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t. Cryptographi
 proto
ols have been proposed and studied for appli
ation to ele
troni
au
tions in the past. One su
h proto
ol is the (M+1)-st pri
e private au
tion. In this proto
olthe highest M bidders win and pay a uniform pri
e determined by the (M+1)-st highest bid.The (M+1)-st pri
e is determined by a set of distributed servers who 
ollaborate while keepingthe bids se
ret. The highest bid is represented by the degree of an interpolation polynomialin Lagrange form. In this arti
le we study the 
omputational eÆ
ien
y of this approa
h andwe propose the use of Newton form of interpolation. This approa
h is 
omputationally eÆ
ientproviding a signi�
ant redu
tion in the number of operations required for solving the au
tion.1 Introdu
tionThe study in this paper is motivated by the re
ent in
reased interest in designing au
tionproto
ols providing priva
y of bids. In this paper, we 
onsider a se
ure proto
ol for sealed-bid(M +1)-st pri
e au
tion. In this type of au
tion multiple units of a single item are au
tioned.The M highest bidders win and pay a uniform pri
e, the pri
e of (M + 1)-st highest bidder.By letting M be 1, the de�nition in
ludes as a spe
ial 
ase the se
ond-pri
e au
tion, orthe so 
alled Vi
krey au
tion [12℄. Wurman et al. [23℄ proved that the (M+1)-st pri
e au
tionsatis�es a useful property 
alled in
entive 
ompatibility, i.e., the dominant strategy for a bidderis to bid his/her true valuation, as it is well known for the widely advo
ated Vi
krey au
tion.Sin
e the winners' payments will be determined by the (M + 1)-st highest bid, every bidderwho agrees to bid the maximum pri
e he/she is willing to pay for a given item maximizeshis/her 
han
e to win without being worried that he/she might bid too mu
h. Furthermore,the sealed-bid au
tion is fast be
ause all that bidders have to do is to 
ast their sealed bids juston
e. The large amount of intera
tion between au
tioneers and bidders in an on-line au
tion,is not ne
essary in a sealed-bid au
tion.Related workFranklin and Reiter presented a sealed-bid au
tion proto
ol in [4℄. The proto
ol uses a veri-�able signature sharing in order to prevent mali
ious bidders from 
an
eling their bids. Bidsare kept se
ret until the opening phase, and then all bids are opened and 
ompared to deter-mine the highest one. Kiku
hi, Harkavy and Tygar [6℄ improved the priva
y of bids amongdistributed au
tioneers even after the opening phase using a se
ure fun
tion 
omputation ofsummation. The proto
ols run in linear time to the number of possible bidding pri
es and
annot deal with tie breaking.



Any Dut
h-style au
tion naturally satis�es the property that priva
y of losing bids ispreserved after au
tion 
loses. In [18, 19℄, Sako implemented a Dut
h-style au
tion using dis-tributed de
ryption. In the proto
ol, a bidder 
asts his bid en
rypted by the publi
 key
orresponding to his bidding pri
e. The priva
y of losers' bids is kept under the assumptionthat not all the au
tioneers are faulty. Similarly, Miyazaki and Sakurai used undeniable signa-tures [13℄, and Kobayashi and Morita use an one-way hash 
hain [9℄. A 
ryptographi
 Vikreyau
tion s
heme that involves an au
tion authority is proposed in [11℄. Re
ently, several workson private au
tions have been published [3, 10, 16, 20{22℄.Au
tions in ele
troni
 
ommer
e are more 
ompli
ated. Multiple buyers and sellers areinvolved and multiple unit of goods are au
tioned in several environments. Wurman, Walshand Wellman [23℄ studied several au
tion designs and analyzed them in terms of in
entive
ompatibility. They showed that the (M+1)-st pri
e sealed-bid au
tion is in
entive 
ompatiblefor single-unit buyers. A se
ure se
ond-pri
e (M = 1) au
tion proto
ol is presented by Harkavyet al. in [5℄. They used the se
ure multiparty proto
ol for multipli
ation, presented in [2℄in order to resolve the se
ond highest bid in O(log(k)) rounds, where k is the number ofpossible bid values. Re
ently, Miyamoto et al. [14℄ implemented this proto
ol but due to the
ommuni
ation 
ost among au
tion servers, O(n), an enormous amount of time is requiredto de
ide the winning pri
e. Kiku
hi presented a more general proto
ol for (M + 1)-st pri
eau
tion in [7℄. The proto
ol, however, is de�nitely ineÆ
ient be
ause it takes a 
ost of n-
hoose-k and has a serious se
urity 
aw.Our 
ontributionsWe propose an eÆ
ient degree resolution proto
ol used for resolving the (M+1)-st pri
e in the(M+1)-st pri
e private au
tion. The proto
ol is based on the Newton interpolation whi
h ismore eÆ
ient than the previously used Lagrange form [8℄ be
ause it is 
omputed iteratively.Thus, it reuses the pre
eding degree 
omputations when the polynomial degree in
reases orde
reases. This implies that the new proto
ol is more eÆ
ient, signi�
antly redu
ing thenumber of operations required for degree resolution.OrganizationThe paper is stru
tured as follows. In Se
tion 2 we des
ribe the model and formulate theproblem. In Se
tion 3 we give a brief review of interpolation methods. In Se
tion 4 we des
ribethe interpolation based degree resolution methods. In Se
tion 5 we des
ribe our improvedau
tion proto
ols. In Se
tion 6 we draw 
on
lusions and present future resear
h dire
tions.2 Model and problem formulationGiven M units of a single good, n bidders are going to buy goods at a uniform pri
e, whi
h isdetermined in a meaningful pro
edure. Let W = fw1; : : : ; wkg be a set of k possible dis
retebidding pri
es. The i-th bidder has his/her true evaluation ei 2 W . The obje
tive of theau
tion game is to �nd the (M +1)-st highest pri
e w� of all bids without revealing any bids,even those higher than w�, and to �nd M winners who have bids higher than w�.We assume that ea
h bidder has independent private evaluation for goods. The evaluation,ei, is not a�e
ted by the evaluations other bidders pla
e on the good. This is 
alled the privatevalues model and it is widely used when modeling au
tions. In the theory of e
onomi
s, it isknown that a so
ial surplus is maximized when bidders whose bid is higher than w� win the



au
tion game and pay the uniform winning pri
e whi
h is independent of their evaluation.The Vi
kery au
tion, in whi
h the winner who has the highest bid pays the se
ond highestbid, is a spe
ial 
ase with M = 1.In our model we 
onsider m au
tioneers that 
ollaborate to resolve the winning pri
e insu
h a way that no 
 au
tioneers 
an be faulty. Au
tioneers are m independent servers. Bid-ders do not trust ea
h of the au
tioneers, but trust an agreement of more than 
 au
tioneers.Au
tioneers do not trust bidders, who might violate the spe
i�ed proto
ol in order to dis-rupt the au
tion. The proto
ol is based on the information-theoreti
 se
ure veri�able sharingproto
ol proposed in [17℄. We assume 
on�dentiality of every session, entity authenti
ation,and integrity of messages based on appropriate 
ryptographi
al tools in
luding PKI. Hen
e,eavesdropping links give no information about bids or bidders.RequirementsPriva
y of bid: No bid is revealed to anyone ex
ept the (M + 1)-st highest bid. For thesake of the in
entive 
ompatibility, we want to make leakage of information as small aspossible. Thus, even the bids higher than the winning bid must be se
ret even after theau
tion 
loses. No statisti
s 
an be used to identify the distribution of bids even after theau
tion 
loses.Proof of winner: The winner must publi
ly prove that his/her bid is higher than the win-ning bid without revealing how high the bid is.Non-repudiation: No bidder 
an repudiate his bid. If bidders are allowed to 
an
el theirbids, a 
ollusion of mali
ious bidders 
an 
ontrol the winning pri
e as they like (this atta
kwas mentioned �rst in [15℄).A

ountability of bidder: Any au
tioneer 
an verify that bidders follow a proto
ol to 
asttheir bids. No mali
ious bidder 
an disrupt the au
tion with an unmannered bid withoutbeing dete
ted.A

ountability of au
tioneer: Any bidder 
an verify that au
tioneers 
orre
tly follow aproto
ol to resolve the winning bid. No mali
ious au
tioneer 
an alter the result of au
tionwithout being dete
ted.Round eÆ
ien
y: The proto
ol is eÆ
ient in terms of rounds involved in resolving thewinner.Communi
ation eÆ
ien
y: The proto
ol is eÆ
ient in terms of bandwidth 
onsumptionbetween bidders and au
tioneers. The 
ommuni
ation among servers must be minimized.3 Review of Polynomial InterpolationWe 
onsider a fun
tion f(x) with (input/output) values in a �nite �eld. We assume giveninterpolation nodes, x1 < : : : < xn and the values of the fun
tion at the nodes, fi = f(xi), fori = 1; : : : ; n.3.1 The Lagrange Interpolation PolynomialThe Lagrange (interpolation) polynomial (of degree at most n) is de�ned as [1℄:Pf(x) = nXj=1 f(xj)Lj(x) (1)



where the polynomial mat
hes the fun
tion values at the nodes: Pf(xi) = f(xi) for i = 1; : : : ; nand Lj(x) are the Lagrange interpolation 
oeÆ
ients de�ned to give: Lj(xi) = 0, when i 6= jand Lj(xi) = 1, when i = j. This implies thatLj(x) = (x� x1) : : : (x� xj�1)(x� xj+1) : : : (x� xn)(xj � x1) : : : (xj � xj�1)(xj � xj+1) : : : (xj � xn) = Qi6=j(x� xi)Qi6=j(xj � xi) (2)We 
an now rewrite Pf(x) asPf(x) = nYi=1(x� xi) nXj=1 f(xj)(x� xj)Qi6=j(xj � xi) (3)Now we 
an write an eÆ
ient algorithm to 
ompute Pf(x).Algorithm for 
omputing Pf(x) using Lagrange Interpolation:Step 1:  j = f(xj)Qi6=j (xj�xi) ; j = 1; : : : ; nStep 2: �(x) = Qni=1(x� xi)Step 3: Pf(x) = �(x)Pnj=1  j(x�xj)We note that Step 1 is a prepro
essing step and it is exe
uted only on
e for the given nodes.Steps 2 and 3 are exe
uted on
e per 
omputation of Pf(x).The 
omplexity of Lagrange interpolation algorithm:In order to analyze the 
omplexity of the interpolation algorithm we 
onsider that the 
ostof multipli
ation operations is higher than the 
ost of subtra
tion and addition operations.We also 
onsider the 
ost of multipli
ations equal to the 
ost of obtaining the multipli
ativeinverses. In the following analysis an operation is 
onsidered to be the multipli
ation operation.The total number of operations in Step 1 is n(n�1), in Step 2 is n�1, and in Step 3 is n+1.The total number of operations involved in the 
omputation of the Lagrange interpolationpolynomial Pf(x) with n nodes is n2 + n. The 
ost to evaluate the Lagrange polynomial Pfat k di�erent values x is (n2 � n) + k(2n).3.2 The Newton Interpolation PolynomialDe�nition 1. (Divided Di�eren
es) Let x1; x2; : : : ; xn be distin
t elements in a �nite �eld.The zero order divided di�eren
e is de�ned as: DF (0) = f(x1). The �rst order divided dif-feren
e is de�ned as: DF (1) = f [x1; x2℄ = f(x2)�f(x1)x2�x1 . The k � 1 order divided di�eren
e isde�ned as: DF (k � 1) = f [x1; : : : ; xk℄ = f [x2; : : : ; xk℄� f [x1; : : : ; xk�1℄xk � x1 (4)De�nition 2. (Newton Divided Di�eren
e Interpolation) [1℄ Let Qf(x) be a polyno-mial of degree (at most) n,Qf(x) = f [x1℄ + (x� x0)f [x1; x2℄ + : : :+ (x� x1)(x� x2) : : : (x� xn�1)f [x1; : : : ; xn℄ (5)This implies that we must 
ompute on
e the (triangular) array of divided di�eren
es and thenwe 
an evaluate the Newton polynomial Qf(x) at di�erent input values x.



Remark: The Newton polynomial has a re
ursive property. Let Qfn(x) be the Newton poly-nomial based on nodes x1; : : : ; xn and Qfn�1(x) be the Newton polynomial based on nodesx1; : : : ; xn�1 then it easy to 
he
k thatQfn(x) = Qfn�1(x) + (x� x1)(x� x2) : : : (x� xn�1)f [x1; : : : ; xn℄: (6)Horner's rule is often used to evaluate the Newton polynomial. For example for the twodegree 
ase: Qf(x) = DF (0) + (x � x1)(DF (1) + (x � x2)DF (2)) We note that the mainsteps in 
omputing the Newton polynomial are: 1. Compute (on
e) the array of the divideddi�eren
es. 2. For ea
h x 
ompute Qf(x) using Horner's rule.Algorithm for 
omputing Qf(x) using Newton Interpolation:A1. Compute the �nite di�eren
esfor j = 1; : : : ; n� 1 doDF (j) = f(xj+1)for i = 1; : : : ; n� 1 dofor j = n� 1; : : : ; i doDF (j) = DF (j)�DF (j�1)xj�xj�iA2. Evaluate the polynomial at input x, using Horner's ruleInitially: Qf(x) = DF (n� 1)for i = n� 2; : : : ; 1 doQf(x) = DF (i) + (x� xi)Qf(x)The 
omplexity of Newton interpolation algorithm:Using the same assumptions from the 
omplexity analysis of Lagrange interpolation weget the following. The total number of operations involved in the 
omputation of the n-thNewton interpolation is n(n�1)2 + n � 2 = (1=2)n2 + (1=2)n � 2. The 
ost to evaluate theNewton polynomial Qf at k di�erent values x is (1=2)(n2 � n) + k(n� 2).Remarks: (i) The Newton and Lagrange methods 
ompute the same interpolation polynomialover �nite �elds. The polynomial Rf(x) = Pf(x)�Qf(x) has roots at the nodes x1; : : : ; xn.This implies that on any �eld Rf(x) = 0. (ii) Compared to Lagrange interpolation there areabout 50% fewer operations. (iii) The re
ursive property of the Newton polynomial allows the
omputation of the one degree higher polynomial from the 
urrent degree polynomial with 2subtra
tions, 1 division and 1 multipli
ation operation. We must store the main diagonal ofthe triangular array of divided di�eren
es.4 Polynomial Degree Resolution using InterpolationWe denote by f (s)(0) the s-th interpolation (Lagrange or Newton) of f . We 
an learn the degreeof f as the least s that satis�es f (s)(0) = f(0). The degree resolution su

eeds with probability1=p, assuming random pi
king for �i, where �1; �2; : : : ; �s 2 Z�p are the interpolation nodes.Also, we 
an learn the degree of f given the values gf(�1); gf(�2); : : : ; gf(�t) as the least sthat satis�es: gf(0) = gf(s)(0) = gf(s�1)(0)g(�1)s�1DF (s�1) (7)



Assuming random pi
king from Z�p gives f(0) with probability of 1=p, we have the probabilitythat the degree resolution mistakenly su

eeds as follow. Probability of t < s given f (s)(0) =f(0) is 1� 1=p. Note that the probability 
an be negligible with p in
reasing.4.1 Degree Resolution using the Lagrange Interpolation PolynomialDe�nition 3. (Lagrange Interpolation) Let f be a polynomial of degree t, f(x) = a0 +a1x+ : : :+atxt. We denote by f (s)(0) the s-th Lagrange interpolation of f , de�ned as follows:f (s)(0) =Psj=1 f(�j)Qi6=j �i�i��j , where �1; �2; : : : ; �s 2 Z�p are the interpolation nodes.Algorithm for 
omputing f (s)(0) using Lagrange Interpolation:Step 1:  j = f(�j )Qi6=j (�i��j) ; j = 1; : : : ; sStep 2: �(0) = Qsi=1 �iStep 3: f (s)(0) = �(0)Psj=1  j�jThe 
omplexity of Lagrange interpolation algorithm:Using the results of the analysis in Se
tion 3, the total number of operations involved inthe 
omputation of the s-th Lagrange interpolation is s2 + s.4.2 Degree Resolution using Newton InterpolationDe�nition 4. (Newton Divided Di�eren
e Interpolation) Let f be a polynomial ofdegree t, f(x) = a0 + a1x + : : : + atxt. We denote by f (s)(0) the Newton interpolation of f ,de�ned as follows: f (s)(0) = f (s�1)(0) + (�1)s�1DF (s� 1), where �1; �2; : : : ; �s 2 Z�p .Algorithm for 
omputing f (s)(0) using Newton Interpolation:A1. Compute the �nite di�eren
esfor j = 1; : : : ; s� 1 doDF (j) = f(�j)for i = 1; : : : ; s� 1 dofor j = s� 1; : : : ; i doDF (j) = DF (j)�DF (j�1)�j��j�iA2. Compute the polynomialfor i = 1; : : : ; s dof (i)(0) = f (i�1)(0) + (�1)i�1DF (s� 1)The 
omplexity of Newton interpolation algorithm:The total number of operations involved in the 
omputation of the s-th Newton interpo-lation is (1=2)(s2 � s) + 2s = (1=2)s2+ (3=2)s. Compared to Lagrange interpolation there areapproximately 50% fewer operations. Another advantage of Newton algorithm is that we 
an
ompute the s-th interpolation from the (s� 1)-th interpolation using only three operations



and the (s � 1) divided di�eren
e. This is a very useful property that will be used by thedegree resolution algorithm in the au
tion proto
ols that we propose.Remark: The Newton and Lagrange methods 
ompute the same interpolation polynomial in�nite �elds.The Lagrange interpolation is very in
onvenient for a
tual 
al
ulations, espe
ially when weinterpolate with polynomials of various degree. The advantage of using Newton interpolationis that we 
an re
ursively 
ompute f (s)(0) by using f (s�1)(0). For 
omputing f (s)(0) we alsoneed to 
ompute the s� 1 order divided di�eren
e.5 Au
tion Proto
olsWe present an eÆ
ient �rst pri
e au
tion proto
ol whi
h is based on the proto
ol presented byKiku
hi in [8℄. The proto
ol �nds the highest pri
e from n bids without revealing any of thebids. In the following we use the notations in [8℄ to des
ribe the proto
ols. Here, Aj denotesthe au
tioneer j, j = 1; : : : ;m and Bi denotes the bidder i, i = 1; : : : ; n.FIRST-PRICE Proto
olStep 1 Let bi 2 f1; 2; : : : ; kg be the bid of bidder i su
h that wbi = ei. Bidder i randomlypi
ks a polynomial fi(x) =Ptij=1 ajxj. This polynomial will have degree ti = bi+ 
, where
onstant 
 is the number of faulty au
tioneers. Bidder i sends the share fi(�j) to au
tioneerj, j = 1; 2; : : : ;m. Note that a0 = 0.Step 2 Aj re
eives the n shares, fi(�j), sent by bidders and uses them to 
ompute: F (�j) =Pni=1 fi(�j). Then Aj publishes F (�j) using a suitable 
ommitment proto
ol.Step 3 Any bidder or au
tioneer 
an �nd the maximum bid, b�, by using the followingpro
edure (degree resolution using Newton interpolation):for i = 1; : : : ;m doF (i)(0) = F (i�1)(0) + (�1)i�1F [�1; �2; : : : ; �i℄if (F (i)(0) = 0) break;b� = i� 
;Complexity: Using Newton interpolation we are able to 
ompute the s-th interpolation giventhe (s�1)-th interpolation. There are only a few number of operations that are involved. Theseare: one multipli
ation, one addition and the operations involved in 
omputing the divideddi�eren
e F [�1; �2; : : : ; �i℄. To 
ompute the divided di�eren
e we need to 
ompute the valuesof all the elements of the s-th row of the divided di�eren
e matrix. For ea
h element of thisrow we need two subtra
tions and one division. For all s� 1 elements of the last row we needto perform s�1 operations (
onsidering the assumptions from Se
tion 3). So the total numberof operations needed to obtain the s-th interpolation from the (s�1)-th interpolation is s�1.For the Lagrange algorithm the total number of operations to 
ompute the s-th interpo-lation is 3s+1. Considering the Lagrange algorithm presented in the previous se
tion we 
andetermine the number of operations. We assume that the results form (s� 1)-th interpolationare stored and used to 
ompute the s-th interpolation. The total number of operations in Step1 is 3s� 2. Step 2 requires only one operation and Step 3 requires two operations. Thus the



total number of operations is: 3s�2+1+2 = 3s+1. Using the Newton algorithm the numberof operations is redu
ed from 3s+ 1 to s� 1 whi
h is about 66% redu
tion.The above proto
ol assumes that the parti
ipants are honest. To make this proto
ol morerealisti
 we need to handle mali
ious bidders and au
tioneers.5.1 New Veri�
ation Proto
olThe following proto
ol is an improved proto
ol for the �rst pri
e au
tion whi
h prevents bothmali
ious bidders and au
tioneers from misbehaving.VFIRST-PRICE Proto
olStep 1: Bi 
hooses two random polynomials: fi(x) = Ptij=1 ajxj of degree ti = bi + 
 andhi(x) =Psj=1 bjxj of degree s = k+
 with s > ti. Bi se
retly sends fi(�j) and hi(�j) to Aj ,for j = 1; : : : ;m. Then, Bi publishes the following values as 
ommitments of polynomials:Ei;1 = ga11 gb12 ; : : : ; Ei;ti = gati1 gbti2 ; Ei;ti+1 = gbti+12 ; : : : ; Ei;s = gbs2 .Step 2: Aj veri�es that the share sent from bidder i is 
onsistent with the 
ommitments as,gfi(�j)1 ghi(�j )2 = Xi;j = Qsl=1(Ei;l)�lj . If the identity holds, she is 
onvin
ed that fi(x) hasno 
onstant (a0 = 0) and it is of degree of at most s, and then publishes: Yj = gF (�j)1 andZj = gH(�j )2 , where F (�j) = f1(�j)+; : : : ;+fn(�j) and H(�j) = h1(�j)+; : : : ;+hn(�j).Step 3: Any entity 
an verify that Yj and Zj are 
omputed 
orre
tly by testing YjZj =Qni=1Xi;j = gF (�j)1 gH(�j )2 . If this holds then the highest pri
e is given by b� = t�� 
 wheret� 2 f1; : : : ; kg is obtained by the following pro
edure (degree resolution based on Newtoninterpolation):for i = 1; : : : ;m do(gF1 )(i)(0) = (gF1 )(i�1)(0) + (�1)i�1(gF1 )[�1; �2; : : : ; �i℄if ((gF1 )(i)(0) = 0) break;b� = i� 
;Complexity: The same 
omments from the previous algorithm apply here. The di�eren
e inthis algorithm is that we use exponentiation whi
h is more expensive than the basi
 arithmeti
operations. So the redu
tion in the exe
ution time will be more signi�
ant.In this proto
ol, neither the bidders nor the au
tioneers 
an 
ast bogus values withoutbeing dete
ted. The proto
ol is still vulnerable to the winner atta
k, whi
h will be solved inthe next se
tion.5.2 Finding the WinnersThe following proto
ol is used to determine the winning pri
e and the winner's identities.WINNER Proto
olStep 1: Bi 
hooses three random polynomials: fi(x) = Ptij=1 ajxj, hi(x) = Psj=1 
jxj andGi(x) = Ps�tij=1 bjxj . Bi se
retly sends fi(�j), Gi(�j) and hi(�j) to Aj , for j = 1; : : : ;m.Then, Bi publishes the following values: Ei;l = galbl1 g
l2 for l = 1; : : : ; s.



Step 2: Aj veri�es that the share sent from bidder i is 
onsistent with the 
ommitmentsas, gfi(�j)Gi(�j)1 ghi(�j)2 = Xi;j = Qsl=1(Ei;l)�lj . If the identity holds, she is 
onvin
edthat fi(x) has no 
onstant (a0 = 0) and it is of degree of at most s, and then pub-lishes: Yj = gF (�j)1 and Zj = gH(�j )2 , where F (�j) = f1(�j)+; : : : ;+fn(�j) and H(�j) =h1(�j)+; : : : ;+hn(�j). Note that, unlike the VFIRST-PRICE, shares G1(�j); : : : ; Gn(�j)are kept se
ret lo
ally at this point.Step 3: Any entity 
an verify that Yj and Zj are 
omputed 
orre
tly by testing YjZj =Qni=1Xi;j = gF (�j)1 gH(�j )2 . If this holds then the highest pri
e is given by b� = t�� 
 wheret� 2 f1; : : : ; kg is obtained by the following pro
edure:for i = 1; : : : ;m do(gF1 )(i)(0) = (gF1 )(i�1)(0) + (�1)i�1(gF1 )[�1; �2; : : : ; �i℄if ((gF1 )(i)(0) = 0) break;b� = i� 
;Then a subset of au
tioneers whose size is u = s � t� 
ollaborate to resolve winners byrevealing a sequen
e of shares G1(�j); : : : ; Gn(�j) for j = 1; : : : ; u. There must be (at leastone) bidder i� su
h that G(u)i� (0) = 0, whi
h proves his bid is the highest. They exe
utethe following pro
edure to verify the above equation:for i = 1; : : : ; u doG(i)i� (0) = G(i�1)i� (0) + (�1)i�1Gi� [�1; �2; : : : ; �i℄if (G(i)i� (0) = 0) then Bi� is the winner.Complexity: In this algorithm we use the Newton interpolation algorithm twi
e. So we willsave more operations than in the previous proto
ol.5.3 Simple (M+1)st-Pri
e Au
tionTo extend the �rst-pri
e au
tion to (M + 1)st-pri
e, the simplest way is to iterate Proto
olWINNER ex
luding the winner i� from the set of bidders as Y (l)j = Y (l�1)jgfi� (�j)1 , for l = 1; : : : ;Mand j = 1; : : : ;m. Let Y (0)j = Yj at Step 3 in the WINNER proto
ol. After M winners aredetermined, the set of au
tioneers use Proto
ol WINNER to identify the (M +1)-st pri
e, sayt�, while keeping the (M + 1)-st highest bidder anonymous.Remark: Proto
ol WINNER determines a set of winners without revealing losers' bids.Unless more than t� au
tioneers 
ollude and leak the 
orresponding Gi(�), the priva
yof (M + 1)-st highest bidder is preserved. The proto
ol, however, reveals all winners' privatebids, whi
h are not required be
ause the winners pay the uniform pri
e, t� � 
.6 Con
lusionWe presented a new eÆ
ient degree resolution proto
ol used in the (M+1)-st pri
e privateau
tion. This proto
ol is based on Newton polynomial interpolation. This approa
h signi�-
antly redu
es the number of operations needed to determine the highest bid 
ompared to



the existing approa
h. Future work will address the implementation of an au
tioning systembased on this new eÆ
ient proto
ol.A
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