A New Efficient Polynomial Degree Resolution Protocol and
Its Applications to the (M+1)-st Price Private Auction

Anthony T. Chronopoulos', Daniel Grosu?, and Hiroaki Kikuchi?

! Dept. of Computer Science, Univ. of Texas at San Antonio, 6900 N. Loop 1604 West, San Antonio, TX
78249, U.S.A. atc@cs.utsa.edu,
2 Dept. of Computer Science, Wayne State University, 5143 Cass Avenue, Detroit, MI 48202,U.S.A.
dgrosu@cs.wayne.edu,
% Dept. of Electrical Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.
kikn@ep.u-tokai.ac. jp

Abstract. Cryptographic protocols have been proposed and studied for application to electronic
auctions in the past. One such protocol is the (M+1)-st price private auction. In this protocol
the highest M bidders win and pay a uniform price determined by the (M+1)-st highest bid.
The (M+1)-st price is determined by a set of distributed servers who collaborate while keeping
the bids secret. The highest bid is represented by the degree of an interpolation polynomial
in Lagrange form. In this article we study the computational efficiency of this approach and
we propose the use of Newton form of interpolation. This approach is computationally efficient
providing a significant reduction in the number of operations required for solving the auction.

1 Introduction

The study in this paper is motivated by the recent increased interest in designing auction
protocols providing privacy of bids. In this paper, we consider a secure protocol for sealed-bid
(M + 1)-st price auction. In this type of auction multiple units of a single item are auctioned.
The M highest bidders win and pay a uniform price, the price of (M + 1)-st highest bidder.
By letting M be 1, the definition includes as a special case the second-price auction, or
the so called Vickrey auction [12]. Wurman et al. [23] proved that the (M + 1)-st price auction
satisfies a useful property called incentive compatibility, i.e., the dominant strategy for a bidder
is to bid his/her true valuation, as it is well known for the widely advocated Vickrey auction.
Since the winners’ payments will be determined by the (M + 1)-st highest bid, every bidder
who agrees to bid the maximum price he/she is willing to pay for a given item maximizes
his/her chance to win without being worried that he/she might bid too much. Furthermore,
the sealed-bid auction is fast because all that bidders have to do is to cast their sealed bids just
once. The large amount of interaction between auctioneers and bidders in an on-line auction,
is not necessary in a sealed-bid auction.
Related work
Franklin and Reiter presented a sealed-bid auction protocol in [4]. The protocol uses a veri-
fiable signature sharing in order to prevent malicious bidders from canceling their bids. Bids
are kept secret until the opening phase, and then all bids are opened and compared to deter-
mine the highest one. Kikuchi, Harkavy and Tygar [6] improved the privacy of bids among
distributed auctioneers even after the opening phase using a secure function computation of
summation. The protocols run in linear time to the number of possible bidding prices and
cannot deal with tie breaking.



Any Dutch-style auction naturally satisfies the property that privacy of losing bids is
preserved after auction closes. In [18,19], Sako implemented a Dutch-style auction using dis-
tributed decryption. In the protocol, a bidder casts his bid encrypted by the public key
corresponding to his bidding price. The privacy of losers’ bids is kept under the assumption
that not all the auctioneers are faulty. Similarly, Miyazaki and Sakurai used undeniable signa-
tures [13], and Kobayashi and Morita use an one-way hash chain [9]. A cryptographic Vikrey
auction scheme that involves an auction authority is proposed in [11]. Recently, several works
on private auctions have been published [3, 10, 16, 20-22].

Auctions in electronic commerce are more complicated. Multiple buyers and sellers are
involved and multiple unit of goods are auctioned in several environments. Wurman, Walsh
and Wellman [23] studied several auction designs and analyzed them in terms of incentive
compatibility. They showed that the (M +1)-st price sealed-bid auction is incentive compatible
for single-unit buyers. A secure second-price (M = 1) auction protocol is presented by Harkavy
et al. in [5]. They used the secure multiparty protocol for multiplication, presented in [2]
in order to resolve the second highest bid in O(log(k)) rounds, where k is the number of
possible bid values. Recently, Miyamoto et al. [14] implemented this protocol but due to the
communication cost among auction servers, O(n), an enormous amount of time is required
to decide the winning price. Kikuchi presented a more general protocol for (M + 1)-st price
auction in [7]. The protocol, however, is definitely inefficient because it takes a cost of n-
choose-k and has a serious security flaw.

Our contributions

We propose an efficient degree resolution protocol used for resolving the (M+1)-st price in the
(M+1)-st price private auction. The protocol is based on the Newton interpolation which is
more efficient than the previously used Lagrange form [8] because it is computed iteratively.
Thus, it reuses the preceding degree computations when the polynomial degree increases or
decreases. This implies that the new protocol is more efficient, significantly reducing the
number of operations required for degree resolution.

Organization

The paper is structured as follows. In Section 2 we describe the model and formulate the
problem. In Section 3 we give a brief review of interpolation methods. In Section 4 we describe
the interpolation based degree resolution methods. In Section 5 we describe our improved
auction protocols. In Section 6 we draw conclusions and present future research directions.

2 Model and problem formulation

Given M units of a single good, n bidders are going to buy goods at a uniform price, which is
determined in a meaningful procedure. Let W = {wy,...,w} be a set of k possible discrete
bidding prices. The i-th bidder has his/her true evaluation e; € W. The objective of the
auction game is to find the (M + 1)-st highest price w* of all bids without revealing any bids,
even those higher than w*, and to find M winners who have bids higher than w*.

We assume that each bidder has independent private evaluation for goods. The evaluation,
e;, is not affected by the evaluations other bidders place on the good. This is called the private
values model and it is widely used when modeling auctions. In the theory of economics, it is
known that a social surplus is maximized when bidders whose bid is higher than w* win the



auction game and pay the uniform winning price which is independent of their evaluation.
The Vickery auction, in which the winner who has the highest bid pays the second highest
bid, is a special case with M = 1.

In our model we consider m auctioneers that collaborate to resolve the winning price in
such a way that no c¢ auctioneers can be faulty. Auctioneers are m independent servers. Bid-
ders do not trust each of the auctioneers, but trust an agreement of more than ¢ auctioneers.
Auctioneers do not trust bidders, who might violate the specified protocol in order to dis-
rupt the auction. The protocol is based on the information-theoretic secure verifiable sharing
protocol proposed in [17]. We assume confidentiality of every session, entity authentication,
and integrity of messages based on appropriate cryptographical tools including PKI. Hence,
eavesdropping links give no information about bids or bidders.

Requirements

Privacy of bid: No bid is revealed to anyone except the (M 4+ 1)-st highest bid. For the
sake of the incentive compatibility, we want to make leakage of information as small as
possible. Thus, even the bids higher than the winning bid must be secret even after the
auction closes. No statistics can be used to identify the distribution of bids even after the
auction closes.

Proof of winner: The winner must publicly prove that his/her bid is higher than the win-
ning bid without revealing how high the bid is.

Non-repudiation: No bidder can repudiate his bid. If bidders are allowed to cancel their
bids, a collusion of malicious bidders can control the winning price as they like (this attack
was mentioned first in [15]).

Accountability of bidder: Any auctioneer can verify that bidders follow a protocol to cast
their bids. No malicious bidder can disrupt the auction with an unmannered bid without
being detected.

Accountability of auctioneer: Any bidder can verify that auctioneers correctly follow a
protocol to resolve the winning bid. No malicious auctioneer can alter the result of auction
without being detected.

Round efficiency: The protocol is efficient in terms of rounds involved in resolving the
winner.

Communication efficiency: The protocol is efficient in terms of bandwidth consumption
between bidders and auctioneers. The communication among servers must be minimized.

3 Review of Polynomial Interpolation

We consider a function f(z) with (input/output) values in a finite field. We assume given
interpolation nodes, 21 < ... < x, and the values of the function at the nodes, f; = f(z;), for
1=1,...,n.

3.1 The Lagrange Interpolation Polynomial

The Lagrange (interpolation) polynomial (of degree at most n) is defined as [1]:

Pf(z) = f(z;)L;(x) (1)
j=1



where the polynomial matches the function values at the nodes: Pf(z;) = f(z;) fori =1,...,n
and L;(z) are the Lagrange interpolation coefficients defined to give: L;j(z;) = 0, when ¢ # j
and L;(z;) = 1, when 7 = j. This implies that

(z—z1)...(c—zj—1)(z —zjq1) ... (z — zp) H#J(ﬂﬂ—iﬁz) @)
(zj —x1) .o (g — 1) () —xj1) o (25 —mn)  Tligy(ay — )

Lj(x) =
We can now rewrite Pf(z) as
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Now we can write an efficient algorithm to compute Pf(z).
Algorithm for computing Pf(z) using Lagrange Interpolation:
b — f(zj) -
Step 1: 1 [T, @ j=1,...,n
Step 2: ¢(z) = [[i-q(z — mz)
Step 3: Pf(2) = ¢(2) iy 7%

We note that Step 1 is a preprocessing step and it is executed only once for the given nodes.
Steps 2 and 3 are executed once per computation of Pf(z).

The complexity of Lagrange interpolation algorithm:

In order to analyze the complexity of the interpolation algorithm we consider that the cost
of multiplication operations is higher than the cost of subtraction and addition operations.
We also consider the cost of multiplications equal to the cost of obtaining the multiplicative
inverses. In the following analysis an operation is considered to be the multiplication operation.
The total number of operations in Step 1 is n(n — 1), in Step 2 is n — 1, and in Step 3 is n+ 1.
The total number of operations involved in the computation of the Lagrange interpolation
polynomial Pf(x) with n nodes is n? + n. The cost to evaluate the Lagrange polynomial P f
at k different values z is (n? — n) + k(2n).

3.2 The Newton Interpolation Polynomial

Definition 1. (Divided Differences) Let z1, 9, ..., z, be distinct elements in a finite field.
The zero order divided difference is defined as: DF'(0) = f(x1). The first order divided dif-
ference is defined as: DF (1) = flzy,x9] = % The k£ — 1 order divided difference is
defined as:

DF(k —1) = fla1, ... 2] = f[m’m’xkik__le’m’xk_l] W

Definition 2. (Newton Divided Difference Interpolation) [1] Let Qf(z) be a polyno-
mial of degree (at most) n

Qf(z) = flz1] + (. —xo) flzr, z2) + ... + (. —z1)(x — 29) ... (x — zp—1) flz1, .-y 20 (B)

This implies that we must compute once the (triangular) array of divided differences and then
we can evaluate the Newton polynomial Qf(z) at different input values z.



Remark: The Newton polynomial has a recursive property. Let @ f,,(z) be the Newton poly-

nomial based on nodes z1,...,z, and Qf,_1(z) be the Newton polynomial based on nodes
T1,...,ZTn_1 then it easy to check that
Qfn(@) = Qfn-1(z) + (z —21) (2 — 22) ... (z — Tp—1) 21, , 0. (6)

Horner’s rule is often used to evaluate the Newton polynomial. For example for the two
degree case: Qf(z) = DF(0) + (z — z1)(DF(1) + (x — z2)DF(2)) We note that the main
steps in computing the Newton polynomial are: 1. Compute (once) the array of the divided
differences. 2. For each z compute @ f(x) using Horner’s rule.

Algorithm for computing @ f(z) using Newton Interpolation:

A1l. Compute the finite differences

for j=1,...,n—1do
DF(j) = f(zj+1)
fori=1,...,n—1do
for j=n-1,...,7do
DF(j) = DF(j)—DF(j-1)

A2. Evaluate the polynomial at input z, using Horner’s rule

Initially: Qf(z) = DF(n — 1)
fori=n—-2,...,1do

Qf(z) = DF(i) + (z — 2:)Qf ()

The complexity of Newton interpolation algorithm:

Using the same assumptions from the complexity analysis of Lagrange interpolation we

get the following. The total number of operations involved in the computation of the n-th
Newton interpolation is W +n —2 = (1/2)n? + (1/2)n — 2. The cost to evaluate the
Newton polynomial Qf at k different values z is (1/2)(n% — n) + k(n — 2).
Remarks: (i) The Newton and Lagrange methods compute the same interpolation polynomial
over finite fields. The polynomial Rf(z) = Pf(x) — Qf(z) has roots at the nodes z1, ..., x,.
This implies that on any field Rf(z) = 0. (ii) Compared to Lagrange interpolation there are
about 50% fewer operations. (iii) The recursive property of the Newton polynomial allows the
computation of the one degree higher polynomial from the current degree polynomial with 2
subtractions, 1 division and 1 multiplication operation. We must store the main diagonal of
the triangular array of divided differences.

4 Polynomial Degree Resolution using Interpolation

We denote by f(*)(0) the s-th interpolation (Lagrange or Newton) of f. We can learn the degree
of f as the least s that satisfies f(#)(0) = f(0). The degree resolution succeeds with probability
1/p, assuming random picking for a;, where aq, g, ..., a5 € Z, are the interpolation nodes.

Also, we can learn the degree of f given the values ¢f(®1) gf(@2) gf(@t) a5 the least s
that satisfies:

(s) (s=1)(0) (_1)5~ .
gf(U) =gf (0) :gf ! (0)9( 1)*"'DF(s—1) (7)



Assuming random picking from Z; gives f(0) with probability of 1/p, we have the probability
that the degree resolution mistakenly succeeds as follow. Probability of £ < s given f (s)(O) =
f(0) is 1 — 1/p. Note that the probability can be negligible with p increasing.

4.1 Degree Resolution using the Lagrange Interpolation Polynomial

Definition 3. (Lagrange Interpolation) Let f be a polynomial of degree ¢, f(z) = ag +
a1z + ...+ a;zt. We denote by f(9)(0) the s-th Lagrange interpolation of f, defined as follows:
f$)0) = jo1 flag) Tl azafla], where ai, ag,...,as € Z; are the interpolation nodes.

Algorithm for computing f(*)(0) using Lagrange Interpolation:

ol — fley) S
Stepliﬁ]—m, _]—1,...,8

Step 2: ¢(0) =TT, a4
Step 3: f()(0) = ¢(0) 25—, 4

The complexity of Lagrange interpolation algorithm:
Using the results of the analysis in Section 3, the total number of operations involved in
the computation of the s-th Lagrange interpolation is s + s.

4.2 Degree Resolution using Newton Interpolation

Definition 4. (Newton Divided Difference Interpolation) Let f be a polynomial of
degree t, f(z) = ag + a1z + ... 4+ a;z’. We denote by f(*)(0) the Newton interpolation of f,
defined as follows: f(*)(0) = f(=1(0) + (=1)*"'DF(s — 1), where ay, as, ..., a, € Z.

Algorithm for computing f(s)(O) using Newton Interpolation:
A1l. Compute the finite differences

for j=1,...,s—1do
DF(j) = f(a;)
fori=1,...,s—1do
for j=s—1,...,ido
DF(j) = DF(j)—DF(j—1)

Qj—Q5 4

A2. Compute the polynomial

fori=1,...,sdo
FO(0) = f0=1(0) + (=1~ DF(s - 1)

The complexity of Newton interpolation algorithm:

The total number of operations involved in the computation of the s-th Newton interpo-
lation is (1/2)(s% — s) +2s = (1/2)s? + (3/2)s. Compared to Lagrange interpolation there are
approximately 50% fewer operations. Another advantage of Newton algorithm is that we can
compute the s-th interpolation from the (s — 1)-th interpolation using only three operations



and the (s — 1) divided difference. This is a very useful property that will be used by the
degree resolution algorithm in the auction protocols that we propose.

Remark: The Newton and Lagrange methods compute the same interpolation polynomial in
finite fields.

The Lagrange interpolation is very inconvenient for actual calculations, especially when we
interpolate with polynomials of various degree. The advantage of using Newton interpolation
is that we can recursively compute f()(0) by using f*~(0). For computing f*)(0) we also
need to compute the s — 1 order divided difference.

5 Auction Protocols

We present an efficient first price auction protocol which is based on the protocol presented by
Kikuchi in [8]. The protocol finds the highest price from n bids without revealing any of the
bids. In the following we use the notations in [8] to describe the protocols. Here, A; denotes
the auctioneer j, j = 1,...,m and B; denotes the bidder i, 1 =1,...,n.

FIRST-PRICE Protocol

Step 1 Let b; € {1,2,...,k} be the bid of bidder ¢ such that wy, = e;. Bidder ¢ randomly
picks a polynomial f;(z) = Z;izl a;x?. This polynomial will have degree ¢; = b; + ¢, where
constant ¢ is the number of faulty auctioneers. Bidder ¢ sends the share f;(c;) to auctioneer
7,3 =1,2,...,m. Note that ag = 0.

Step 2 A; receives the n shares, f;(a;), sent by bidders and uses them to compute: F(o;) =
Yieq fi(a;). Then Aj publishes F/(j) using a suitable commitment protocol.

Step 3 Any bidder or auctioneer can find the maximum bid, b*, by using the following

procedure (degree resolution using Newton interpolation):

fori=1,...,m do
FO(0) = FO=D(0) + (=1)"" Fla, ag, ..., ;]
if (F()(0) = 0) break;

b*=1i—¢

Complexity: Using Newton interpolation we are able to compute the s-th interpolation given
the (s—1)-th interpolation. There are only a few number of operations that are involved. These
are: one multiplication, one addition and the operations involved in computing the divided
difference Flay, ag, ..., a;]. To compute the divided difference we need to compute the values
of all the elements of the s-th row of the divided difference matrix. For each element of this
row we need two subtractions and one division. For all s — 1 elements of the last row we need
to perform s — 1 operations (considering the assumptions from Section 3). So the total number
of operations needed to obtain the s-th interpolation from the (s —1)-th interpolation is s — 1.

For the Lagrange algorithm the total number of operations to compute the s-th interpo-
lation is 3s + 1. Considering the Lagrange algorithm presented in the previous section we can
determine the number of operations. We assume that the results form (s — 1)-th interpolation
are stored and used to compute the s-th interpolation. The total number of operations in Step
1is 3s — 2. Step 2 requires only one operation and Step 3 requires two operations. Thus the



total number of operations is: 3s —2+ 142 = 3s+ 1. Using the Newton algorithm the number
of operations is reduced from 3s + 1 to s — 1 which is about 66% reduction.

The above protocol assumes that the participants are honest. To make this protocol more
realistic we need to handle malicious bidders and auctioneers.

5.1 New Verification Protocol

The following protocol is an improved protocol for the first price auction which prevents both
malicious bidders and auctioneers from misbehaving.
VFIRST-PRICE Protocol

Step 1: B; chooses two random polynomials: f;(z) = 2?;1 a;z’ of degree t; = b; + ¢ and
hi(z) = 325y bz of degree s = k+c with s > t;. B; secretly sends f;(«;) and h;(a;) to 4;,

for j = 1,...,m. Then, B; publishes the following values as commitments of polynomials:
by, by
Eiq = g?lggla o Bigy = gllltngtl s Biti41 = 92t1+17 o By = ggs'

Step 2: A; verifies that the share sent from bidder 7 is consistent with the commitments as,
g{i(aj)ggi(aj) =X, = Hlszl(Ei,l)aé‘. If the identity holds, she is convinced that f;(x) has
no constant (ag = 0) and it is of degree of at most s, and then publishes: Y; = gf(aj) and
Z; = gQH(aj), where F(aj) = fi(aj)+, ..., +fn(a;) and H(a;) = hi(aj)+, ..., +hn(a;).

Step 3: Any entity can verify that Y; and Z; are computed correctly by testing Y;Z; =
[T X5 = gf(aj)ggH(aj). If this holds then the highest price is given by b* = t* — ¢ where
t* € {1,...,k} is obtained by the following procedure (degree resolution based on Newton

interpolation):

fori=1,...,m do
(97)2(0) = (¢f)=1(0) + (=1)" (9] )1, a2, ..., ]
if ((9f')@(0) = 0) break;

b*=1i—¢

Complexity: The same comments from the previous algorithm apply here. The difference in
this algorithm is that we use exponentiation which is more expensive than the basic arithmetic
operations. So the reduction in the execution time will be more significant.

In this protocol, neither the bidders nor the auctioneers can cast bogus values without
being detected. The protocol is still vulnerable to the winner attack, which will be solved in
the next section.

5.2 Finding the Winners

The following protocol is used to determine the winning price and the winner’s identities.
WINNER Protocol

Step 1: B; chooses three random polynomials: f;(z) = 2321 a;xl, hi(z) = > =1 cjz! and
Gi(z) = Z;;tf b;zl. B; secretly sends f;(a;), Gi(a;) and hi(ay) to Aj, for 5 =1,...,m.

ab

Then, B; publishes the following values: E;; = g""'g5' for [ =1,...,s.



Step 2: Aj; verifies that the share sent from bidder 4 is consistent with the commitments

as, g{’(a])Gi(aj)ggi(aj) = X,; =11} 1(EZ~J)O‘§. If the identity holds, she is convinced

that f;(z) has no constant (ap = 0) and it is of degree of at most s, and then pub-

lishes: Y; = gf(aj) and Z; = gf(aj), where F(a;) = fi(aj)+,...,+fn(e;) and H(a;) =
hi(ej)+,...,+hn(e;). Note that, unlike the VFIRST-PRICE, shares G1(¢;), ..., Gn(e;)
are kept secret locally at this point.

Step 3: Any entity can verify that Y; and Z; are computed correctly by testing Y;Z; =
[Tie X5 = gf(aj)gf(aj). If this holds then the highest price is given by b* = t* — ¢ where

t* € {1,...,k} is obtained by the following procedure:

fori=1,...,m do
(91)@(0) = (¢ D(0) + (=1)" (9] ), @2, ..., ]
if ((¢1)1(0) = 0) break;

b*=1i—¢

Then a subset of auctioneers whose size is u = s — t* collaborate to resolve winners by

revealing a sequence of shares G («;),...,Gy,(a;) for j = 1,...,u. There must be (at least

one) bidder i* such that Ggi‘)(O) = 0, which proves his bid is the highest. They execute
the following procedure to verify the above equation:

fori=1,...,u do
Gz(i)(()) = Gz(ifl)(O) + (=1 'Gi o, g, . . ., ay]

if (G@(O) = 0) then B;- is the winner.

i*

Complexity: In this algorithm we use the Newton interpolation algorithm twice. So we will
save more operations than in the previous protocol.

5.3 Simple (M +1)st-Price Auction

To extend the first-price auction to (M + 1)st-price, the simplest way is to iterate Protocol
y -1

WINNER excluding the winner 7* from the set of bidders as Yj(l) = /7(%), fori=1,....M
9"

and j = 1,...,m. Let ¥, = Y; at Step 3 in the WINNER protocol. After M winners are

determined, the set of auctioneers use Protocol WINNER to identify the (M + 1)-st price, say

t*, while keeping the (M + 1)-st highest bidder anonymous.

Remark: Protocol WINNER determines a set of winners without revealing losers’ bids.
Unless more than t* auctioneers collude and leak the corresponding G;(«), the privacy

of (M + 1)-st highest bidder is preserved. The protocol, however, reveals all winners’ private

bids, which are not required because the winners pay the uniform price, t* — c.

6 Conclusion

We presented a new efficient degree resolution protocol used in the (M+1)-st price private
auction. This protocol is based on Newton polynomial interpolation. This approach signifi-
cantly reduces the number of operations needed to determine the highest bid compared to



the existing approach. Future work will address the implementation of an auctioning system
based on this new efficient protocol.
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