which is then solved by the iterative process. Either B is a close approximation
to the A, i.e.
AB l'xT (16)

or AB~! has clustered eigenvalues. The preconditioner B must be easily invert-
ible, so that the system By = ¢ is easy to solve. Following [5], in combining right
preconditioning with the block OSGCR/OSOmin, we only need to modify Step
1, as follows

1. Compute P; = [B~'R;, B-Y(AB™Y)R;,..., B~ (AB~1)*" 'R},
AP, = [AB_lRi, (AB_1)2Ri, ey (AB_l)SRi],

For a nonsymmetric linear system we consider the linear system arising from
the discretization of the three-dimensional elliptic equation

Au+ 7y (zug + yuy + 2uz) = f(2,y, 2) (17)

on the unit cube with homogeneous Dirichlet boundary conditions. The de-
gree of nonsymmetry of the problem is controlled by . We chose v = 50. A
discretization by centered finite differences on a uniform nj, x ny X nj grid with
mesh size 1/(ny, + 1) yields a linear system

Auh = }gm) (18)
of the size n = n% As an example one could consider solving b = 4 linear
systems. For m = 1,2,...,b, we could choose the following exact solutions

[2m—1] .
uy, = w(x,y, z) sin(rmayz), (19)
u[hzm] = w(x,y, z) cos(mmzxyz), m=1,2 (20)
where
w(z,y,z) = x(l —2)y(l —y)z(1 - z) exp(ayz), (21)

and z,y, z are taken at grid points. Righthand sides f,(Lm) could be obtained by
matrix-vector product Augbm), m =1,2,3,4 . In the tests (in the next section)
we only consider the first linear system with b = 4 initial guesses.

We use a parallel incomplete decomposition preconditioner based on a do-
main overlapping. Let p be the number of processors. We split the domain into
p overlapping subdomains. Firstly, we split a computational domain along the
z-axis into p subdomains, each of them contains (ny/p + 2) zy-planes. So, each
two neighbour subdomains share 2 overlapped zy-planes. Secondly, we consider
a restriction of the original operator on each subdomain. The loss of connection

110 A.T. Chronopoulos and A.B. Kucherov

between subdomains is partially compensated for by introducing overlapping
planes. Thus we obtain the following restricted matrix on each subdomain {2

Aoy(j) = as(Hy(J —nn) + aw(G)y(G — 1) +ao(f)y(j)+
+ac()y(G + 1) + an(§)y(G +nn) + as(§)y(j — nj) + awy(j +n3), (22)
—nj, +1<j <nj/p+ni,

ap(j) =0, —ni4+1<5<0; (23)
a(j) =0, nj/p+1<j<n}/p+n;. (24)

Thirdly, on each subdomain we construct an Incomplete LU decomposition (ILU)
preconditioner B as follows B = Bp(0) = LDU where L/U - lower/upper
triangular and D - diagonal matrices respectively, and 0 < § < 1. In our case
we chose L and U with the same sparsity pattern as A. In this case, one can
easily see that only the diagonal of the matrix is modified by the elimination.
We show the sparsity patterns of these matrices by their action on a vector v in
the matrix times vector product.

Lo(j) = —=0(5) + aw()o(— 1) + ax()o(f — na) + an()o(—nd), (25)

d(4)
Du(j) = d(ie(), (26)
Uu(j) = ﬁvm 0o + 1) + an()oG +) + as(GoG +nd), (27)
—n? +1<j<nd/p+ni, (28)
where
1/d(7) = a0(j) — aw(G)d(— 1)(ae(j — 1) + 0an (G — 1) + bas(j — 1))~
= (7)A(G — 1) (0ol —)+ anG —) + Bag(G —)~ (20)

—ap(5)d(j —n2)(0ac(j — n2) + Oan(j —n2) + ar(j — n?))

with j = —n2 +1,...,n3 /p+ni.

We use the parallel ILU () preconditioner described above. We take § = 1
for the iteration process (which provides the fastest convergence), and use other
values 0 < 0 < 1 to generate initial multiple guesses. We compute b initial
guesses as follows

]}ém) :B_l(em)f, 6m277m:1727"'7b (30)

5 Implementation and Test Results

We ran our tests on the CRAY T3E at the University of Texas Austin. We used
MPI and Fortran 90 and BLAS 1-3 for our implementation.

A Parallel Krylov-Type Method for Nonsymmetric Linear Systems 111

Table 1. BOSGCR/BOSOMin , b= 1, b = 4.

Block Method| (k, s) [Iter’s|M Errorl| M RRES1|M Error4d| M RRES4
Omin (4,1)| 61 |1.5E —12|6.55F —11|3.5F — 10| 5.12F — 8
(8,1)| 55 |1.9E —12|9.76F — 11|8.1E — 10| 1.27TE — 7

(16,1)| 55 |1.0E —12|5.99F — 11|4.5FE — 10| 7.72E — 8

OSGCR_ | (0,4)| 15 |6.9F — 134.88E — 11|3.3E — 12]5.84F — 10
(0,8) 8 [3.0E —13|1.63F —11|4.3E — 11| 1.10E — 8

OSOmin (3,2)| 30 |1.2E —12|6.08F — 11|9.8F — 12| 2.13F — 9
(1,4)| 15 |1.0F —12]|4.60F — 11|1.2F — 10| 1.98F — 8

(1,8) 7 |8.7FE —13|6.49F — 11|79F — 10| 1.77TE — 7

We see that the algorithms consist of the following operations: (i) Sparse
Matrix x vector; (i) Inner Products; (iii) Linear Combinations; (iv) MGS. Our
implementation is outlined as follows: (1) Map A and vectors to a logical linear
array of PEs (processors); (2) on each PE use BLAS-2 (e.g. SDOT, SGER for
(ii)-(iv)); (3) use ALLREDUCE for global communication (e.g. for (ii)); (4) use
local PE communication (e.g. for (i)). For our experiments n, = 64 so the size
of a matrix is n = n} = 262, 144. The smallest number of PEs that have enough
memory to run the problem is p = 4.

Convergence tests: We ran Algorithm 1 for b = 1 and b = 4 with the Solution
Averaging methods I - I, on p = 4 PEs, for convergence. We report the number of
iterations (Iter’s). The Maximum Relative Residual Error in 2-norm (MRRES1
and MRRES4 for b = 1 and b = 4 respectively). The Maximum True Error in
oo-norm (MErrorl and MError4 for b = 1 and b = 4 respectively). We use (
MRRES =) Mazt,_,(||r™||2/]|[r8*|]2) < €, as stopping criterion. The results
are in Table 1. The methods are: the standard Omin(k) or Orthomin(k) for
s = 1; the OSGCR for k = 0; the OSOMIN(k,s) for kK = 1, s > 0. Iter is the
total number of iterations. Algorithms 2 and 3 gave the same results for this
test problem. Our aim in this test was to obtain Maximum-True-Error of order
10710, We used ¢ = 10710 at first in all the runs. Then we observed that we can
use € = 1079 in the Algorithms 2, 3 with b = 4 (thus with fewer iterations) and
obtain Maximum-True-Error less than 10710,

Table 2. BOSGCR/BOSOMin, b = 4, (k,s) = (16, 1); Execution times (secs)

P Av Prv DotPr |LinComb| LocCom |GlobCom Tp/Teom

64|4.91F — 2|4.77TF — 2| 2.1E — 3 | 5.2E — 3 |1.46F — 2| 6.7F — 3| .1661/2.13F — 2
32(9.85F — 2(6.22F — 2| 3.5E — 3 |1.00F — 2|1.46F — 2| 7.0F — 3| .2862/2.16F — 2
16| .1934 |9.23E —2|5.9F — 3 |1.93E —2|147E —2|7.1E — 3| .5218/2.18E — 2
8 .3815 1522 |1.07F — 2|3.81F — 2|1.71F — 2| 5.9F — 3| .9932/2.27TF — 2
4 7572 2667 |2.05FE — 2|7.55F — 2|1.53F — 2|4.9F — 3 1.9280/2.02E -2

112 A.T. Chronopoulos and A.B. Kucherov

Table 3. BOSGCR/BOSOMin, b =4, (k,s) = (0, 8); Execution times (secs)

p| Av | Prv | DotPr |LinComb| LocCom |GlobCom| T,/Tcom

64(.3581|.3330|1.22F — 2|3.62F — 2(9.79F — 2|3.54F — 2|1.107/.1334
32(.7144(.4300|2.11F — 2|7.07TF — 2|9.68F — 2|2.60F — 2|1.950/.1228
16/1.400|.6282|3.55FE — 2| .1365 1005 [2.34F — 2|3.576/.1239
8 12.718|1.002|8.04FE — 2| .3216 1041 [2.22F — 2(6.715/.1263
415.211|1.707| .1934 7870 [9.66F — 2|1.80F — 2(12.66/.1146

Performance tests: We ran the algorithms on p = 4, 8, 16, 32, 64 processors
and measured the different computation/communication parts for each iteration.
We report in Table 2-4 the times for: Matrix times vector product (Av), Precon-
ditioning step (Prv), Dotproducts (DotPr), Linear Combinations (LinComb),
Local Communication (LocCom), Global Communication (GlobCom), Parallel
Execution Time (T},), Total Communication Time (T¢com). We plot the speedup
in Figure 1, which shows that the algorithms are scalable.

Table 4. BOSGCR/BOSOMin , b = 4, (k,s) = (1,8); Execution times (secs)

p| Av [Prv | DotPr |LinComb| LocCom |GlobCom| Tp/Teom

64.3593(.3306|2.40F — 2|8.73F — 2|9.56 E — 2|3.71F — 2|1.683/.1328
32(.7193|.42954.75E — 2| 1759 |9.66FE — 2|3.97E — 2|3.142/.1363
16{1.365(.6039| .1101 4392 [9.72F — 2|3.32F — 2(5.616/.1305
.2.589(.9397| .2601 1.055 [9.91F — 2|3.15F — 2(10.16/.1306
415.277(1.713| .4605 1.912 [9.92F — 2|2.84F — 2(20.91/.1276

(o]

6 Conclusions

We have derived two new parallel algorithms for solving linear systems with a
single right hand side. We have implemented the algorithms with ILU precondi-
tioning to approximate the solution of a large sparse system. We have studied the
convergence and the parallel performance of the algorithms. Our results show
that that methods are convergent and they are scalable.

Acknowledgement. Some reviewers’ comments helped enhance the quality
of presentation. This research was supported, in part, by research grants from
(1) NASA NAG 2-1383 (1999-2000), (2) State of Texas Higher Education Co-
ordinating Board through the Texas Advanced Research/Advanced Technology
Program ATP 003658-0442-1999 (3) This research was also supported in part by
NSF cooperative agreement ACI-9619020 through computing resources provided
by the National Partnership for Advanced Computational Infrastructure at the
University of California San Diego.

A Parallel Krylov-Type Method for Nonsymmetric Linear Systems 113

T T T T T T
12 (ks)=(16,1) ——]
(k$)7(0,8) —*¥—)
(k,s)=(1,8) ——
10 -
8 - —
2
g 6L i
)
4+ _
2 - —
0 1 1 1 1 1 1
0 10 20 30 40 50 60
Number of processors
Fig. 1. BOSGCR/BOSOMin, b = 4; Speedup

References

[1] Axelsson, O.: Iterative Solution Methods. Cambridge University Press, (1996)

[2] Broyden, C.G.: Block Conjugate Gradient Methods. Optimization methods and
Software, 2(1993) 1-17

[3] Calvetti, D., Reichel L.: Application of a block modified Chebyshev algorithm to
the iterative solution of symmetric linear systems with multiple right-hand side
vectors. Numer. Math. 68(1994), 3-16

[4] Chronopoulos, A.T.: S-step Iterative Methods for (Non)symmetric (In)definite
Linear Systems. SIAM J. on Num. Analysis, No. 6, 28(1991) 1776-1789.

[6] Chronopoulos, A.T., Swanson, C.D.: Parallel Iterative S-step Methods for Un-
symmetric Linear Systems. Parallel Computing. Volume 22/5, (1996) 623-641

[6] Hackbush, W.: A parallel variant of the conjugate gradient method. Applied Math-
ematical Sciences, 95. Springer-Verlag, New-York, (1994) 111-119

[7] Meurant, G.: Computer Solution of Large Linear Systems. Elsevier (1999)

[8] Nikishin, A.A., Yeremin, A.Y.: Variable block CG algorithms for solving large
sparse symmetric positive definite linear systems on parallel computers, I: General
iterative scheme. SIAM J. Matrix Anal. Appl. 16(1995) 1135-1153

[9] Papadrakakis M., Smerou, S.: A new implementation of the Lanczos method in
linear problems. Internat. J. Numer. Methods Engrg., 29(1990) 141-159

[10] Parlett, B.N.: A new look at the Lanczos and the block-Lanczos methods. STAM

J. Numer. Anal., 17(1980) 687-706

114

(1]

(12]

(13]

(14]

A.T. Chronopoulos and A.B. Kucherov

Radicati di Brozolo, G., Robert, Y.: Parallel conjugate gradient-like algorithms
for sparse nonsymmetric systems on a vector multiprocessor. Parallel Computing,
11(1989) 223-239

Sadkane, M., Vital, B.: Davidson’s Method for Linear Systems of Equa-
tions. Implementation of a Block Algorithm on a Multi-processor. Tech. Rept.
TR/PA/91/60, CERFACS, Toulouse, (1991)

Simon, H., Yeremin, A.: New Approach to Construction of Efficient Iterative
Schemes for Massively Parallel Applications: Variable Block CG and BiCG Meth-
ods and Variable Block Arnoldi Procedure. Proc. of the 6th STAM Conference on
Parallel Proc. for Scientific Computing, ed. by R. Sincovec et al., STAM, Philadel-
phia, (1993) 57-60

Simoncini, V., Gallopoulos, E.: An iterative method for nonsymmetric systems
with multiple right hand sides. SIAM J. Sci. Stat. Comput., 16(1995) 917-933

	A Parallel Krylov-Type Method for Nonsymmetric Linear Systems
	Introduction
	Block OSGCR/OSOmin
	Solution Averaging Algorithms
	Test Problem and Preconditioning
	Implementation and Test Results
	Conclusions
	References

