
A New EÆient Polynomial Degree Resolution Protool andIts Appliations to the (M+1)-st Prie Private AutionAnthony T. Chronopoulos1, Daniel Grosu2, and Hiroaki Kikuhi31 Dept. of Computer Siene, Univ. of Texas at San Antonio, 6900 N. Loop 1604 West, San Antonio, TX78249, U.S.A. at�s.utsa.edu,2 Dept. of Computer Siene, Wayne State University, 5143 Cass Avenue, Detroit, MI 48202,U.S.A.dgrosu�s.wayne.edu,3 Dept. of Eletrial Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.kikn�ep.u-tokai.a.jpAbstrat. Cryptographi protools have been proposed and studied for appliation to eletroniautions in the past. One suh protool is the (M+1)-st prie private aution. In this protoolthe highest M bidders win and pay a uniform prie determined by the (M+1)-st highest bid.The (M+1)-st prie is determined by a set of distributed servers who ollaborate while keepingthe bids seret. The highest bid is represented by the degree of an interpolation polynomialin Lagrange form. In this artile we study the omputational eÆieny of this approah andwe propose the use of Newton form of interpolation. This approah is omputationally eÆientproviding a signi�ant redution in the number of operations required for solving the aution.1 IntrodutionThe study in this paper is motivated by the reent inreased interest in designing autionprotools providing privay of bids. In this paper, we onsider a seure protool for sealed-bid(M +1)-st prie aution. In this type of aution multiple units of a single item are autioned.The M highest bidders win and pay a uniform prie, the prie of (M + 1)-st highest bidder.By letting M be 1, the de�nition inludes as a speial ase the seond-prie aution, orthe so alled Vikrey aution [12℄. Wurman et al. [23℄ proved that the (M+1)-st prie autionsatis�es a useful property alled inentive ompatibility, i.e., the dominant strategy for a bidderis to bid his/her true valuation, as it is well known for the widely advoated Vikrey aution.Sine the winners' payments will be determined by the (M + 1)-st highest bid, every bidderwho agrees to bid the maximum prie he/she is willing to pay for a given item maximizeshis/her hane to win without being worried that he/she might bid too muh. Furthermore,the sealed-bid aution is fast beause all that bidders have to do is to ast their sealed bids justone. The large amount of interation between autioneers and bidders in an on-line aution,is not neessary in a sealed-bid aution.Related workFranklin and Reiter presented a sealed-bid aution protool in [4℄. The protool uses a veri-�able signature sharing in order to prevent maliious bidders from aneling their bids. Bidsare kept seret until the opening phase, and then all bids are opened and ompared to deter-mine the highest one. Kikuhi, Harkavy and Tygar [6℄ improved the privay of bids amongdistributed autioneers even after the opening phase using a seure funtion omputation ofsummation. The protools run in linear time to the number of possible bidding pries andannot deal with tie breaking.



Any Duth-style aution naturally satis�es the property that privay of losing bids ispreserved after aution loses. In [18, 19℄, Sako implemented a Duth-style aution using dis-tributed deryption. In the protool, a bidder asts his bid enrypted by the publi keyorresponding to his bidding prie. The privay of losers' bids is kept under the assumptionthat not all the autioneers are faulty. Similarly, Miyazaki and Sakurai used undeniable signa-tures [13℄, and Kobayashi and Morita use an one-way hash hain [9℄. A ryptographi Vikreyaution sheme that involves an aution authority is proposed in [11℄. Reently, several workson private autions have been published [3, 10, 16, 20{22℄.Autions in eletroni ommere are more ompliated. Multiple buyers and sellers areinvolved and multiple unit of goods are autioned in several environments. Wurman, Walshand Wellman [23℄ studied several aution designs and analyzed them in terms of inentiveompatibility. They showed that the (M+1)-st prie sealed-bid aution is inentive ompatiblefor single-unit buyers. A seure seond-prie (M = 1) aution protool is presented by Harkavyet al. in [5℄. They used the seure multiparty protool for multipliation, presented in [2℄in order to resolve the seond highest bid in O(log(k)) rounds, where k is the number ofpossible bid values. Reently, Miyamoto et al. [14℄ implemented this protool but due to theommuniation ost among aution servers, O(n), an enormous amount of time is requiredto deide the winning prie. Kikuhi presented a more general protool for (M + 1)-st prieaution in [7℄. The protool, however, is de�nitely ineÆient beause it takes a ost of n-hoose-k and has a serious seurity aw.Our ontributionsWe propose an eÆient degree resolution protool used for resolving the (M+1)-st prie in the(M+1)-st prie private aution. The protool is based on the Newton interpolation whih ismore eÆient than the previously used Lagrange form [8℄ beause it is omputed iteratively.Thus, it reuses the preeding degree omputations when the polynomial degree inreases ordereases. This implies that the new protool is more eÆient, signi�antly reduing thenumber of operations required for degree resolution.OrganizationThe paper is strutured as follows. In Setion 2 we desribe the model and formulate theproblem. In Setion 3 we give a brief review of interpolation methods. In Setion 4 we desribethe interpolation based degree resolution methods. In Setion 5 we desribe our improvedaution protools. In Setion 6 we draw onlusions and present future researh diretions.2 Model and problem formulationGiven M units of a single good, n bidders are going to buy goods at a uniform prie, whih isdetermined in a meaningful proedure. Let W = fw1; : : : ; wkg be a set of k possible disretebidding pries. The i-th bidder has his/her true evaluation ei 2 W . The objetive of theaution game is to �nd the (M +1)-st highest prie w� of all bids without revealing any bids,even those higher than w�, and to �nd M winners who have bids higher than w�.We assume that eah bidder has independent private evaluation for goods. The evaluation,ei, is not a�eted by the evaluations other bidders plae on the good. This is alled the privatevalues model and it is widely used when modeling autions. In the theory of eonomis, it isknown that a soial surplus is maximized when bidders whose bid is higher than w� win the



aution game and pay the uniform winning prie whih is independent of their evaluation.The Vikery aution, in whih the winner who has the highest bid pays the seond highestbid, is a speial ase with M = 1.In our model we onsider m autioneers that ollaborate to resolve the winning prie insuh a way that no  autioneers an be faulty. Autioneers are m independent servers. Bid-ders do not trust eah of the autioneers, but trust an agreement of more than  autioneers.Autioneers do not trust bidders, who might violate the spei�ed protool in order to dis-rupt the aution. The protool is based on the information-theoreti seure veri�able sharingprotool proposed in [17℄. We assume on�dentiality of every session, entity authentiation,and integrity of messages based on appropriate ryptographial tools inluding PKI. Hene,eavesdropping links give no information about bids or bidders.RequirementsPrivay of bid: No bid is revealed to anyone exept the (M + 1)-st highest bid. For thesake of the inentive ompatibility, we want to make leakage of information as small aspossible. Thus, even the bids higher than the winning bid must be seret even after theaution loses. No statistis an be used to identify the distribution of bids even after theaution loses.Proof of winner: The winner must publily prove that his/her bid is higher than the win-ning bid without revealing how high the bid is.Non-repudiation: No bidder an repudiate his bid. If bidders are allowed to anel theirbids, a ollusion of maliious bidders an ontrol the winning prie as they like (this attakwas mentioned �rst in [15℄).Aountability of bidder: Any autioneer an verify that bidders follow a protool to asttheir bids. No maliious bidder an disrupt the aution with an unmannered bid withoutbeing deteted.Aountability of autioneer: Any bidder an verify that autioneers orretly follow aprotool to resolve the winning bid. No maliious autioneer an alter the result of autionwithout being deteted.Round eÆieny: The protool is eÆient in terms of rounds involved in resolving thewinner.Communiation eÆieny: The protool is eÆient in terms of bandwidth onsumptionbetween bidders and autioneers. The ommuniation among servers must be minimized.3 Review of Polynomial InterpolationWe onsider a funtion f(x) with (input/output) values in a �nite �eld. We assume giveninterpolation nodes, x1 < : : : < xn and the values of the funtion at the nodes, fi = f(xi), fori = 1; : : : ; n.3.1 The Lagrange Interpolation PolynomialThe Lagrange (interpolation) polynomial (of degree at most n) is de�ned as [1℄:Pf(x) = nXj=1 f(xj)Lj(x) (1)



where the polynomial mathes the funtion values at the nodes: Pf(xi) = f(xi) for i = 1; : : : ; nand Lj(x) are the Lagrange interpolation oeÆients de�ned to give: Lj(xi) = 0, when i 6= jand Lj(xi) = 1, when i = j. This implies thatLj(x) = (x� x1) : : : (x� xj�1)(x� xj+1) : : : (x� xn)(xj � x1) : : : (xj � xj�1)(xj � xj+1) : : : (xj � xn) = Qi6=j(x� xi)Qi6=j(xj � xi) (2)We an now rewrite Pf(x) asPf(x) = nYi=1(x� xi) nXj=1 f(xj)(x� xj)Qi6=j(xj � xi) (3)Now we an write an eÆient algorithm to ompute Pf(x).Algorithm for omputing Pf(x) using Lagrange Interpolation:Step 1:  j = f(xj)Qi6=j (xj�xi) ; j = 1; : : : ; nStep 2: �(x) = Qni=1(x� xi)Step 3: Pf(x) = �(x)Pnj=1  j(x�xj)We note that Step 1 is a preproessing step and it is exeuted only one for the given nodes.Steps 2 and 3 are exeuted one per omputation of Pf(x).The omplexity of Lagrange interpolation algorithm:In order to analyze the omplexity of the interpolation algorithm we onsider that the ostof multipliation operations is higher than the ost of subtration and addition operations.We also onsider the ost of multipliations equal to the ost of obtaining the multipliativeinverses. In the following analysis an operation is onsidered to be the multipliation operation.The total number of operations in Step 1 is n(n�1), in Step 2 is n�1, and in Step 3 is n+1.The total number of operations involved in the omputation of the Lagrange interpolationpolynomial Pf(x) with n nodes is n2 + n. The ost to evaluate the Lagrange polynomial Pfat k di�erent values x is (n2 � n) + k(2n).3.2 The Newton Interpolation PolynomialDe�nition 1. (Divided Di�erenes) Let x1; x2; : : : ; xn be distint elements in a �nite �eld.The zero order divided di�erene is de�ned as: DF (0) = f(x1). The �rst order divided dif-ferene is de�ned as: DF (1) = f [x1; x2℄ = f(x2)�f(x1)x2�x1 . The k � 1 order divided di�erene isde�ned as: DF (k � 1) = f [x1; : : : ; xk℄ = f [x2; : : : ; xk℄� f [x1; : : : ; xk�1℄xk � x1 (4)De�nition 2. (Newton Divided Di�erene Interpolation) [1℄ Let Qf(x) be a polyno-mial of degree (at most) n,Qf(x) = f [x1℄ + (x� x0)f [x1; x2℄ + : : :+ (x� x1)(x� x2) : : : (x� xn�1)f [x1; : : : ; xn℄ (5)This implies that we must ompute one the (triangular) array of divided di�erenes and thenwe an evaluate the Newton polynomial Qf(x) at di�erent input values x.



Remark: The Newton polynomial has a reursive property. Let Qfn(x) be the Newton poly-nomial based on nodes x1; : : : ; xn and Qfn�1(x) be the Newton polynomial based on nodesx1; : : : ; xn�1 then it easy to hek thatQfn(x) = Qfn�1(x) + (x� x1)(x� x2) : : : (x� xn�1)f [x1; : : : ; xn℄: (6)Horner's rule is often used to evaluate the Newton polynomial. For example for the twodegree ase: Qf(x) = DF (0) + (x � x1)(DF (1) + (x � x2)DF (2)) We note that the mainsteps in omputing the Newton polynomial are: 1. Compute (one) the array of the divideddi�erenes. 2. For eah x ompute Qf(x) using Horner's rule.Algorithm for omputing Qf(x) using Newton Interpolation:A1. Compute the �nite di�erenesfor j = 1; : : : ; n� 1 doDF (j) = f(xj+1)for i = 1; : : : ; n� 1 dofor j = n� 1; : : : ; i doDF (j) = DF (j)�DF (j�1)xj�xj�iA2. Evaluate the polynomial at input x, using Horner's ruleInitially: Qf(x) = DF (n� 1)for i = n� 2; : : : ; 1 doQf(x) = DF (i) + (x� xi)Qf(x)The omplexity of Newton interpolation algorithm:Using the same assumptions from the omplexity analysis of Lagrange interpolation weget the following. The total number of operations involved in the omputation of the n-thNewton interpolation is n(n�1)2 + n � 2 = (1=2)n2 + (1=2)n � 2. The ost to evaluate theNewton polynomial Qf at k di�erent values x is (1=2)(n2 � n) + k(n� 2).Remarks: (i) The Newton and Lagrange methods ompute the same interpolation polynomialover �nite �elds. The polynomial Rf(x) = Pf(x)�Qf(x) has roots at the nodes x1; : : : ; xn.This implies that on any �eld Rf(x) = 0. (ii) Compared to Lagrange interpolation there areabout 50% fewer operations. (iii) The reursive property of the Newton polynomial allows theomputation of the one degree higher polynomial from the urrent degree polynomial with 2subtrations, 1 division and 1 multipliation operation. We must store the main diagonal ofthe triangular array of divided di�erenes.4 Polynomial Degree Resolution using InterpolationWe denote by f (s)(0) the s-th interpolation (Lagrange or Newton) of f . We an learn the degreeof f as the least s that satis�es f (s)(0) = f(0). The degree resolution sueeds with probability1=p, assuming random piking for �i, where �1; �2; : : : ; �s 2 Z�p are the interpolation nodes.Also, we an learn the degree of f given the values gf(�1); gf(�2); : : : ; gf(�t) as the least sthat satis�es: gf(0) = gf(s)(0) = gf(s�1)(0)g(�1)s�1DF (s�1) (7)



Assuming random piking from Z�p gives f(0) with probability of 1=p, we have the probabilitythat the degree resolution mistakenly sueeds as follow. Probability of t < s given f (s)(0) =f(0) is 1� 1=p. Note that the probability an be negligible with p inreasing.4.1 Degree Resolution using the Lagrange Interpolation PolynomialDe�nition 3. (Lagrange Interpolation) Let f be a polynomial of degree t, f(x) = a0 +a1x+ : : :+atxt. We denote by f (s)(0) the s-th Lagrange interpolation of f , de�ned as follows:f (s)(0) =Psj=1 f(�j)Qi6=j �i�i��j , where �1; �2; : : : ; �s 2 Z�p are the interpolation nodes.Algorithm for omputing f (s)(0) using Lagrange Interpolation:Step 1:  j = f(�j )Qi6=j (�i��j) ; j = 1; : : : ; sStep 2: �(0) = Qsi=1 �iStep 3: f (s)(0) = �(0)Psj=1  j�jThe omplexity of Lagrange interpolation algorithm:Using the results of the analysis in Setion 3, the total number of operations involved inthe omputation of the s-th Lagrange interpolation is s2 + s.4.2 Degree Resolution using Newton InterpolationDe�nition 4. (Newton Divided Di�erene Interpolation) Let f be a polynomial ofdegree t, f(x) = a0 + a1x + : : : + atxt. We denote by f (s)(0) the Newton interpolation of f ,de�ned as follows: f (s)(0) = f (s�1)(0) + (�1)s�1DF (s� 1), where �1; �2; : : : ; �s 2 Z�p .Algorithm for omputing f (s)(0) using Newton Interpolation:A1. Compute the �nite di�erenesfor j = 1; : : : ; s� 1 doDF (j) = f(�j)for i = 1; : : : ; s� 1 dofor j = s� 1; : : : ; i doDF (j) = DF (j)�DF (j�1)�j��j�iA2. Compute the polynomialfor i = 1; : : : ; s dof (i)(0) = f (i�1)(0) + (�1)i�1DF (s� 1)The omplexity of Newton interpolation algorithm:The total number of operations involved in the omputation of the s-th Newton interpo-lation is (1=2)(s2 � s) + 2s = (1=2)s2+ (3=2)s. Compared to Lagrange interpolation there areapproximately 50% fewer operations. Another advantage of Newton algorithm is that we anompute the s-th interpolation from the (s� 1)-th interpolation using only three operations



and the (s � 1) divided di�erene. This is a very useful property that will be used by thedegree resolution algorithm in the aution protools that we propose.Remark: The Newton and Lagrange methods ompute the same interpolation polynomial in�nite �elds.The Lagrange interpolation is very inonvenient for atual alulations, espeially when weinterpolate with polynomials of various degree. The advantage of using Newton interpolationis that we an reursively ompute f (s)(0) by using f (s�1)(0). For omputing f (s)(0) we alsoneed to ompute the s� 1 order divided di�erene.5 Aution ProtoolsWe present an eÆient �rst prie aution protool whih is based on the protool presented byKikuhi in [8℄. The protool �nds the highest prie from n bids without revealing any of thebids. In the following we use the notations in [8℄ to desribe the protools. Here, Aj denotesthe autioneer j, j = 1; : : : ;m and Bi denotes the bidder i, i = 1; : : : ; n.FIRST-PRICE ProtoolStep 1 Let bi 2 f1; 2; : : : ; kg be the bid of bidder i suh that wbi = ei. Bidder i randomlypiks a polynomial fi(x) =Ptij=1 ajxj. This polynomial will have degree ti = bi+ , whereonstant  is the number of faulty autioneers. Bidder i sends the share fi(�j) to autioneerj, j = 1; 2; : : : ;m. Note that a0 = 0.Step 2 Aj reeives the n shares, fi(�j), sent by bidders and uses them to ompute: F (�j) =Pni=1 fi(�j). Then Aj publishes F (�j) using a suitable ommitment protool.Step 3 Any bidder or autioneer an �nd the maximum bid, b�, by using the followingproedure (degree resolution using Newton interpolation):for i = 1; : : : ;m doF (i)(0) = F (i�1)(0) + (�1)i�1F [�1; �2; : : : ; �i℄if (F (i)(0) = 0) break;b� = i� ;Complexity: Using Newton interpolation we are able to ompute the s-th interpolation giventhe (s�1)-th interpolation. There are only a few number of operations that are involved. Theseare: one multipliation, one addition and the operations involved in omputing the divideddi�erene F [�1; �2; : : : ; �i℄. To ompute the divided di�erene we need to ompute the valuesof all the elements of the s-th row of the divided di�erene matrix. For eah element of thisrow we need two subtrations and one division. For all s� 1 elements of the last row we needto perform s�1 operations (onsidering the assumptions from Setion 3). So the total numberof operations needed to obtain the s-th interpolation from the (s�1)-th interpolation is s�1.For the Lagrange algorithm the total number of operations to ompute the s-th interpo-lation is 3s+1. Considering the Lagrange algorithm presented in the previous setion we andetermine the number of operations. We assume that the results form (s� 1)-th interpolationare stored and used to ompute the s-th interpolation. The total number of operations in Step1 is 3s� 2. Step 2 requires only one operation and Step 3 requires two operations. Thus the



total number of operations is: 3s�2+1+2 = 3s+1. Using the Newton algorithm the numberof operations is redued from 3s+ 1 to s� 1 whih is about 66% redution.The above protool assumes that the partiipants are honest. To make this protool morerealisti we need to handle maliious bidders and autioneers.5.1 New Veri�ation ProtoolThe following protool is an improved protool for the �rst prie aution whih prevents bothmaliious bidders and autioneers from misbehaving.VFIRST-PRICE ProtoolStep 1: Bi hooses two random polynomials: fi(x) = Ptij=1 ajxj of degree ti = bi +  andhi(x) =Psj=1 bjxj of degree s = k+ with s > ti. Bi seretly sends fi(�j) and hi(�j) to Aj ,for j = 1; : : : ;m. Then, Bi publishes the following values as ommitments of polynomials:Ei;1 = ga11 gb12 ; : : : ; Ei;ti = gati1 gbti2 ; Ei;ti+1 = gbti+12 ; : : : ; Ei;s = gbs2 .Step 2: Aj veri�es that the share sent from bidder i is onsistent with the ommitments as,gfi(�j)1 ghi(�j )2 = Xi;j = Qsl=1(Ei;l)�lj . If the identity holds, she is onvined that fi(x) hasno onstant (a0 = 0) and it is of degree of at most s, and then publishes: Yj = gF (�j)1 andZj = gH(�j )2 , where F (�j) = f1(�j)+; : : : ;+fn(�j) and H(�j) = h1(�j)+; : : : ;+hn(�j).Step 3: Any entity an verify that Yj and Zj are omputed orretly by testing YjZj =Qni=1Xi;j = gF (�j)1 gH(�j )2 . If this holds then the highest prie is given by b� = t��  wheret� 2 f1; : : : ; kg is obtained by the following proedure (degree resolution based on Newtoninterpolation):for i = 1; : : : ;m do(gF1 )(i)(0) = (gF1 )(i�1)(0) + (�1)i�1(gF1 )[�1; �2; : : : ; �i℄if ((gF1 )(i)(0) = 0) break;b� = i� ;Complexity: The same omments from the previous algorithm apply here. The di�erene inthis algorithm is that we use exponentiation whih is more expensive than the basi arithmetioperations. So the redution in the exeution time will be more signi�ant.In this protool, neither the bidders nor the autioneers an ast bogus values withoutbeing deteted. The protool is still vulnerable to the winner attak, whih will be solved inthe next setion.5.2 Finding the WinnersThe following protool is used to determine the winning prie and the winner's identities.WINNER ProtoolStep 1: Bi hooses three random polynomials: fi(x) = Ptij=1 ajxj, hi(x) = Psj=1 jxj andGi(x) = Ps�tij=1 bjxj . Bi seretly sends fi(�j), Gi(�j) and hi(�j) to Aj , for j = 1; : : : ;m.Then, Bi publishes the following values: Ei;l = galbl1 gl2 for l = 1; : : : ; s.



Step 2: Aj veri�es that the share sent from bidder i is onsistent with the ommitmentsas, gfi(�j)Gi(�j)1 ghi(�j)2 = Xi;j = Qsl=1(Ei;l)�lj . If the identity holds, she is onvinedthat fi(x) has no onstant (a0 = 0) and it is of degree of at most s, and then pub-lishes: Yj = gF (�j)1 and Zj = gH(�j )2 , where F (�j) = f1(�j)+; : : : ;+fn(�j) and H(�j) =h1(�j)+; : : : ;+hn(�j). Note that, unlike the VFIRST-PRICE, shares G1(�j); : : : ; Gn(�j)are kept seret loally at this point.Step 3: Any entity an verify that Yj and Zj are omputed orretly by testing YjZj =Qni=1Xi;j = gF (�j)1 gH(�j )2 . If this holds then the highest prie is given by b� = t��  wheret� 2 f1; : : : ; kg is obtained by the following proedure:for i = 1; : : : ;m do(gF1 )(i)(0) = (gF1 )(i�1)(0) + (�1)i�1(gF1 )[�1; �2; : : : ; �i℄if ((gF1 )(i)(0) = 0) break;b� = i� ;Then a subset of autioneers whose size is u = s � t� ollaborate to resolve winners byrevealing a sequene of shares G1(�j); : : : ; Gn(�j) for j = 1; : : : ; u. There must be (at leastone) bidder i� suh that G(u)i� (0) = 0, whih proves his bid is the highest. They exeutethe following proedure to verify the above equation:for i = 1; : : : ; u doG(i)i� (0) = G(i�1)i� (0) + (�1)i�1Gi� [�1; �2; : : : ; �i℄if (G(i)i� (0) = 0) then Bi� is the winner.Complexity: In this algorithm we use the Newton interpolation algorithm twie. So we willsave more operations than in the previous protool.5.3 Simple (M+1)st-Prie AutionTo extend the �rst-prie aution to (M + 1)st-prie, the simplest way is to iterate ProtoolWINNER exluding the winner i� from the set of bidders as Y (l)j = Y (l�1)jgfi� (�j)1 , for l = 1; : : : ;Mand j = 1; : : : ;m. Let Y (0)j = Yj at Step 3 in the WINNER protool. After M winners aredetermined, the set of autioneers use Protool WINNER to identify the (M +1)-st prie, sayt�, while keeping the (M + 1)-st highest bidder anonymous.Remark: Protool WINNER determines a set of winners without revealing losers' bids.Unless more than t� autioneers ollude and leak the orresponding Gi(�), the privayof (M + 1)-st highest bidder is preserved. The protool, however, reveals all winners' privatebids, whih are not required beause the winners pay the uniform prie, t� � .6 ConlusionWe presented a new eÆient degree resolution protool used in the (M+1)-st prie privateaution. This protool is based on Newton polynomial interpolation. This approah signi�-antly redues the number of operations needed to determine the highest bid ompared to
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