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Iterative methods for systems of linear equations can be efficiently used to solve
large sparse problems. The Conjugate Gradient method is such an iterative method
for éymmetric and positive definite problems. A multitude of iterative methods based
on the Conjugate Gradient has been developed for symmetric and nonsymmetric
problems. This dissertation generalizes a class of these iterative methods to s—step (or
s-dimensional) methods and discusses their convergence and stability. For example
the s-Dimensional Optimum Gradient Method is an s-step steepest descent method
analyzed by G. Forsythe [Fors68|. The s-step methods have super-ior parallel proper-
ties (simultaneous execution of 2s inner products) a.nd do better memory manage-
ment (better data locality) than their one-step counterparts. Implemented on shared
memory systems with memory hierarchy and message passing architectures the s—
step methods are significantly faster than their one-step homologues. This is also
supported by numerical experiments. These s-step iterative methods can be used to
improve the efficiency of codes for solving stiff systems of ordinary equations on

parallel computers.
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CHAPTER 1.

INTRODUCTION

One of the main issues in parallel computer architectures is the design of
efficient memory systems. Two main trends of parallel architectures are outstanding:
the shared memory multiprocessors and the message passing architectures. In the
message passing architecture every processor has its private memory. Examples of
message passing machines are the INTEL iPSC and the Connection Machine (both
with the Hypercube architecture). Shared memory multiprocessor and pipelined pro-
cessor supercomputers have been successfully implemented. Systems like the CRAY
X-MP, CDC CYBER 205, FUJITSU VP-200 have a highly interleaved ‘shared

memory.

More recently hierarchical shared memory systems have 'been designed. They
consist of two levels of memory, a small fast first level (local memory or cache) con-
nected to the functional units and to a larger slower second level (global memory).
Some implementations of these multilevel memory systems are the CONVEX C1 the
ALLIANT FX/8 which provide a hardware managed cache and CRAY-2 with a pro-

grammable local memory for each processor.

Accurate numerical solution of mathematical problems derived from modeling
physical phenomena often requires a capacity of computer storage and a sustained

processing rate that exceed the ones offered by the existing supercomputers. Such



problems arise from oil reservoir simulation, electronic circuits, chemical quantum

dynamics and atmospheric simulation to mention jﬁst a few.

There is an enormous amount of data that must be manipulated to solve these
problems with a reasonable accuracy. These data are stored (for the shared memory
systems) either in a large global memory (e.g 2-Gbyte for CRAY-2) or in slow secon-
dary storage devices; for the message passing machines t;he)‘r are stored in the private

memory of each processor.

Memory contention on shared memory machines constitutes a severe bottleneck
for achieving their maximum performance. The same is true for communication cost
on a message passing system. For example computations which require the synchroni-
zation of all the processors constitute a severe bﬁttleneck for message passing sys-

tems. This is because synchronization needs global communication of the system.

It would be desirable to have numerical methods for solving the above men-
tioned problems which have low communication costs compared to the computation
costs. This is interpreted as a small number of global memory accesses for the shared
memory systems; and a small number of global communications for the message

passing systems.

Therefore both the distributed private memory and hierarchical memory models
require careful design of numerical algorithms in order to obtain the maximum
efficiency of the system. The algorithm should not only lend itself to vectorization

and parallelization but it must provide good data locality. That is the organization of



the algorithm should be such that the data can be kept longer in fast registers or
local memories and have many arithmetic operations performed on them. A good

first measure of the data locality is the size of the

Ratio = (Memory References)/(Floating Point Operations).
Let us now consider the area of numerical algorithms for large sparse problems.
The main vector operations needed are function evaluations or matrix vector multi-

plications, inner products and linear combinations.

To compute an inner product one or two vectors must be transferred to the
functional units to perform 2N —1 flops. This gives a critical ratio of 1 or 1/ 2. An
inner product is a fully vectorizable operation and causes no corﬁmunication delays
on shared memory supercomputers with few processors. However, on a private
memory parallel system the final stage of the computation involves a "fan—in" of the
processors to sum up the partial results and a "fan—out” to transmit the result to
each processor. This can be a severe bottleneck when the computational rate of each

processor is very high as compared with the communication speed between them.

It would desirable to have algorithms which involve more than one inner pro-
ducts at a time. Then the critical ratio decreases (e.g. it is 1/3 if two vectors are
referenced and 3 inner products are formed). This can speed up the execution of
inner products on shared memory systems with memory hierarchy. Also, for message
passing systems the communication cost could be reduced by pipelining the part of

the inner products which requires the synchronization of all the processors.



Vector operations like the vector updates
ve—vtcu

can be pipelined and parallelized. However the critical ratio is about 3/2 and this can
cause a processor to be idle (for N cycles, N=vector length, if it has only one port to
the memory like CRAY-1 or CRAY-2) during their execution. This ratio can be

reduced to
(k+2) / 2k, k >2

if vector updates are replaced by linear combinations of the form

k
v+ Seu, k22
i=l
The function evaluations for (general) functions with sparse Jacobian and the
(general) matrix vector multiplication are more difficult to analyze. However if the
matrix A (or the Jacobian) is structured (banded or bordered) then we could for

example benefit from doing Av and A%y together in some fashion.

We now turn our attention to iterative methods for solving linear systems of
equations Az=f, where the matrix A is nonsingular. Iterative methods can be used
efficiently to obtain numerically a good approximation to the solution, when the
matrix A is large and sparse. The Conjugate Gradient (CG) method [HeSt52] is a
widely used iterative method for solving such systems when the matrix A is sym-

metric and positive definite. Generalizations of CG exist for nonsymmetric problems.



An s—step generalization of an iterative method can be loosely defined as an
iterative method which performs s consecutive steps of the method simultaneously
without introducing a significant number of additional computations. This means for
example that the inner products (needed for s steps of the one-step method) can be

performed simultaneously.

In this work we introduce a class of s —step iterative methods for symmetric and
nonsymmetric problems and analyze them theoretically. We then implement them on
parallel systems. Experiments were carried out on a sﬁared memory multiprocessor
system. They show both the stability of thg new methods and their superior perfor-
mance over the one-step rm_athods. Finally we show how these methods can be used
efficiently in conjunction with codes for solving systems of Ordinary Differential

Equations.



CHAPTER 2.

ITERATIVE METHODS FOR LINEAR SYSTEMS

2.1. Introduction

Let us consider the system of linear equations
A.’L‘ = f

where A is a large and sparse matrix of order N. Direct methods are inefficient for
solving this problem because of the large amount of work and storage involved. Itera-
tive methods can be used to obtain an approximate solution. Assume that A is a
Syinmetric Positive Definite (SPD). Then the Conjugate Gradient Method applies. In
this chapter we review the basic properties of the Conjugate Gradient method.and
prepare the ground for generalizing this method to an equivalent method with supe-
rior vectorization and parallelization properties and thus faster on certain parallel

and vector machines.

Firstly we describe the finite difference discretization of a Partial Differential
Equation which gives rise to an SPD linear problem. This will be our model problem.
We then present the iterative method of Conjugate Gradients (CG) for SPD prob-
lems and discuss its convergence properties. Subsequently we presen.t the Conjugate
Residual (CR) method which a useful variant of CG. In Section 2.5 we show how

these method applied to the normal equations can be used to solve nonsymmetric



problems. Some stability analysis for CG is carried out in Section 2.6.

In éections 2.7-9 we present the Preconditioned Conjugate Gradient method
(PCG). We discuss two outstanding choices of preconditioning for CG the Polyno-
mial (PPCG) and the Incomplete Cholesky Preconditioning (ICCG). ICCG is a
sequential preconditioning by its definition. We present a modification of ICCG (due
to Van der Vorst [VDVo82|) which is block-vectorizable and block-parallelizable
(VICCG). Finally we introduce a fully vectorizable and parallelizable Incomplete
Cholesky CG (PICCG) that seems to be efficient for the model problem. This is sup-
ported by the error analysis carried out in Section 2.9 and the experiments shown in

Chapter 5 .

2.2. A Model Problem

Large, sparse and structured linear systems arise frequently in the Numerical
Integration of Partial Differential Equations (PDEs). Thus we borrow our model
problems from this area. Let us consider the second order elliptic PDE in two dimen-
sions in a rectangular domain f2? in R? with homogeneous Dirichlet boundary condi-

tions:
- (au;); — (buy)y + (en), + (hu)y +cu =g (2.1)

where u =H on 31, and a(z,y), b(z,y), c(z,y), e(z,y), f(z,y) and g(z,y) are
sufficiently smooth functions defined on 2, and 4,4 >0, ¢ >0 on 2. If we discre-

tize (2.1) using the five-point centered difference scheme on 2 uniform nXrn grid with



h =1/(n+1), we obtain a linear system of equations
Az=f

of order N = n? If e(z,y) = h(z,y) =0, then (2.1) is self-adjoint and A is sym-
metric and weakly diagonally dominant {Varg62|. If we use the natural ordering of

the grid points we get a block tridiagonal matrix of the form
A =[Cry Ty, Cily, 1<k<nm,

where T}, Cj are matrices of order n; and Cy = C, = 0. The blocks have the form
C, =diag [ ¢/, ..., c,% ]
T, = [bik—l’ aik! bik]’ 1<i<n,

with b;¥ <0, ¢;* <0, bk =b* =0, and af > 0.
Suppose the three dimensional problem were considered with 7-point line
discretization, natural ordering of the planes, and point red-black ordering of the

discretization points in each plane. The matrix A would then be symmetric, weakly

diagonally dominant, block tridiagonal of order n2 and it has the form:
A =[Dy, T, Di|, 1<k <n,

where, D, =diag [d,*, ..., d,:* | with d¥ <0 and the blocks T have the form of

the matrix for the 2-D case.



2.3. The Conjugate Gradient Method (CG)

The conjugate gradient method (CG) for solving the SPD linear system
Az = f is an iterative scheme which computes approximate solutions z; starting
with an initial guess z,. In infinite precision arithmetic the exact solution h = A7Lf
is reached in at most N iterations. Since the error ¢; =h — z; is reduced at every
iteration an accurate approximation to the solution is reached after fewer than N
steps and CG is a useful iterative method. We will present the method along with

some theory describing its convergence and stability.

Algorithm 2.1 : The conjugate gradient method (CG).
Initial guess Zg
Compute pg =9 = f — Az,
Compute (rg,rg)
For ¢ = 0 Until Convergence Do

a = (ri LA )
' (pi ,AP;‘)

Tiy1 =Z; +a;p;
Tivl =T — 6 Ap;

b = ("i+1,f.‘+1)
' “(riors)

Pit1 =Tiq +bip;
EndFor.

The work per iteration is one matrix vector product, 5N multiplications and 5N
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additions. The nonzero entries of the matrix A and the vectors x, r, p, Ap need to be

stored.

The sequential and parallel complexity of CG for the 2-D and 3-D model prob-
lem is tabulated ( ny; = the number of nonzero diagonals of A ). For uniprocessors or
multiprocéssors with a small number of processors ( e.g. 4 or 8 processors ).the
matrix vector products dominate the algorithm whereas on parallel systems the
inner products dominate because of the communication costs. Performing an inner
product on a parallel system can be thought of as a binary tree height reduction with
the nodes of the tree being the processors of the system. The parallel system is'

assumed to have O(N'/ k)_ processors where & > 1.

The next theorem describes some of the relations between the residual and the

direction vectors in the conjugate gradient method. The convergence of the method

follows this tkeorem.

jLYector Operation | Sequential Parallel
Vector
Updates 3N 0(1)
Inper
Products 2N | O(log,N)
Matrix Vector
Products ngN | Oflogon,)

Table 2.1 Serial and Parallel complexity of CG parts.




IS

Theorem 2.1 : The residual vectors rg, r), * -+ and the direction vectors

Po» P1» ° °° generated by the CG process satisfy the following relations:

. ion
(i) pj = ||Tj"22———

i=o llr, I?
(ii) (rir;) =0, fore #j
(iii) (pisApj) =0, fori #j
(iv) (pirj) =0, fori <j
(pirr;) = lIr; I3, fori > j

(v) (ri,4p;) = (p; AP;)
(vi) (r; ,A"r,-) = (r; ,A"pj) =0, fori > j+k
(vii) (p; ,Akpj) =0, fori > j+k+1
Proof: [HeSt52] Induction and the defining identities of Algorithm 2.1 can be used to
prove (i)-(v). (vi) holds for k=1 because (r;,Ar;) = (r;,Ap,)~b;_,(r;,Ap;_1) =0, for
t > j+1. Let us assume that it holds for £ > 1, then

(Ti: Ak'”rj) =("i1 Ak+lpj)"'bj..1(7’,', Ak"'lpj_l) =

1 4k bii, k

(r:, ;,'_A (rjs1—r1) — aj__l(fi: Af(rj=ri_)) =0
The second relation follows now from the first, if we express p; as in (i). ®
One implication of this theorem is that the CG process finishes in at mc;st N itera-
tions. This holds because the residual ry is orthogonal to all the direction vectors by
(iv) and the direction vectors span R™ because they are linearly independent by (iii).

Relations (vi) and (vii) motivate the orthogonality relations holding in the s-step CG

which will be introduced in the next chapter.
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Theorem 2.2 : The scalars a;, b; can be computed by the formulas:

(pim:) _ (P 7o) _ (rior:)

Y (piAp)  (piAp)  (pisAp;)
__(midp)  (ripAn)  (rieonin)
' (p:»AP;) (p; »AD;) (riors)
The steplength a; satisfies the relations

1 1 .
=pu(re)y wp;) < — <pufr;),fori >0
a9 a;

where u(p) = (p.Ap) is the Rayleigh quotient of the vector p.

(I3

Proof: [HeSt52] The formulas for the parameters follow from the algorithm and

Theorem 2.1 . If we use the relations:

o 12 = lir; 12 + bi2—1 "Pi—l"2

(ri,Ar;) = (pi,Ap;) + b2 1 (Pi —1,AP: —1)

we get that ||r; | < ||p; | and (r;,Ar;) > (p;,Ap;). Thus, u(p;) < p(r;). B
The last inequality above states that the steplength a; is bounded by the reciprocals.

of the smallest and largest eigenvalues of A.

Theorem 2.3 : The approximate solution z; minimizes the error functional
E(z)=(h—z, A(h—z))

on the line y = z; _;+t p;_;. It also minimizes E(z) on the i-dimensional plane
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i-1 -
P = {Zo + ZGJPJ}
j=0
This plane contains all the points zq, . . . ,z;_;.

Proof: [HeSt52] The error functional can be written in expanded form:

E(z )'=E(zo)—iif){2aj(p,-'r]-)—-a]-z(pj,Ap]-)}
j=

because of the conjugacy of the direction vectors. Now the proof follows. B

The direction and residual vectors can be expressed as p; = P;(A)rg,
T o= I-i,- (A)rg, forz =0, 1, - - - . where 15, and ﬁi are polynomials formed recursively

as follows:

Thus, the theorem above states that the CG sequence minimizes the functional E(z)

over the i-dimensional translated Krylov subspace

o+ {rg, - .. ,Ai_lro} =zo+ {po, - - - ,Pi1}-

Similarly, the polynomials P;(\), are optimal in the sense that in the i-dimensional
space of all polynomials of degree 7 — 1 it is the unique polynomial which minimizes

E(z). Since E(z; =R;(A) E(z,) we can use the normalized Chebyshev polynomials
1) =44 1}

i

A + A — 2X
X11._>‘1

where \; < - -+ <\, are the eigenvalues of A, to get a bound on the error at the



14

i-th step.
A N A
Theorem 2.4: If 0 = ——— and p = —— (the condition number of A). Then
)‘n - >‘l >‘1
Vi
1- \/p
E(z;) < E 4 E(z).
(z:) < T.(oF (zo) < 17V, (zo)

Proof: [Fors68|

This theorem shows that the CG rate of convergence is at least linear although in

practice it seems much faster.

2.4. The Conjugate Residual Method (CR)

The conjugate residual method is a variant of the conjugate gradient method in

which the Euclidean norm of the residual (Az — f) is minimized at every iteration.

Algorithm 2.2: The conjugate residual method.
Initial guess z
Compute pg =rq = f — Az,
Compute (rq,7o)
For ¢ =0 Until Convergence Do

("i AT, )
a; = —————
(Ap; ,Ap;)

Tiy =Z; +¢;p;
Tiv1 =T —a; Ap;

(ris1sArisy)

b =
' (ri,Ar;)
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Pi+1 =Tiyy +b;p;
Ap; ) = Aryyy + b Ap;
EndFor.

The work per iteration is one matrix vector product, 6N multiplications and 6N addi-
tions. The nonzero entries of A and the vectors x, r, p, Ap, Ar need to be stored.
Theorems similar to the ones proved for CG can be proved for CR. F'or example
(r;»Ar;) =0 and (Ap;,Ap;) =0, for i # j. At the i-th step the residual error
E(z)=|Az—f I is minimized over the translated i-dimensional Krylov subspace

zo+{rg, ..., A Irg)

2.6. Normal Equations

Let us consider the system of linear equations Az = f, where A is nonsingular,
nonsymmetric matrix of order N. This system can be solved by either of the two nor-

mal equations systems:

ATAz =ATf (3.1)

AATy =f, z=4Ty (3.2)

Since, both ATA and AAT are SPD we can apply CG to either system to obtain an

approximate solution of Az = f.

If we solve (3.1) via CG then z; minimizes ||7; ||, over the translated Krylov sub-

space
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g0+ {ATrg, ... (ATAY 14T}
Algorithm 2.3: The conjugate gradient applied to (3.1) (CGNR)
Initial guess z,
Compute rq = f — Az,
Compute Po = ATrg
Compute (ATrq,ATr)
For ¢ =0 Until Convergence Do

(ATTi ,ATTi)
a; = ——
' (Api ,APi )

Tipp =% +a;p;
Tigl =T — G Ap;

(ATT:‘+11AT":'+1)
(ATri 7ATri)

b =

Pisr =ATri oy +bip;
EndFor.
The work per iteration is two matrix vector prcduct, 5N multiplications and 5N

additions. The nonzero entries of A and the vectors x, r, p, Ap need to be stored.

If we solve (3.2) via CG then z; minimizes |h—z; l, over the translated Krylov

subspace

IQ'*'{ATO y e ey (ATA)i—lro}

the resulting algorithm is:

A,
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Algorithm 2.4: The conjugate gradient applied to (3‘.2) (CGNE)
Initial guess z4
Compute r6 = f — Az
Compute pg = ATro
Compute (po,po)
For i = 0 Until Convergence Do

(i)
a; =

' (pisp:)

Tiy =% +a;p;
riel=T; —a;Ap;or, iy =f—Az

(ri+1:"i+1)

b, = — il

' (riori)
o =ATr  +bp;
Pi+1 1+1 i Di

EndFor.

The work per iteration is two matrix vector products, 5N multiplications and 5N

additions. The nonzero entries of A and the vectors x, r, p, Ap need to be stored.

Since the spectrum of the matrices AAT and ATA are the same we should

expect that the performance of CGNR and CGNE is the same. However, CGNE

minimizes the norm of the error and may yield better performance. The CGNE

method is sometimes called Craigs method although it was first proposed by

Hestenes.
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Similarly to CG we can bound the error functional E(x):

1—1{p ¥

E
1+1 / b (.‘l: 0)
Where p is the condition number of A. The fact that this bound depends on the con-

E(z;) <2

dition number (and not its square root as in CG) indicates that the convergence may

be slower. This discourages the use of normal equations without preconditioning.

2.8. Stability Properties of CG

In finite arithmetic the CG process yields residual and direction vectors r;, p;
which are not mutually conjugate. Nevertheless, the vectors {p;} are linearly

independent and, in most cases, the method converges with reasonable accuracy.

The solution of the system Az = f may be expressed as

) n-1
h=z4+ 3 a;p;
i=0

Taking inner products with Ap; we get

n-1
(zorAP;) + 5 (Ap;,p;)a; = (h,Ap;) = (f ,p5)
i=0
Thus, by applying the CG method to Az = f we esseﬁtially try to solve the

transformed system

n—1
X (Ap;,pjla; = (Pj,"o) = ""j"z: 0<;j<n-L
=0

In the absence of round—off errors the matrix of the transformed system is diagonal.

Otherwise we hope that the diagonal dominates each row
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(Api 7pk)
(Ap; ,p;)

For k=i 41, these ratios become

K 1, fork #1.

(Apipiv1) @ (Apioupi)
(Api,pi) @iy (Api—ypioy)

giving us a propagation formula [HeSt52]|.

Let b; be the computed and b’; the true parameter used in forming p; ;. Then

(Ap;»pi+1)  (Apistivi)
(Ap;,2;) (Ap;p;)

+by =b"; —b;
Now the propagation formula becomes

. a
(6 —b;)= “;j—z:{b'i—r'bi—l)
.

1 1 . a; Amax .
<eg; < we obtain < . Hence the condition number of
Amax min ;-1 min

Since

A is a bound on the factor in the propagation formula. This bound means that the
only hope for stability is that the matrix should be close to the identity. But the ini-
tial residual was ignored in calculating this bound. It is taken into account in the fol-

lowing result.

Proposition 2.1: Let us assume that A has distinct eigenvalues g < - <X,
a.
Then there exists an initial residual 7, for which —— < 1, and so the CG algorithm
ai-1

is stable.
Proof: [HeSt52] Let us take the eigenvectors as the co-ordinate system and

ro = (60616 . . . ,6,_1€""") where ¢ is small. Then the steplengths are
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a; N\
a; = X O (€?). Hence —— = —+ O(e*) <1 since ¢ is small.
\i @G- N

2.7. Preconditioned CG

Let us assume that K is an spd matrix. Then if we apply CG to the precond:.

tioned problem
[KI/ZAKI/Z] [K—I/ZZ] — K1/2f

we obtain the preconditioned CG method. The matrix K is usually chosen so that

KA =1.

We remark that in absence of any other preconditioner the use of
1

) ) is recommended. The number of steps required by CG to con-
a(i,z

K = Diag(

verge equals the degree of minimal polynomial of ry. So there examples of diagonal
matrices of oreder N for which CG takes N steps to converge. However, with diago-

nal preconditioning it would take only one step.

If we apply Algorithm 2.1 to the preconditioned system we obtain the following

algorithm applied to the problem Az = f.

Algorithm 2.5 : The preconditioned conjugate gradient method (PCG).
Initial guess z
Compute py = Krg = f — Az,

Compute (rq,K7g)
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For ¢ = 0 Until Convergence Do

. = (ri Kr;)
' (pi ,AP;')
Tiv1 =Z; +0;p;

Tiv1 =1 — 4 Ap;

b, = (T,- +11Kri+l)
' (T:’ ,KT,-)

Piv1 = Kriy +5;p;

EndFor.

At the i-th step the residual error E(z) =(h -;'z:,.A(h —z)) is minimized over
the translated i-dimensional Krylov 'subspace o + {Kry, - - . ,KA'"'r,}. The pur-
pose of preconditioning is to decrease the work needed to solve the system. This is
accomplished, if K is an approximation to the inverse of A then the matrix of the
preconditioned system is closer to the identity matrix than A. Thus the precondi-
tioned system requires fewer steps to converge. This is also good for stability because

fewer direction vectors must be generated, although the work per iteration increases.

The preconditioning cost should be such that the total runtime for PCG is less
than that of CG. On a scalar processor this-can be calculated in terms of the number

of flops which are saved minus the operations involved in multiplying by K.

On a vector or parallel system the different parts of CG (inner products, vector
updates, multiplications by A) may be running at different speeds and thus the

preconditioner must be fast. So its choice may not be the one introducing the fewest
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number of flops.

Two choices of K seem to be prevalent for the SPD case, the Incomplete Chole-

sky Factorization and the Polynomial Preconditioner.

2.8. Incomplete Cholesky Preconditioned CG

If A is the matrix resdlting from the symmetric 2-D model problem, then the
zero entries are given by the set P = {(z,5): {—j #0,1,n}. We demand that the
ICCG matrix K~! = LDLT has zero entries given by P. Then K~! will have the

same sparsity structure as A and the nonzero entries of K~! are denoted by

-~
-~

d;, b;, é;. They can be derived by the recurrences :

by =b;, € =¢;,

~ s 2 ~ ~92 ~ .
& =a; — b, /81 — € p/Biny 153 S

We can scale A symmetrically to obtain a; = 1. Then
A=K'+R=(I-F—-E)(I-F—-E)Y +R

where ET is a matrix consisting of the upper diagonal elements b;, FT of the upper
diagonal elements ¢;, and R is the error in the approximation.

To determine Kv we must solve

(I -F—-E)z=uv

or, in block form

(I - EJ')Z]' = ‘UJ' + szj—l ] = 1,...,n
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for the forward step and then do a similar backward step.

Note that there are two dependencies in the previous expression.for z;(1), one on
the previous entry z;(i —1) and one on the entries of the previous z;_;. That is, it is 2

serial operation. The first dependency can be removed if we use a series expansion for

(I-E J-)'l [VDVo82}; the equation becomes
z2j=(I+E;+E}+ -+ +E)v; + Fjz;_y)
where m = 3 is usually sufficient for a good approximation [VDVo082|. The operation

can be block-vectorized (and block-parallelized) since the block dependency remains.

In order to have a parallel preconditioner (PICCG) we must remove the block
dependency. This is achieved by using a series expansion for (I—E; —FJ-)"I. If we use
m=2 then the number of flops needed to pefform the multiplication by. K is 16N and
there is a considerable reduction in the number of iterations as shown by experi-
ments. We can write A =K + S + R and K isan approximation to K if the series

expansion is used.

We now show that the error matrix S is comparable to R, so that we can still

hope that the preconditioner is effective. If we write W = E + F then
T+WH+ - + W)= -W)I -wm)7,
It follows that K = (I — W)(I — W) Y{(I = W)(I — W™*1)"!|T. Then we get

(I=WYI =W =] —W + (I —W)W"([ —E™) =] —W + 8.
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Therefore the matrix S can be expressed as:
S=—S(I-W)—(I-W)ST —3sT

The matrix I —W is bounded: [ — W[ <1+4b +¢c , where b =max{b;} ,

¢ = max{c; } . We can now obtain a bound on the norm of the matrix s.
IS < (1456 +e)(b +e)™ (1= (b +e)™ ) '=(1+b +e)b + )"
Neglect the SST term we obtain S

ISl <21 +b6 +¢)*b +c)™*!

The set of zero entries of R contains the set P = {(¢,5) : i —j # m—1}. More-

over, the two nonzero diagonals have b;¢c; _; as entries. Hence |R| = 2 max b;¢c;_,.

Suppose A is the 5-point difference operator obtained from the discretization of
the 2-D Poisson equation with Dirichlet boundary conditions on the unit square
b; =¢; =0.25, thus [[R[|= .15. The bound on [|S|| is =.57. Then the bound on the
error in using the series expansion is about four times the error made using the
incomplete factorization. Nevertheless, numerical experiments show that the precon-
ditioner is still effective. Since this preconditioner is fully parallelizable, and it is
worth using if the number of steps needed for convergence is no more than half that

of plain CG. This follows because 18N flops are needed to form Ku compared to the

19N flops of one step of plain CG.
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2.9. Polynomial Preconditioned CG

If polynomial preconditioning is used then K = ¢(A), where q(A) is a polyno-
mial approximation to the inverse of the matrix A [JoMP83]. A stable way to com-

pute Kr; is

» .
H(A—Pj)] T

j=1
where p; are the roots of the Aegree k polynomial g(\).

One choice for q is the Chebyshev polynomial with roots in the interval
[Mmins Mmax)- Then

1—c(X)/(0))

e = 2=

where

c(N)=T

)‘max + >\min -2\ ]
A

max Amin
where T'()\) is the translated Chebyshev polynomial of degree k+1.

When both CG and polynomial PCG are iterated to convergence then the resi-
dual polynomials generated by the two methods should have comparable dégrees for
polynomial PCG to be efficient. This means that approximately the same number of
matrix vector products must be performed in either case. On a parallel system, where
inner products and not métrix vector products dominate the coniputation, this may
not hold and yet polynomial PCG may still run faster than CG. Johnson Micchelli

and Paul [JoMP83| have reported tests where polynomial preconditioning gave



results comparable to Incomplete Cholesky.
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CHAPTER 3.

s-STEP ITERATIVE METHODS FOR SPD LINEAR SYSTEMS

3.1. Introductioﬁ In this chapter we introduce a class of s—s.tep methods and dis-
cuss their convergence and stability properties. In the s-step Conjugate Gradient
method (s-CG) the s new directions are formed simﬁltaneously from
{r;, Ar;, ... ,A° ~17;} and the preceding s directions. All s directions are chosen to
be A-orthogonal to the preceding s directions. The approximation to the solution is
then advance by minimizing the error functional simultaneously in all s directions.
This intuitively means that the progress towards the solution in one iteration of the
s-step method equals the progress made over s consecutive ste;;s of the one-step

method. This is proven to be true.

The computational work and storage increase slightly (for the s-step methods
presented in this chapter) compared to their one step counterparts. However parallel
properties and data locality are improved so that the s-step methods are expected to
have superior performance on vector and parallel systems. This is due to two attrac-
tive properties of the new methods. First the s—step method can be organized so that
only sweep through the data is required. This means that the method manages
efficiently slower larger levels of memory in systems with memory hierarchy. Second
the method can be organized so that the 2s inner products required for one .s—step

iteration are executed simultaneously. This reduces the need for frequent global
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communication of a parallel system and enhances the performance of the method by

pipelining the 2s inner products.

In Section 3.2 we present a modification of the CG method which is more paral-
lel and does better memory management than the one in Chapter 2 . This is in effect
the form of s—step for s = 1. In Section 3.3 we review an s-step steepest descent
method analyzed by G. Forsythe [Fors68]. This method is modified to obtain the s-
step Conjugate Gradient method (s-CG) in Section 3.4. In Sections 3.5-7 we present
s-step methods for Conjugate Residual (CR), Conjugate Gradient applied to Normal
Equations (s~CGNE), Preconditioned Conjugate Gradient (s~PCG). Finally we dis-

cuss the stability of s—-CG in Section 3.8.

3.2. A Modified CG Algorithm

In this section we present a modification to the CG method which is more suit-

able for parallel processing and does better memory management than Algorithm 2.1

Algorithm 3.0 : The conjugate gradient method (CG).
Initial guess To
Compute pg =rg = f — Az,
Compute Arg, ag, b_; =0
For 7 = 0 Until Convergence Do

p; =r; +b;,_1pi_,
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Ap; = Ar; +b;_,Ap;
Tiv1 = Z; +¢;p;

Tivl =T — @ Ap;
Compute Ar;

(Ti+1’7'i+l)

b, =
' (Ti’ri)

3
Ay = (Ari+1’7'i+1)"'( N7 +10Ti41)
a

T

EndFor.
e b
We have used the identity (Ap;, p;) = (Ar;,r;)~(—)(r;, r;). This has
o i-1
increased the number of operation by introducing Ar;. For the Conjugate Residual
no such increase occurs. By doing this, however, we have managed to group the
operations so that we can do only one sweep through the memory to obtain the data

needed for each step. Also, the two inner products can be performed together.

This algorithm is a stable variant of CG ( or CR ) and seems more promising
than Algorithm 2.1 for both parallel processing because the two inner products
required to advance each step can be executed simultaneously. Also, one sweep

through the data is required allowing better memory management for large problems.

Next we will try to generalize this to an algorithm which does one memory

sweep per s steps.
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3.3. An s-Dimensional Steepest Descent Method

Solving a SPD Az = f linear system of equations using the CG method is

equivalent to minimizing a quadratic function
1 T
E(z)= ?(:r—h) A(z—h)

where h = A7l is the solution of the system. Here we will examine the possibility
of forming direction planes instead of single direction vectors (as in CG), and minim-
izing the error functional over the plane.

Definition 3.1 The s-dimensional affine space

s—1 .
L} ={z; + Y ajA’r; :a;scalars andr; = f —Az;}
, L 2

will be called the s —dimensional plane of steepest descent of E(z) at z;.

Since A is not derogatory, r;, Ar;, ... ,A°"!r; are linearly independent as long
as the minimal polynémial of r; has degree greater than s. In the
optimum s —gradient method for minimizing the E(z ), the point z;, is defined to
be the unique point in the plane L for which E(z) assumes a minimum. Existence
and uniqueness follows from the positive definiteness of A. This method was first

introduced by I. M. Khabaza [Khab63] but analyzed by G. Forsythe [Fors68].

Algorithm 3.1 The optimum s-gradient method

Choose z

Compute ry = f —Az,
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For ¢ = 0 Until Convergence Do
Tig =72; +a'r; + 0 +afA My
Choose a/ to minimize E(x) over L
riql =T —alAr; — -+ —afA’r; or, 7’;'+1l =f —Az;y

EndFor

Since z;,, minimizes E(z) over the s-dimensional plane L{ and r;,, is the gra-
dient of E(z) it is necessary and sufficient that r;,, be orthogonal to this plane.
Equivalently, r;,; must be orthogonal to {r;, Al'ri, ...,A* !} Then o}, ... ,q}
are determined by the s conditions

(rivri) + ai(ri Ar) + + -+ +al(r;, A°r) =0

(A" tr,r) + aMA T AR) + 00 +ei(A°T,A%T) =0

Definition 3.2 Fork =0, £1, £2, * * -, let the moment.s/z,!‘ of r; be defined by

k TAk

By =TiATT

The parameters a,-l, . ..,a; can be determined by solving the sXs system of the
“normal equations”. Since (A”r;,A%7;) = (r;,AP*%r;) = pP™9, this system has the
form

uf +plel + - +pfal =0

pltplet + 0 +pftlel =0

’
PR
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wiTt +ufel + o +ulTel =0

The matrix of this system is the matrix of the moments of r;

M; is symmetric positive definite as long as r;, . . . ,A*"!r; are linearly independent.

Then a,-l, . ..,a; are uniquely determined.

Note that the optimum s-gradient method is a steepest descent method and that
the first iterate is (in exact arithmetic) equal to the s-th iterate of the CG method.
The work for a single step is 4sN multiplications and 4sN additions and s matrix vec-
tor products and O(s®) operations to invert the symmetric matrix of moments. The
storage is s+1 vectors and maybe the matrix A. This contrasts with the 5sN multipli-
cations and 5sN additions and s matrix vector products needed for the s steps of CG.
If a small nuﬁber (compared to N) of steps are taken the optimum s-gradient

method can be useful if s << N.

Although in the past the s-optimum gradient has been compared to CG
[Khab83| our tests show behavior analogous to one dimensional steepest descent
methods. This reasonable because no sequence of conjugate directions was formed.
Also, the condition number of the matrix of moments increases prohibitively when s

> 10.

The optimum s—gradient method is attractive for parallel processing because we
can perform the matrix vector products one after another without halting to calcu-

late parameters. Inner products can be carried out together or coupled with the
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matrix vector products. Finally linear combinations involving more than two vectors

have replaced the vector updates.

Next we try to generalize the optimum s-gradient method to an s-dimensional

conjugate gradient method.

3.4. The s—Step Conjugate Gradient Method (s—-CG)

One way to obtain an s-step conjugate gradient method is to use the s linearly
independent directions {r;, ...,A° !r;} to lift the iteration s dimensions out of the
i-th step Krylov subspace {ry, . . . ,Ai’ro}. Then these directions must be made A-
conjugate to the preceding s directions {p;_,, . . . ,p{_; }. Finally, the error functional
E(z) must be minimized simultaneously in all s new directions to obtain the new

residual r; ;. This method is outlined in the following algorithm.

Algorithm 3.2 The s-Conjugate Gradient Method (s-CG)
Choose z
Compute pg =rg = f—Azg, ...,p = A*Iry
For ¢ = 0 Until Convergence Do
s

Zi =% +olpl + - +ap]

Choose ¢/ that minimize E(x) over the s-dimensional plane

s ..
{={ zo+ Yalp! }
Jj=1

1 s—1
Computer; .,y =f —Ax; ., ALy, ..., A" 14
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Form the plane {pl.;, - - -,pf41}
pi+1t =y +6{Mp + oo +b{beps

ply = Ari . +68p + o +5[2p]

Pl =A"'rt+ bl Vpsubi + -+ + bies)ps

by choosing the scalars {b{%!)} to force

A-conjugacy between the planes {pl.,, ...,p{1}, &l - - -, 0f
EndFor .

The parameters {bi(i'f)} and a/ are determined by solving s+1 linear systems of

equations of order s. In order to describe these systems we need to introduce some

notation.

Definition 3.3 Let M; = {(p/,Ap})}, 1 <j,l <s. M; is symmetric. It is non-

singular if and only if p,—l, ... ,p{ are linearly independent.

Definition 3.4 For j=1,...,s let {b,-(l"ll) }y 1 <! <s be the parameters used
in updating the direction vector p,j. We use the following s-dimensional vectors to

denote them. For simplicity we drop the index ¢ from these vectors.

bt =1, e l)T

23 = [bi(i’ll)r cee rbi(i'l:s)]r

For p{ to be A—-conjugate to {p;"_;, . ..,p{_, } it is necessary and sufficient that

M;_b! + ¢! =0
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(3.1)
Mi_lgs + 23 =0
where the vectors ¢ 7, 1<j<s are

gl = [(ri ’Apil—l): e r(ri ’Apf—l )]T

Es = [(As_lri aAPil—l)l oo )(As—lri 1Apz§—1 )]T

Definition 3.5 Let a =[a}, . ..,a]T denote the steplengths used in updating the

solution vector at the i-th iteration of the method. It is uniquely determined by solv-

ing

Mia —m; =0

where

m; = [(ri,pd), - - -, (r; va)]T
Definition 3.6 Let R; and P; be the s-dimensional planes {r;, Ar;, ..., A* 'r; },

{p}, ...,p} respectively. Also let I¥[R;] and 1¥[P;] denote some linear combination

of the vectors generating these planes.

Lemma 3.1 The residual r; at the i-th step is orthogonal to the plane R; _;

Proof: We have that

rio =pimy — Py}

A7l =pl — P[P,

Since r; is orthogonal to the plane P;_, we only need to show that r; is orthogonal
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to the plane P;_,. This holds from the fact r; =r;,_; — i'aj Ap,j_l and the fact that
=1

r;_, is orthogonal to the plane P;_, and the plane P;_, is A-conjugate to the plane

P, W

Proposition 3.1. Under the assumption that the matrices M; and M;_, are non-
singular the linear systems (3.1) have a nontrivial solution if and only if ; #0.

Proof: It suffices to show that r; # 0 implies that b L., b° and ¢ are non-zero
vectors. If b* =0 for some k then (A¥"'r,,Apt ) =+ =(AFMr,Apf ) =0.
This implies that A*!r; is orthogonal to r; — r;_, and by lemma 3.1 we conclude
that Ak'lri is orthogonal to i Hence, r; =0. Now,
m; = |{(riri), oo (7 ,A*7'r)|T because r; is orthogonal to the plane P;_;. Thus

m; #0aslongasr; 0.8

The following theorem guarantees the convergence of the s-CG method in at

most N /s steps.

Theorem 3.1 Let m be the degree of the minimal polynomial of ry, and assume
m > (i +1)s. Then the direction planes P; and the residuals 7; ge'nerated by the s-
CG process fort =0, 1, * - - satisfy the following relations
(1) () P, is A-conjugate to P;

(b)  P; is A-conjugate to R;, for j =0,1,...,t—land ¢t=1,2, """
(2) (a)  r; is orthogonal to R; and P;, for j =0,1,...,i—landi=1,2, "

(b) aj #0,for j=0,1,...,7-landi=1,2, "~
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(¢) R; is A-conjugate to R; and P for j=0,1,...,i—2and¢=1,2,- -

Proof: We use induction. For the plane Py and the vectors rg, 7, by the definition
cof =, we have that (1) and 2(c) are empty and (2)(a) holds. Since the vectors
roy Arg, . ..,A* 'ry are linearly independent a§ # 0 . Let us assume that (1) and
(2) hold for P;, j =0, .. .,i—1 and riy 3 =0,...,%, then we attach P; to this set.

For (1) (2) we have

pl =r +UP_]

Pl =A""'r + [Py
By the induction hypothesis for (1) the linear combinations (}[P;_,], ... ,!*[P;_,] are

A-conjugate to the planes P; j=0,...,i—2. By (2) the vectors

Tiy AP , ... ,A"'lri are A-conjugate to the planes R;, j =0, .. .,7—~2. Also,
j=1
pl=r + 5Py
k=0
(3.2)
s s=-1_- il ]
pi=A"""r; + Elk[Pi-l]
k=0
Thus r;, Ar; , ... ,A"lr,- are A-conjugate to the planes P;, j =0, ... ,1—2. This

implies that P; is orthogonal to P;, j=0,...,1-2. By definition P; is A-conjugate

to P;_,, and this proves (1) (a).
To prove (1) (b) we write

;= pjl - ll[Pj—l]
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A%l =pd — I[Py
Since P; is A-conjugate to P;, j =0,...,1—1 we get that P; is A conjugate to

TJ', ] =0, . e ,i—l.

It remains to be shown that if r; , #0 then it can be attached to the set
{P;, riyJ=0,... i} . To this end we must prove (2) for r; ;.

For (2) (a) we have
= 1 1_... s K]
Tivg =Ti—a Ap;— - —a”Ap;

By the induction hypothesis we get that r;,, is orthogonal to R;, j=0,.. .,1—1
and by lemma 3.1 it is orthogonal to R;. By the identities (3.2) r;,, is orthogonal to
P.,j=0,...,1.

J

(b) Since

P} = qjl(A)TO

pj =qj(A)rg

where q}(k) are polynomials of degree js and the planes P;, j =0, ...,: are mutu-

ally A-conjugate they form a  basis for the Krylov subspace

. s~-1 . .
Vi ={ro, Arg, . .. LAl ) If 0, = 0 and 7,y #0, then 1,y =r;—A| Safp/ }
. 2

Thus r; ., is in V;. By (2) (2) r;,, is orthogonal to V;. Hence, r; .; =0.
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For (c) we must show that R;,, is A-conjugate to Rj, j =0,...,i—1, or
equivalently that r;,, is orthogonal to {rj, Arj, .. .,A2"1rj}. This holds if
{riy Arj, ... ,A¥ 11} CV; . And this holds if the degree(A* ~'r;) < (i+1)s -1,

or j <i—1. Now by equations (3.2) we get that orthogonality to P;. ®

The following corollary simplifies the computation of the vectors ¢: 7,
Corollary 3.1 The right-hand side vectors ¢!, . .. ,¢° for the linear systems (3.1)

become

ct=0,....,0, (A%

o

2=10,...,0, (Ar;,A* " r;_)),(Ar; ,A%r; )T

¢ =AM A, (AT A )T
Proof: We use the definition of ¢!,...,c* and ., ...,p{_; and (2)(c), then

(2)(a) ®

Using this result and the fact that A is symmetric we get that the vectors can be

obtained from the 2s inner products
(A%r;,mig), (A% i), -, (A% )

The following proposition reduces the computation of the vectors ¢: 7 to the first

s moments of r;.

Proposition 3.2 The following recurrence formulae hold true
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(A ) = ()] + 0l (A7)
) i—1

+altT (Al )+ e el (AN )
fork =0,...,s—1
Proof: By Theorem 3.1 (r; ,A"r,-_l) =0, k =0,...,s—1 Hence, r; is orthogonal

to {Ap},,...,ApZ}}. Thus
(riori) = —al_y(ri,Ap{_) = —ai_ (A’r;,ri )

(riori)
af—l

Therefore (A®,r;_,) =~

. The case k > 1 follows inductively. @

The following corollary reduces the computation of M; to the the first 2s
moments of r; and scalar work.
Corollary 3.2 The matrix of inner products M; = (p,-',Ap,j), 1<1!,j< sis sym-
metric and it can be formed from the moments of r; and the s-dimensional vectors
by, ...,b _yand¢ct, ... ¢

Proof: If we write out pf and p,j then since p,-‘ is A-conjugate to the plane P;_; we

get
(p!,Apf) = (A'r,A7r) + b Tcj. ®
The following corollary reduces the vector m; to the first s moments of ;.

Corollary 3.3 The vector m; can be derived from the moments.

Proof:
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m; = [(ri,pd), ()T =((riar)s - (r AT @

Next we show that the s—step CG minimizes the error functional on the whole
translated Krylov subspace formed by the i-th iteration. This proves that s-CG is an
s-step conjugate gradient method.

Theorem 3.2 The approximate solution z; given by s—-CG minimizes the error

functional E(z) on the plane
L= {m +alpl + -+t

It also minimizes E(z) on the (i +1)s~dimensional plane

i
P={zo+ Y(ajp} + -+ +api)}
7=0

where aJl-, . - . ,aj are scalars. This plane contains the points zq, zy, . . ., Z;.
Proof: Since E(z) = (h—z,A(h—z2))
E(z+q) = E(z) — 2(¢,7) + (9,49)

wherer = (f —Az).Forz €Pand q; =ajp} + *** +ajp;

E(z) = E(zo) - 20 [2am;) — (a5,40,)]
p)

by the fact that the planes P;, j =0,...,7 are A-conjugate. To minimize the

positive quadratic function E(z), it suffices to find the extrema of the functions

Gj(a}, coeseg) = [2(q5,r5) — (47,49;5)]

9G ; 9G;
I =o} j=0,...,i. Since

38
aa]‘

Thus we need to solve

J
T
J
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o1 S5 1 kpal _k
G; = 2(121 a;pj 1 T;) — l)_?; k21 a;a;(Ap;,p;)

we must solve the systems
(Aphpk), 1<tk <slle), .. el =[phr) . PEr T, G =0,.. .,

which is precisely what the s-CG algorithm does. #
Corollary 3.4 If the initial vector z, is the same for CG and s-CG then the
approximate solution z; given by s-CG is the same (in exact arithmetic) as the

iterate Z;; given by CG. B

We now reformulate the s-CG algorithm taking into account the theory

developed above. We will denote by

P=[gl,...,gs]

Q = [g_l, .. .,g_"]
alternately the i-th and (i-1)-th direction planes.

Algorithm 3.3 The s—Conjugate Gradient Method (s-CG)
Choose z
Compute
P=(ro=f —Azq, Arg, ..., A’ 1|
R TS |
Call Scalar Work Routine
z,=z9+Pa
For i =1 Until Convergence Do

If( i odd ) then



Q =[r;=f —Az;, Ar;, . ..

(Y TR |

Call Scalar Work Routine
Q=Q+Pp,....b0
Ty =7; +Qa

Else

P=[T,' =f —AZ,',AT,',.

Koy - - - s H25—1
Call Scalar Work Routine
P=P+@Qp,...,b0°
Tiy1 =z; + Pa
EndIf
EndFor
Scalar Work Routine
If( i=0 ) then
Solve M;a = m;

Else

Solve M;_1b7 +¢7, j=1,..

Form and Decompose M;
Solve M;a = m;
EndIf

Return
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End

Let us examine the work and storage for one iteration of the algorithm. Storage
is required for P, Q, x, f, A; The 0(32) storage for the scalar work routine is negligi-
ble.

The work is: (1) Scalar: 0(33) flops to form and decompose the symmetric matrix M;
for (s®+s)s and solve (s+1) linear systems. Forming the right hand side vectors

8
cl, ..., c® requires §7(2k+1) = (s+1) flops.

- k=1

(2) Vector: (s+1) matrix vector products, 2s inner products and (s+1) linear combi-

]
nations of the form v + $7¢;u; for 2s(s+1)IV flops.
=l

The additional work (compared to s iterations of CG) is: For linear linear combina-
tions 2s(s+1)N — 6sN and one matrix vector product. The extra matrix vector pro-
duct is introduced because the residual vector is computed directly unlike CG where
it is the result of a vector update. Since, s < 10 for stability the additional O(s3)
scalar work is negligible. When s <5 at most twice as many flops as in CG are
needed to form the linear combinations. As we will see this is not too costly an over-
head .

Remark This algorithm can be modified to obtain one which does one sweep
through the data per step. This is achieved by computing first the direction plane P
(or, Q) and solution wupdate z;, while simultaneously computing
ri,Ar;, . ..,Ar* 1., This can be useful when efficient use of slow secondary storage

is necessary for very large problems.
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3.56. s-Step Conjugate Residual Method (s—CR)

As in the one dimensional CR case we can minimize the error functional
| f — Az; .4ll5, where z;., =z; +a''p! + -+ + afp}, over the (i+1)s-dimensional
translated Krylov subspace zg+ {rg, Arg, ...,A*U"1r L This gives the s-
dimensional Conjugate Residual Method.

‘Algorithm 3.4 The s-Conjugate Residual Method (s-CR)
Choose z,
Compute
P=(rg=f — Azy Arg, ..., A° 1y
By - -5l
Call Scalar Work Routine
T, =129+ Pa
For ¢ =1 Until Convergence Do
If( i odd ) then
Q=[r; =f —Az;, Ar;, ..., A" ;]
By v oo s b2, |
Call Scalar Work Routine
Q=Q +Pb,....b0
T =T; +Qa
Else

P=[T‘i =f —Azi,Ar,-,...,A"'lr,-]
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VKT o T
Call Scalar Work Routine
P=P+Q[,...,b%
ziq =% + P

EndIf

EndFor

The only difference between s-CR and s-CG is that different moments are com-
puted. For CR we need both Ar; and Ap;, compﬁting the latter via an extra vector
update: Ap; = Ar; + b;_,Ap;_,. Since s-CG and s-CR involve the same amount of
work, we expect the gap in speed between CR and s-CR to be larger than the one

' between CG and s-CG.

3.8. s—Step Preconditioned Conjugate Gradient Method

If K is an SPD omatrix then applying the s-CG to the
[KY2AK l/2]1{‘1/2.7: =K'Y%f gives rise to the following algorithm. Here
Hos - - - » Mg,y denote the moments of the vector r; = f — Az; with respect to the
matrix AK and inner product (,K.). For example pgo py, pp are
(r; Kr;), (AKT; K7;), ((AK )*r; Kr;).

Algorithm 3.5 The Preconditioned s-Conjugate Gradient Method (s-CG)

Choose z,

P = [Kry=K(f — Az), (KA)Krg, ..., (KAY 'Kr|
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Koy - - - H25—1
Call Scalar Work Routine
z,=19+Pa
For ¢ =1 Until Convergence Do
If (i odd ) then
Q =Kr,=K(f — Az;), (KA)Kr; , ..., (KAY'Kr;]
HKos - -« sH251
Call Scalar Work Routine
Q@ =Q + P, ...,0°
Ty =2; +Qa
Else
P =[Kr;=K(f — Az;), (KA)Kr; , ..., (KA)Y 'Kr;|
Koy« o o s H25-1
Call Scalar Work R01.1tine
P=P+Q[},...,b°
Ty =z; +Pa
EndIf

EndFor

Although (s+1) matrix vector products with A are needed, only s such products
with K are needed. Thus the overhead of the preconditioned s-CG is the same as

that in s-CG.
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3.7. The s-Step Conjugate Gradient Applied to Normal Equations

Here, as in the one dimensional CG applied to the the normal equations, we can
minimize either ||r; [, or |2 — z;,,ll5, over the (i+1)s-dimensional translated Krylov
subspace zq + {ATrq, (AAT)ATrg, . .. (AAT)E*Us=14T7 4 We then obtain the s-
dimensional Conjugate Gradient Applied to the Normal Equations s-CGNR and s-

CGNE respectively.

The s-CGNR method is similar to s-CGNE except that we need to the
moments g, . . . , K, (instead of g, . .., Uy, ;) for s~CGNE. In s-CGNR the extra
operations per step over s steps of CGNR are the same as in s-CG and CG. For s-
CGNE they are reduced as we shall see. Consequently, we only present an algorithm
for s-CGNE. We denote by u; the moments of r; with respect to AAT.

Algorithm 3.8 The s-step CGNE
Choose z4
Compute
P={ATry=AT(f — Azg), (AAT)ATry, ..., (AAT) 14T ]
Hos - - - s 951
Call Scalar Work Routine
z,=z¢9+Pa
For ¢ =1 Until Convergence Do
If (i odd ) then

Q =[ATr,=AT(f — Az;), (AAT)ATr, , ..., (AAT)y1ATr]
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Bos -« » s Mog—1
Call Scalar Work Routine
Q@ =Q +PpY,...,b°
Ty =%; +Qa

Else
P=[ATr,=AT(f — Az;), (AAT)ATr, , ..., (AATy ATy,
ﬂo: KRN TR
Call Scalar Work Routine
P=P+Qp,...,b0%
T =% +Pa

EndIf

EndFor

Since M; = {(p}, p{)}, 1 <I,j <s only s matrix vector products are needed in
one step of s—-CGNE. Thus in s-CGNE the overhead results entirely from the linear

combinations.

3.8. Stability of the s—CG Method

As in CG when we apply s-CG on the system Az = f, we essentially solve the

transformed system

5 (Apfpk) af = (AFr,r)



50

where 1 <i <n/s and 1 <k <s. Now the diagonal sXs blocks of the matrix are
the matrices M;. Since a = M;'m; we hope to have a good approximate solution at
termination if the diagonal blocks dominate. Let the matrix 1\7, denote the sXs

block

(Apil’Pil-o-l ): R r(APf :Pil+1)

(Apilrngﬂ )+« -5 (APSPis1)
then a weaker requirement is || J\’ff‘lj\-’-’—i | <<1 in some operator norm. Since,

. . . 3 . —
(Apply) = (Apl, A7 r ) + Z(p‘-",Ap,-l) b we can write the matrix M; in the
k=1

column form

[(Mb! +eY),. .o, (Mib +e7) ]
The condition above becomes

I =8, ..., (6" -8 <1

in some vector norm, where b? ,b7 ,j =1, ...,s are the true and computed scalars.

So essentially the stability of s-CG is closely related to the accuracy the scalars
in updating the direction planes are computed. Computing these scalars involves
computing the right-hand side vectors ¢ 7 via the recurrence formulae (in Propoéition
3.2) and solving of s linear systems each having coefficient matrix M;. Since this
matrix can be near the matrix of moments of r;, it may have a relatively large condi-

tion number. However, for s < 10 experiments indicate it is not too large and so s-



CG is stable.

51



52

CHAPTER 4.

IMPLEMENTATION OF S-STEP METHODS ON PARALLEL ARCHITECTURES

4.1. Introduction In this chapter we discuss how the s-CG can be efficiently
implemented vector and parallel machines. The two different architecture models
considered are the shared memory machines with memory hierarchy and the message
passing private memory machines. The discuss separately the matrix vector multipli-
catioﬁs, inner products, and linear combinations. So the implementation of the s-CR,

s-CGNE, and s-PCG (to some extent) are similar.

For an architecture similar to CRAY-1 we show that s-CG applied to the model
problem is twice as fast as CG. For the message passing architectures a speedup up

to és over CG can be achieved.

In Section 4.2 we discuss the vector and parallel implementation of CG. In Sec-
tion 4.3 we show how s—-CG can be efficiently implemented on a system with local
memory. The implementation of the matrix vector multiplication for bordered sys-
tems is also discussed. In Sections 4.4-5 s-CG is implemented on a vector system ior
efficient memory management and it is compared to CG. In Section 4.6 the imple-
mentation of s-PCG is discussed. Finally in Section 4.7 an implementation of s-CG

on a message passing system is presented.
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4.2. Vector and Parallel Implementation of CG for the Model Problem
Let us first consider the CG case. At each iteration one matrix vector product, two
inner products, and three vector updates are performed in a certain order.

(i) The matrix vector product can be written in vector form :

Ap(i) =c(i—n)* p(i—n) +c(i) * p(i+n) +

b(i—1)* p(:—1) +b(¢) * p(i+1) +a(i) * p(z)

In some machines with vector registers ( CRAY X-MP, ALLIANT FX/8 ) the res-

tructuring software dc;es not take advantage of the shift é.nd so 11 vectors of data are
transferred and 9V operations are performed, giving a ratio of -lgl For example, on
the CRAY-1 this operation takes approximately 11V clock cycles.

(i) The inner products are (r;,r;) and (p;,Ap;), giving a ratio of ;— and 1, respec-

tively. Theﬁr cannot be performed simultaneously because they are separated by a
SAXPY.
(iii) The three vector updates are

z, =z, +a;p;,

T =Tio1— G Ap;

P =r1; +b_1pi

Here the ratio is —32- . These operations are memory intensive; consequently, they

can be slow unless the communication between the vector functional units is faster

than the vector operations. For example, on CRAY-X-MP these operations are exe-
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cuted at the maximum rate whereas on CRAY-1 at half the maximum rate. The
CRAY-X-MP has two channels for vector LOAD and one for vector STORE whereas

the CRAY-1 has one bidirectional channel.

This situation can be improved slightly if (ii) is combined with (i) or (iii). For
example, the update of p; may be combined with Ap; and (Ap;,p;), saving two vec-
tor memory references. The update of r; may be combined with (r;,r;), saving one

reference. We can also update the solution only every k steps using the linear combi-

nation {VDVo86]
Tivk =% +6;p; +8;4Pi1+ 0 F Gk 1Pisk1

This provides a ratio ::2:;) = %, thus improving data locality, but increases the

storage requirements by k—1 vectors.

Although the data locality is not good this algorithm is fully vectorizable. Paral-
lelization may be problematic for systems with a largg number of processors ( e.g. a
Hypercube architecture ). This is because the inner products may constitute a
bottleneck if the interprocessor communication is much slower than the speed of the

processors.

The data locality of the modified CG Algorithm 3.0 is much better. The matrix
vector product has the same ratio, but the ratios for the vector updates and inner
products are 1 and 1/2 respectively. This is because can be performed simultaneously

and the two inner products can be combined.
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4.3. Implementation of s—CG with Efficient Use of Local Memory

In this section we show how the different parts of s-CG can be implemented

.. efficiently on a vector processor with local memory. Such a system can have either a

"register—to-register” (e.g. ALLIANT FX/8) or a "memory-to-memory " (e.g. ETA-
10) organization. In the first case the functional units are supplied with operands
from the registers, in the second case operands are brought directly from the memory
of the system. For CRAY-2 the functional units can directly communicate to the

local memory of the processor.

We first discuss the implementation of the matrix product for the 2-D and 3-D
model problem, for bordered systems. Second we consider how inner products and
linear combinations are implemented.

(i) Matriz vector products:

Let a horizontal section of order n be the submatrix A; = [Cy_,, T}, Cil,
k=1,...,n.Also, let ug, v, be subvectors (of order n) of u, v corresponding to
the block A;. If the local memory can accommodate simultaneously two full sections
of A, seven full subvectors w;a can carry out the computation

u =4,y
Do k=1,n-1
Yer1 = Ap e Bpr1r Bpea]

Wi = Ag[Vk—1s Ygs Ypsa]

EndDo
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Compute w,
while keeping the matrix in the local memory. If these blocks do not fit in the

memory they must be further sectioned.

This idea can be generalized to do Au,..., A°u together while A is in the local
memory. However, s sections of the matrix and 3s subvectors must fit in the local
memsry. This caa be useful even on a sequential machine when the two levels of

memory that must be used efficiently are the main memory and a slow secondary

storage device.

The same idea can be applied to the 3-D problem. Here the horizontal sections
of order n? are: A, =[Dy, T, Dy), 1<k <n. For a reasonable resolution
without need of secondary storage n® = 10% (because of the main memory limits). So

n? = 10* and a good portion of a section can be kept in a local memory of size 16K

(CRAY-2, ALLIANT FX/8).

Linear systems of bordered form often arise in the numerical solution of boun-
dary value problems in nonlinear PDEs and the transient analysis of VLSI or other
massive circuits to mention just a few. Let us assume that A has the form

A B

A=BTG

where A is order NXN, B is NXk and G is a kXk symmetric matrix; k is a small

number. For simplicity assume that A is the matrix of the 2-D model problem. We



57

can then section A in accordance with the sections of A and section B as well. We
first perform k inner products to compute the last & entries of v,,, and then the com-
putation proceeds as in the 2-D model problem. We have to keep the last k entries of
u, and v, in the local memory throughout the computation.

(ii) Inner Products:

We must compute 2s inner products involving the vectors p',..., pf by
efficiently using the local memory. We partition the vectors in N /m equal subvectors
of length m. The 2s subvectors (of length ! ) holding the partial results of the inner

products must remain in the local memory. Thus (s*m 4+ 2s%) < local memory
size. The "DQO" loop for all the inner products consists of an outer loop of N steps
m

and an inner loop of m steps.

(i) Linear Combinations:

For the linear combinations we partition the vectors pil e e, PPy

pl,,...,p_; and z;_;,7; into equal subvectors of length m such that

(2s+2)xm < local memory size. The "DO" loop for all the linear combinations con-
: N . : :
sists of an outer loop of — steps and an inner loop of m steps. By using the matrix

. m

notation as in Chapter 3 we can describe this as follows
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Do k=1,N/m
P, =P, + @b}, ...,b°%
(zi vk = (i) + Pra

EndDo

4.4. Implementation of s—-CG with Efficient Use of Vector Registers

In this section we will demonstrate how the computations in 5-CG (i.e. s=5)
can oréanized to achieve a speedup = 2 with respect to CG. We assume that each
processor in a multiprocessor system has a sufficient number of Vector Registers
(VRs). This assumption excludes systems such as the CRAY-X-MP because it has
only 8 VRs. The FUJITSU VP-200 system has a total vector capacity of 8K-bytes
which can dynamically reconfigured as different sets of varying length vector regis-
ters. For example, 32 VRs, each of length 256 and width 64 bits, is one possible

arrangement.

The model vector processor we consider has at least 11 VR and one bidirectional
port to the memory, one pipelined multiplier (adder). We also assume that vector
operations can be going on simultaneously and they take the same number of clock
cycles to execute. For simplicity we also assume that they take N cycles for vectors of
length N. Finally, we assume that a subvector of opérands can be extracted from a

vector register. A good example for such a system would be a CRAY-1 with 11 VRs

(instead of 8).

Vectorization:
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(i) Matriz vector products: r;=f—Az;, Ar;, .. ., A%, (A% ,A%r). We will com-

pute v = Au and w = Av similtaneously keeping A and v local.

In terms of grid lines the idea is to partition the square region into p equal hor-
izontal regions and distribute the section amongst the p processors. The data of one
section A, come from three consecutive lines. If the the grid line is longer than the
register length, it is partitioned into segments of length equal to that of the vector
registers. Each processor gets segments of data from its region. Segments from four
consecutive grid lines to compute v = Au and w = Av. So each processo¥' sweeps its
horizontal region in a vertical fashion. For the first line of its region each processors
will have to do v and Av separately. This is illustrated in Figure 1 for two proces-

SOrs.

We will perform the computation as follows: (1) r;, Ar;, (2) A’r;, A%, (3)
A'r;, A'r; ,A%r;. We will demonstrate how to compute (2) with the least number of
memory transfers. Let | be the length of the Vector Register (VR). We use the fol-

lowing notation to denote the contents of a VR.

v’ =v(idn titntl), vT = o4 i4+1H)
v =v(i—n ii-nH), v =v(i-1:i-1+)
v=u(i:i+l)
Similarly for @, b, ¢, v. For w, w = w(i+1 : i +/—1); and we use similar notations

forw®,w™, w™, wt.

"
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PE1

Figure 4.1 Processor assignment to regions of the square grid.

Let us assume that a subvector like a(¢+1 : 7 +{—1) can be extracted from a VR
containing a(i :7+/), and that all the subvectors components are O for indices
—n+1:0, n? : n?+n. The computation of (2) proceeds as follows:
v=c "ku" +exut" +bTxuT +bxuT faxu
[Keepc¢™,¢,b7,b,a,v in VR |
w=c v +bxv” +bxvt +axv
[Keep ¢, v, w,as ¢, v, w™ in VR]

Doi =1, n% I
v=c"xu " +exu™™ +b7xuT +bxuT f+aru
wt=wT" 4+ xv
[Keep ¢ ™, ¢, b7, b,a,vin VR |

[v™, v" are extracted from v |
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w=c¢ kv +b7xv  +bxvT +axv
[Keep ¢, v, w,as¢™, v™", w™" in VR|
EndDo
wt=wT" +g—"* v
Doi =1, n%/I
Compute
w(l*741)
w((l—1)%7+1)

EndDo

2
The second "DO" loop is executed in vector mode in (%—) vector steps. This part is

only %— of the total time required to compute (2) and is rather small since 64 <!/ in

most computers. Thus, we need only concentrate in the work involved in the main

“DO" loop.

Computing (2) requires 18 N flops for v, w and 10 vector transfers. This gives a

-i—g— =~ % We obtain a similar ratio from (1) and (2). We need seven VRs to

ratio :
keep w™™,¢ ™, ¢,b7, b, a, v in VRs. During the last multiply and add in comput-

ing v two subvectors needed for computing v in the next step are brought in. This

requires two additional VRs. Two additional VRs are needed for storing intermediate

n

results (e.g. ¢ "*v™"). So a total of 11 VRs are required.
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On our model vector processor v = A* u takes approximately 11N cycles. Com-
puting vand w for the main "DO" loop above takes approximately 11N cycles
be_cause vector loads, stores and additions may be completely overlapped with the
multiplications. Therefore, on such a processor, two matrix vector products of s-CG
take approximately the same time as one in CG.

(ii) Inner Products: We choose to group the operations in two sets so that the
number of VR needed is not too large.
(1) (risri)s (risAr;), (Ar;,Ar), (A%r;,Ary), (A%r,A%),
(2) (A%r;,A%), (A%, A%r), (A%r;,A%), (A% A%)
Denoting juv = tuv(:: ¢ +!), an inner product is performed as follows:

Do:=1, N, !

Y =1uv +u*v

EndDo
Sum the components of 1uv
To execute (1) we need 3 VR to store the vectors involved, 5 VR for the intermediate

inner product vectors (e.g. iuv), 3 VR for temporary storage. Thus we have a ratio of

-136— for (2) and % for (1). Hence the ratio for the inner products is = ?1;— provided

that there are 11 VRs at our disposal.

On the model vector processor with 11 VR these nine inner products take about
10N cycles, whereas a single inner product and a norm take about two and one

cycles respectively. Thus 5 consecutive steps of CG require about 15N cycles for
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inner products.
(iii) Linear Combinations: We need pJ=A7"'r, +ilp},,... ,p21] for
7=1,...,5and z;,, =z; + lpt,, ... ,p,-s_l] . These 17 vector transfers and 60V

flops give a ratio of —;% = ;— As for CG we can update the solution vector less fre-

quently, improving this ratio to about -E— For example this could be done by

Tiy1 = T4 +l[pil—ll L) :pis—I] + l[pilz v rpiS]‘

This does not increase the storage requirements.

We need 5 VRs to store p}_l, ca ,p,-s_l, 2 VRs for any two of p}, . . . ,P{s, 1 VR

for z;, and 3 VR for temporary storage. On our model vector processor the compu-

tation can be performed in about 30N cycles. This is because the vector loads, stores
and additions completely overlap with the multiplications. We note that a vector
update can be computed in 3N cycles. Thus for 5 consecutive steps of CG vector
updates require 45V cycles.

Parallelization:

Parallelization for (i) is realized by partitioning the matrix into p equal horizontal
sections, assigning each to one of p processors. If N is integer then each section con-
p

sists of entire blocks of order n» and the communication needed between every 2 pro-
cessors working on adjacent sections will be a subvector of v of dimension n. Since
this will be formed initially by the processor whose starting point is this vector this

causes no delay.

N



In cases (ii) and (iii) the vectors are divided into p equal subvectors and distri-

buted to the p processors.
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4.5. Comparison of s—CG with CG on a CRAY-1-like architecture

In both CG and s-CG the data locality can be improved by combining some of the 3
types of operations. For example matrix vector multiplications and inner products in
s-CG can be executed simultaneously. Here we consider them separately because it is

easier to compare. The number of flops and the critical ratios for 5~CG and CG are

shown on Table 4.1 .

Assume for a vector system the time for a vector transfer equals the vector mul-

tiplication ( addition ) times a factor 1 < a. Also, assume one port for vector

transfers from the memory to the VRs.

Vector Operation | 5-CG/flops | 5-CG/ratio | CG/flops | CG/ratio
Inner

Products 10N 1/3 10N 3/4
Matrix Vector

Products 54N 10/18 45N 11/9
Linear Comb. 60N 17/60 30N 3/2

Table 4.1 Flops for 5 steps of CG (1 for 5-CG) and (mem. transfers)/flops.
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When o« =1 and an architecture model like the one described in the previous
section is adopted we obtain a speedup of 1.5. This is because the execution of one
step of s-CG requires approximately 33 + 30 + 10 = 73N cycles compared to

55 + 45 + 15 = 110N cycles for 5 consecutive steps of CG.

If a > 1 then the vector transfers essentially overlap with almost all the vector
operations, and so the execution time is equal to the "vector transfer time ". The
number of vector transfers for 1 step of 5-CG is 17 + 6 + 30 = 53 and for 5 steps of
CG 45 + 15 + 55 = 115. Thus, in this case, 5-CG will run twice as fast as CG on the

model pr_oblem.

4.6. Implementation of the Preconditioned s—-CG

Here only the implementation of the matrix vector products and the inner pro-
ducts are affected. Again we assume s=5. We need to form the following matrix vec-

tor products:

Kr;, (KA)Kr;, (KA)Kr;, (KA Kr;, (KA)*Kr;, A(KA)*Kr;

and the inner products

(r; , Kr;), (AKr; K1), ((AK)2T,~ Kri), oo, ((AK)4ri’(KA)4Kri )s ((AK)sri’(KA)4Kri)'

Note that the ratio for executing the inner produects is about é— because ten vec-

tor references are needed. This is about half the ratio for the inner products of the

preconditioned CG. There four vectors are transferred to form two inner products,



yielding a ratio of 1 . For vectorized ICCG the data locality is poor. For example, the

ratio for the forward step

U = y] + szj—l
is 2. Starvation of the processors can occur if the memory ports are slow. For s-CG
the matrix vector multiplication by A can be combined with the forward of the mul-
tiplication by K, thus improving data locality and increasing the speed on architec-

tures with memory hierarchy. However the backward step cannot be combined and

the bad data locality remains for this part.

If PICCG is used then
z =(I—-E-F)™'r,
where the inverse is approximated by the matrix
I—(E+F)+(E +F)?

Since the entries of this matrix are those of A we can organize the computation so
that multiplications by K and A can be performed while the data remain in the local

storage.

For polynomial preconditioning the multiplication by A can be combined with
the last multiplication by the last factor (A — pI) of the K = q(A) (see '2.9) in a
way similar to the iniplementation above. Also, the multiplication of two factors can
be combined to give the same data locality as in the plain s-CG. Parallelization for

the multiplication by K is similar to multiplication by A.
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4.7. Implementation of s—CG on Message Passing Architectures

We adopt the Hypercube architecture as our model. A similar discussion can be
carried out for any ensemble architecture system (e.g. the ring architecture). Each
node of the system can be a scalar (or vector) processor for computations and it has
its own memory. It must also have a processor which sends and receives messages t0
neighbor nodes. This processor can coincide with the processor dedicated for compu-
tations (e.g. INTEL iPSC). The time required for a message package of size k bits to

be communicated between two adjacent nodes is
w=a+8k

This is because the network requires a stal;tup time a and then using a pipeline it
can deliver one bit per 3 seconds. Assume that there are p nodes in the system. We
can distinguish two types of communications needed to carry out computations. The
local communication involves only m << p neighboring nodes and the global one

involves m = p nodes. The time required for a message to be communicated globally

is

wlogy(p)

CG and can be implemented on such a system by dividing all vectors in p equal
subvectors (and the matrix A into p horizontal sections) and storing them at the p
nodes of the system. The vector updates and linear combinations require no com-
munication of the nodes. The scalars computed in s-CG require the moments of the

residual vector. So they do not introduce any communication of the nodes. We now
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consider separately the inner products and the matrix vector products.

(i) Inner products: An inner product requires global communication of the nodes in
order to sum up thé vector product and communicate the result to all the processors.
Denote by ¢, the time to perform a scalar addition on a single processor. Assume
that the time to transmit a double precision number to a neighbor is greater than the

time for scalar addition. This is a reasonable assumption. For example this is valid

for the INTEL iPSC Hypercube machine.
t, <w(=a+p64)

One way to perform an inner product so that the result remains in all processors is
the following. Assume that the Hypercube is 2 square with nodes a;, a,, a3 a4 (Fig.

4.2) and we have to perform

a, +a,+az+ay

Figure 4.2 Inner Products on the Hypercube




Firstly a; +a, and a3 + a4 are computed at nodes a, and d3 respectively and
transmitted to nodes a, and a, for time equal to 2w + ¢,. Secondly these results can
be added to obtain the final result in all four nodes for total time equal to 4w + 2i,.

For p =2F it takes time equal to

loga(p)(2w +¢,)

A more expensive way is to collect all numbers to a single node for the addition and

then transmit the result to all nodes. For p =4 it takes time equal to 6w + 3¢,.

Performing 2s inner products simultaneously requires time equal to

logy(p)(23 + Ea)

where & = a + 2s(64)8 and f, is the time to add two vectors of length 2s. If we
assume that every node has a separate processor for passing messages, then fa over-
laps with 20. This is because of the assumption that the time for scalar addition is
smaller than the time to send a number to a neighbor node. Neglecting the time
spent for the multiplication part of the inner products we obtain the following

speedup (by performing 2s inner product versus 1)

25(2w + 84 ~ 28(a+ 645)
2 o + 25(64)3

When the transmission startup time « is much greater than 2s(64)3 the speedup is of
order 2s. To this gain we should add the loss of speed because the processors (if the
nodes have vector processors) during 2s global communications (in CG) versus one

(in s-CQG).
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For the INTEL iPSC Hypercube machine « =~ 1831 10™® and 8 =~ (3/8)107° if
the time is measured in sec. Also, the double precision addition takes 43.0 10 %sec
and w =19 1073sec. This essentially means that for this machine the global com-
munication may dominate the whole computation in the CG iteration. If this is true

then the speedup obtained by using s-CG can be of order 2s.

In Tables 4.2 and 4.3 we show the transmission and flop times for the INTEL

iPSC Hypercube [GrRe86|.

Bytes | Time/sec | Bytes | Time/sec

2 0.001837 128 0.002040
4 0.001831 256 0.002444
8 0.001849 512 0.002763
16 0.001853 1024 0.003658
32 0.001900 2048 0.007148
64 0.001954 4096 0.013531

Table 4.2 Transmission times of a message (in Bytes) between adjacent nodes

for INTEL iPSC.

(ii) Matriz Vector Products: Consider the 2-D model problem first. The matrix A is
partition into p horizontal sections. Each section is stored in the private memory of a

node. Assume for simplicity that N = pZ. Then each section

A, =[Copy Tps Gk, k=1,...,p
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Precision | (*)/usec | Mflops | (+)/usec | Mflops
Single 40.4 024 39.5 .025
Double 43.5 .023 43.0 .023

Table 4.3 Operations times and speed for INTEL iPSC.

is a full block of the matrix A. A certain numbering of the nodes must followed so

that adjacent sections are stored in adjacent nodes. The multiplications
r,-=f—Aa:,-,...,A"r,-

are carried out sequentially in each node. To compute the subvector

Y = Ap [y ey L]
the subvectors u;_; and uy., must be transferred to the node holding the section Ay
from neighbor nodes. Therefore to carry out one matrix vector multiplication every
node must send one subvector to two neighbors and must receive two subvectors.
Therefore only local communication of the processors is necessary to carry out this

part of the computation.

\

Assume for the 3-D problem that p = n then n horizontal sections of order n?

A, =D, Ty, D), 1<k <n

must be stored each in each of the p nodes. The matrix vector multiplications can be

performed similarly to the 2-D problem. The communication still consists of sending
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one subvector to two neighbors and receiving two subvectors of order n?

Next we present an example of matrix which requires global communication to

carry out a matrix vector multiplication. Consider the bordered matrix

A B
BT G

of section 4.3 . The matrix BT can be in column form
BT ={by,...,b,]

where the column vectors b;, 1 <7 <n are of dimension k. If only 2 small (com-
pared to the size of n) number of these short vectors are nonzero, then we can still
carry out the matrix vector multiplication with local communication only. Otherwise

global communication is necessary. Let us call the latter matrix fully bordered.

We remark that it seems intuitively unlikely that in modeling a physical
phenomenon the matrix of the model (no transformations applied to) is fully bor-
dered. This is because fully bordered essentially means that all almost all the nodes

of the discrete model interact directly with a small set of nodes.
Assume that the bordered matrix has the form

A C

A=BTG
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where C is N Xk matrix of zero entries and A', B, G as above. We can the gain by .
applying a nonsymmetric s-step method on the this problem versus a one-step
method. This is because the matrix vector products Au, ... ,A("“)u can be carried

out in two steps. Firstly the computations
Ad,...,AbHg

are carried out. Then the multiplication by matrix [BT G| constitutes k inner pro-
ducts. All (s +1)k inner products needed for (s+1) matrix vector products and the 2s
inner products required for the iteration of the s-step method can be performed
simultaneously. This eliminates completely the need for global communication for
carrying out the matrix vector products. This because it combines it with the
required global communication due to the s-step iteration. The need for global com-
munication for the full bordered system disa.ppéars if we eliminate the entries of BT.
This is feasible if the lowest subdiagonal of fi has all nonzero elements. This would

create no fill-ins in the matrix besides the £ Xk submatrix G.
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CHAPTER 5.

NUMERICAL EXPERIMENTS ON THE ALLIANT FX/8 MULTIPROCESSOR

5.1. Introduction In this chapter we measure the performance of the Conjugate
Gradient, the Conjugate Residual, the Vectorized Incomplete Cholesky Precondi-
tioned CG, their 5-steps counterparts, and finally the Parallelized Incomplete Chole-
sky Preconditioned CG on a multiprocessor system. Although the test problems ido
not necessarily represent the general case of the model problem these measurements
are still be valid because the matrix vector multiplication simulated the general five-

point operator matrix vector product.

A description of the multiprocessor system is given. All codes were written in
Fortran. The implementation on a system with local memory given in Chapter 4 is
followed for the inner products and the linear combinations. The simultaneous imple-
mentation of more than one matrix vector multiplications is not carried out. This is
because tests showed that the matrix vector multiplication is so slow (even when all
the data lie in the local memory). Consequently these data could be brought in
directly from the main memory without further lowering the rate of the computa-
tion. Finally the vector register implementation in Chapter 4 is not possible because

there is not a sufficient vector registers in the system.
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The results obtained show that the s-step methods are up to fifty pei'cent faster
than the one-step methods. However, the inner products and the linear combinationé
are one hundred percent faster for the s-step methods compared to the one-step
methods. The matrix vector multiplication (even when the matrix is in the local
memory) is slow and this reduces the speedups obtained for the inner products and
linear combinations. If the matrix consists of groups of constant entries (e.g. the

Laplace operator) then the speedup would be about one hundred percent.

In Section 5.2 w describe the shared memory system that was used to run the
experiments. In Section 5.3 the computational rates for the matrix vector multiplica-
tion, the inner products, and the linear combinations are presented and discussed.

The results of the experiments are contained in Section 5.4 .

5.2. The Experimental Environment

The experiments were conducted on the ALLIANT FX/8 multiprocessor system
at the Center for Supercomputing Research and Development of the University of

Illinois.

The FX/8 is an example of a supercomputer architecture with memory hierar-
chy. The configuration of the FX/8 contains 8 Computational Elements ( CEs ),
which communicate to each other via a concurrency control bus used as a synchroni-
zation device. Each CE has a computational clock cycle of 170 ns . The maximum

performance of one CE is 11 Mflops ( million flops/sec ) for single precision and 5.9
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Mflops for double precision computations. Thus when the 8 CEs run concurrently the
peak performance can reach 47.2 Mflops. Each CE is connected via a crossbar switch
to a shared cache of 16K ( 64 bit ) words, implemented in four quadrants. This con-
nection is interleaved and provides a peak bandwidth of 47.12 MW/sec. The cache is
connected to an 8 MW interleaved global memory via a bus with a bandwidth of
about 23.5 MW/sec for sequential read and about 19 MW/sec for sequential write
access. The system also has 6 interactive processors (IPs) used for operating system

related functions and I/O operations.

Each CE is a pipelined vector processor with 8 64-bit vector registers of length
32, 8 64-bit scalar registers, as well as 8 address registers. Operands for vector
instructions come from vector registers or vector and scalar registers. The vector
multiply and add instructions can be overlapped. It is worth noting that the vector
multiply takes 2 cycles per element while the vector add/subtract/convert take 1
cycle and division take 8 cycles. Multiprocessing is realized by concurrency instruc-
tions which permit a loop to be executed concurrently across more than one proces-

sors in an interleaved mode or by concurrent call of a subroutine which assign one

task to each CE.

The ALLIANT FX/8 optimizer and compiler restructures a FORTRAN code
based on data dependency analysis for scalar, vector, and concurrent execution. A
FORTRAN program can execute in one of the following modes: scalar, vector, scalar

concurrent, vector—concurrent, or concurrent-outer /vector inner. We illustrate the
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modes of execution on the following loop:

DO 11I=1N

1 Al)=A(I)+S

For N = 8192 we have,

Scalar: A(1), A(2),..., A(8192)

Vector: A(1:32), A(33:64), ..., A(8161:8192)
Concurrent:

CE,. A(1), A(9), ..., A(8185)

CE,. A(2), A(10), ..., A(8186)

CEg A(8), A(16), ..., A(8192)
Vector Concurrent:
CE,. A(1:249:8), ..., A(7937:8185:8)

CE, A(2:250:8), ..., A(7938:8186:8)

CEg4. A(1:256:8) , ..., A(7944:8192:8)
Concurrent Outer/Vector Inner:
CE,. A(1:32), ..., A(992:1024)

CE, A(1025:1056), ..., A(2017:2048)

CEq A(7169:7200), . .., A(8161:8192)
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There is a timing facility which is accessible via a FORTRAN subroutine call
and seems to give stable results with a resolution of 10"'sec measurements. The
computational rates which will be presented were run with a large serial (non-
concurrent) outer loop in order to obtain reliable timing data. To do time measure-
ments the programs were run more than three times. Although the execution was not
in single user mode no other sizable jobs were running at the same time, and the tim-

ing variations were of the order of one percent.

5.3. Computational rates of CG and s—CG parts

Vector Operation 5-CG CG
Vector

Update - | 5.5 Mflops
Inner ‘
Products 15 Mflops 8 Mflops
Vector

Norm - 14 Mflops
Matrix Vector

Products {A) " 8 Mflops 8 Mflops
Matrix. Vector

Products (K) 7 Mflops 7 Mflops
Linear Comb. 22 Mflops -

Table 5.1 . Computational rates for the 5-CG and CG parts.
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All the rates cited are for vector lengths between 10* and 10°. The matrix vector
product runs at = 14 Mflops from the cache. Thus, for the two matrix products Av
and A%y, one can get a rate slightly higher than 8 Mflops if the vectors exceed the
cache and proper management of the cache is done in a way similar to the implemeﬁ-
tation of 5-CG in Chapter 4 . The low rate of the matrix product (even from the
cache) is mainly due to the low rate of the vector product operation. This part
involving half the flops of CG applied to the model problem has not been sped up
and it is a slow part. Thus, the speedup of 5-CG compared to CG is not expected to
be very good, taking into account the fact that there is an extra matrix vector pro-

duct (in 5-CG) per five steps of CG.

It is worth noting that the linear combinations run at 16 Mflops if Vector Con-
current mode is used and at 22 Mflops if Concurrent outer/Vector inner mode is
used. Since there are twice as many flops in the linear combinations as in the vector
updates and (the rate for the linear combinations is four times that of the vector

updates) we have sped up this part by a factor of 2.

The inner products were computed by assigning each one of 8 inner products to
one processor and computing each one of the 2 remaining norms separately. If all 10
inner products are carried out together in Concurrent outer/vector in mode then this
may yield z higher rate. It is worth noting that there is a primitive function
DOTPRODUCT, which is designed to compute only one inner product at time in

vector mode on a single processor, or Vector Concurrent mode. The inner products
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rate may have been higher if two inner products were computed by keeping the same
data in the vector registers as described in the implementation part of Chapter 4 .
Since the rate for the two inner products for CG is 11 Mflops we have sped up this

part only about fifty percent.

5.4. Test Problems We include test results on two problems with the matrix
being the Laplace operator. The first problem is a discretized PDE with known solu-
tion. The second problem is a linear system. The matrix was stored in three diagonals
of order N to simulate the general five-point difference operator.

Problem 1: —(au,), — (buy), =g on the unit square with homogeneous boundary
conditions and e =b =1 aﬁd u(z, y) = e¥sin(rz)sin(ry).

Problem 2: The linear system Az = f where A is the pentadiagonal matrix of prob-
lem 1 and z; = Vi.

The termination criterion used for preconditioned CG was (r;, Kr;)}/* <1078 and

(i, r,-)l/ 2 < 1078 for all the other cases. The significance of the tests is the following:

We can compute the speedup factor for the various methods from the results in
Tables 5.2-5.7. These factors are
CG [s—CG =13, CR/5—CR =15, ICCG [5—ICCG =1.15.

The matrix vector multiply by K has a rate of about 7 Mflops and 12N flops and in
the preconditioned CG the slow parts involve about seventy percent of the total

number of flops and this account for the drop in the speedup factor. For CR one
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extra vector update is required per step while 5-CG and 5-CR require the same

number of operations ( if the residual norm is not computed in CR ).

Table 5.7 shows the performance of the proposed Parallel ICCG method
(PICCG). Compared to the CG method ( both number of steps and execution times )
we conclude that it is a reasonably good preconditioner. The performance of the vec-
torizable ICCG is far better mainly because PICCG involves 16N flops ( to compute
Kv ) compared to 12N for ICCG. Also, block parallelization is sufficient for 8 CE
with vector register length 32 (e.g. if N = 2567) then there is a complete set of data
for all CEs. Finally interprocessor communication is not a problem because of the
shared cache and the fact that multiplication by the preconditioner K is slow (7

Mflops).
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Problem 1 Problem 2
VN | Steps | Time/sec | Steps | Time/sec
64 136 1.08 196 1.5
100 209 4.66 307 7.2
128 266 10.21 395 15.66
160 331 21.26 496 32.28
200 412 41.39 621 62.26
256 525 92.2 797 140.51
300 613 145.01 936 221.22

Table 5.2. Execution times for the CG on Problem 1 and Problem 2

Problem 1 Problem 2

VN | Steps | Time/sec | Steps | Time/sec

64 27 1.1 39 1.58
100 42 4.24 62 6.13
128 53 8.68 79 13.19
160 66 16.92 99 25.1
200 83 32.91 124 49.26
256 107 70.48 160 105.62
300 123 110.98 187 168.15

Table 5.3. Execution times for the 5~CG Problem 1 and Problem 2
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Problem 1 Problem 2

VN | Steps | Time/sec | Steps | Time/sec

64 52 1.08 75 1.45
100 72 3.44 115 5.18
128 90 7.17 147 11.37
160 111 14.02 182 22.56
200 | 137 25.32 217 39.14
256 174 52.26 276 85.23
300 203 84.62 324 133.8

Table 5.4. Execution times for the ICCG on Problem 1 and Problem 2

Problem 1 Problem 2

VN | Steps | Time/sec | Steps | Time/sec
- 64 11 1.27 16 1.54
100 15 3.4 23 5.45
128 18 6.58 30 10.47
160 22 11.64 37 19.43
200 28 22.15 44 34.98
256 35 45.74 55 72.2
300 41 75.55 65 120.01

Table 5.5. Execution times for the 5-ICCG on Problem 1 and Problem 2
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VN Steps | Time/sec | Steps | Time/sec
64 133 1.3 28 1.2
100 201 5.66 40 | 4.17
128 252 12.24 52 8.95
160 307 23.63 62 16.59
200 376 46.6 76 31.54
256 471 97.8 94 64.07
300 544 158.8 110 103.17

Table 5.6. Execution times for the CR and 5-CR for Problem 1.

Problem 1 Problem 2
/N | Steps | Time/sec | Steps | Time/sec
64 56 .99 85 1.61
100 85 4.31 132 6.85
128 107 9.29 160 14.18
160 133 18.4 198 27.97
200 165 36.07 247 55.5
256 209 75.39 316 115.3
300 245 122.96 371 189

Table 5.7. Execution times for the PICCG Problem 1 and Problem 2
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CHAPTER 8.

s-STEP ITERATIVE METHODS FOR NONSYMMETRIC LINEAR SYSTEMS

6.1. Introduction Consider the linear system of equations

Az = f

T
where A is a nonsymmetric matrix of order N with symmetric part M = A _;A )

being positive definite. In this chapter we review some generalizations of CR which
can be used to solve this system. We then derive s-step iterative methods similar to
the methods for the symmetric problem. These methods are shown to converge. How-

ever, we offer no tests to guarantee that they are stable.

In Section 6.2 we review the Generalized Conjugate Residual (GCR) and
Orthomin(k) methods. In Section 6.3 we introduce the s-step Generalized Conjugate
Residual (s-GCR) and the s-step Orthomin(k) (s-Orthomin(k)) methods. In Section
6.4 we show the convergence of the new s-step methéds. In Section 6.5 we discuss the
work and storage requirements for the new s-step methods. It turns out that there is
a modest increase in the storage but they require less work than the the one-step
methods. Thus these methods may be useful even for sequential computing if proved
to be stable. Orthodir is a variant of GCR that converges for general matrices. In

Section 6.6 we introduce the s-step Orthodir and Orthodir(k).
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6.2. Generalizations of the Conjugate Residual Method CR applied to the

SPD problem minimizes | r,-+1|| along the direction p; in order to determine a; in
Tiv1 =T; +a;p;.
Also, p; is made AT A-orthogonal to P; —1- Symmetry is used to obtain
(Ap;, Ap;) =0, for ¢ # j.

(ri AT )

Positive definiteness is necessary to guarantee that ¢; = (T{—fT—)—
P; s»AP;

is positive and so

there is progress towards the solution in every step. The orthogonality and the norm

reducing property of CR guarantee its convergence in at most N iterations.

If A is nonsymmetric but definite then the norm reducing property of CR is still
valid but the orthogonality only holds locally. That is p; is guaranteed to be ATA-
orthogonal only to p;_;. This shortcoming is ameliorated in some of the generaliza-
tions éf CR.

Algorithm 8.1: Generalization of CR
Initial guess z,
Compute pg =rg = f — Az,
For 1 =0 Until Convergence Do

L (ri,Ar;)
: (Api 7Api )

Ti =T; +6;p;

Tipl =T — 0; Ap;
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Compute p; 41, Ap; 4
EndFor.
Since (r;»Ar;) >0 the norms of the residuals is a decreasing sequence. The direction
vectors must be constructed to .signiﬁcantly reduce the norm at each step.

(i) Generalized Conjugate Residual Method (GCR) :

i
Piv1 =Tip + Jbip;

j=0
, Ar; 4, Ap
b; ( 1 +1 _1), _7__<_2
(Apj: Ap]) )
Here |i;,,ll, is minimized over zo+ {rg, Arg, ..., A'ry}. GCR gives the exact

solution in at most N iterations. However, if more than a few iterations are needed
then the storage requirements become prohibitive. To circumvent this GCR can res-
tart periodically. This method is called GCR(k). An alternative is to orthogonalize to
over k directions. This gives Orthomin(k).

(ii) Orthomin(k):

i .
Pivi=Tizxt 3 0;p;
joi—k+1

where the {b}} are defined as in (i). Both methods coincide with CR in the symmetric

case. Note that CR applied to the nonsymmetric problem is Orthomin(1). Ortho-

min(0) is a one dimensional steepest descent method called sometimes Minimal Resi-

dual Method (MR).

In both (i) and (ii) we need to compute the Ap;.,. This can be done either

directly or via the recursion
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i
Ap; 41 = Ar; . + ) bjAp; (6.1)
1=

where j; =0 for CGR and j; = max(0, i —k+1) for Orthomin(k). Assuming (6.1) is
used, the work and storage for the two methods on a sequential machine is shown in
Table 1.

Note that storage is required for z;, r;, Ar;, {p; ;I;. and {Ap; ;I} and may be A.
8.3. The s-step GCR and s—step Orthomin(k)

In this section we first present a modification of the GCR or Orthomin(k) method. In
this method the directions are AT A-orthogonal as in the GCR or Orthomin(k). How-
ever there is look-ahead because two new directions are formed and then they are
orthogonalized. However this requires that some inner products are computed from
others and could be an unstable method. We then derive an s-step method for GCR
and Orthomin(k) that does not require s directions to be AT A-orthogonal to each
other.

Algorithm 8.2: The Modified (GCR) Orthomin(k) Method.

Per Loop GCR | Orthomin(k) |

Work (6(i+1)+8)N (6k+8)N
+ 1 MatVec + 1 MatVec

Storage 2(i+2)+2 (2k+3) |

Table 6.1 . Work and Storage for GCR and Orthomin(k).
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Initial guess x4

Compute pg =rq = f — Az, Arg, Alr,
Set v =rgy, w = Arg

ATA—orthogonalize to get py, P9, AP, APo
For : = 0 Until Convergence Do

. (r2i,A4pg;)

a . ——————————————
Y (Apgi,Apy;)

o2 o (Ar9i)AP2; 11)
Y (Apai1sAP2i 1)

_ 11, 2 1
Tiv1 =2Z; ta;p; t+a;p;

_ 1,1 2 1
Tiv1 =T —a@; p; —a; p;

’ 2i +1 Li
v=rin+ 3 ot
I=J0)
2i+1 .
w=Ar, + } 51(2'1)1’1'
1=1{24)

Compute Av, Aw

(Ar; 11, Ap;)
(Apji Apj) ’

(A27i+b Apj)
(Ap;, Ap;)

b](l,i) _— ] = j(l,i) yee ey 2Z+1

b](2,i) = y ] = ]'(2'1') g e s ey 2141

ATA—orthogonalize v, w to get po; o) Poisa

EndFor.

To ATA—orthogonalize the vectors v and w we need the inner products

(Av, Aw), (Av, Av) and (Aw, Aw). These

in

turn

require
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(Ar; 1y Ari ), (Ari A% ), (A%rig, AMri)y {(Arigy Ap;), (A%ri4, Ap;) e

i
and b{14), b3,
If we set ¢1 = 27 +2, 12 = 2¢ +3, then we get the two new direction vectors
Py =V

(Av, Aw)v

Pie =Wy Av)

We can also derive the inner products

(Api1, Api1), (APig) APig), (Ti1 APiy)s (Arigs APis)
from

(Av, Aw), (Av, Av), (Aw, Aw), (r;,, Av), (Ar;;,Av), (A7, Aw).

Next we will present for both s-step GCR and s-step Orthomin(k) in one algo-
rithm. The following definitions are similar to those in chapter 3 .
Definition 6.1: (1) Let us denote by M; = [(Ap, Ap})), where 1 < j, 1 <s
2 o= ¢}, ... ,af]T be the steplengths in  updating z; and
m; = (r;, Ap"), .. ., (rs) Apf|T.
(3) & = [(Arisn, 4pJ), - - (A% risy, AP, for =G, . 1
(4) P, =[p}, ...,p{] and 9_; the constants in updating P.
(5) R; = [r;, Ary, ..., A 'r;]
The following linear systems of order s must be solved in executing one step of s-step
GCR (Orthomin(k)):

M;a; —m; =0

M;b; +¢;=0,for j=j;,...,0
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Note .that M; is invertible iff p, . . . ,p; are linearly independent. This follows from
the fact that the bilinear form (AT A", -) is an inner product.
Algorithm 8.3 The s-step GCR, Orthomin(k) algorithm.
Choose z,
Compute
P=(ro=f —Azg Arg, ... , A1
For i=0 Until Convergence Do
Compute m;, M;
Call Scalarl
Tiv =% + P
riq =1 — AP
Compute 3’1'-, J=Jireeost

Call Scalar2

i .
Piyy=Ri,y+ 2Pjé}
=%

Compute AP; ., or,

AF; i, = AR, + EAPJQ;
I=J

EndFor

Scalarl : Decomposes M; and solves M;a; = m;

Scalar?2 : Solves Mjg; = —c_j», forg=y7,...,1.
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where j; =0, i—k-+1 for s-step GCR and s-step Orthomin(k) respectively.
Notice that in s-step Orthomin(0) s directions are used to improve the solution. The
s-step Orthomin(0) is the s-step MR method. The s-step Orthomin(1) method coin-
cides with s-CR for A SPD. In general we will have k > s, because s must be small
for stability as in the SPD case. However, all cases are interesting and they may yield

methods useful even for sequential processing.

8.4. Convergence of s—step GCR and s—step Orthomin(k)

In this section we give convergence proofs for the s—step methods and discuss

their relation to their one-step counterparts.

Theorem 6.3: Assume that the }degree of the minimal polynomial ry is greater
than s#i. The solution vectors z; and the planes R;, P; generated by s-GCR satisfy
the following relations:

(1) P; is AT A-orthogonal to Pj, fori #j

(i1) r; is orthogonal to AP;, fori > j

(i11) (r;y Apd) = (r;, Alr), for Il =1,...,s

(iv) r; is orthogonal to AR;, fori > j

(v) AP; is orthogonal to AR;, for ¢ > j

(vi)  (Api, Apf) = (4p{, A7r;), for 1 <1, <'s

(vii) (7 Ap}) = (ro, Ap}), for j <7 and 1 <! <ss.

(viii) {RyRy,..., Ri}={PyPy,..., P} ={rg Arg, ... ;A(”l)s_lro}
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(ix) = Ifr; #0, thenaj_, #0.

(x) z; 1 minimizes ||7; ;|| over the translated subspace zq + {Pqg, - - - ,P; }-

Proof: By the the definition of the direction planes P; we get (i). From
r; =r;_y —AP;_a;_; and (i) we get (ii) by induction. The defining relations for

{p}, ..., p{ and (ii) give (iii).
To prove (iv) we rewrite the defining identity for AP;
AR; = AP; —l{AP;_,, ... AP}

where [{ } is 2 linear combination of the planes involved. We then obtain (iv) by use
of (ii). The same equation and (i) gives (v). We show (vi) from the definition of

pf, j =1,..,s and (i). The identity r; =r,_; — AP;_,a;_, and induction give (vii).

719§

To prove (viii) we note that the Krylov subspace contains the other two sets.
Also, it is easy to check that {P,, ...,P;} is contained in {Rq, . .. ,R;} because
every direction can be written in terms of A'r,-, l=1,...,s. By (i) the dimension
of {Py, . ..,P;} = ({+1)s, which is the dimension of the Krylov subspace. Therefore

all the subspaces are equal.

(ix) states that the new (nonzero) residual lifts the iteration out of the current
Krylov subspace. Then the assumption on the degree of the minimal polynomial of r

proves that the directions {p,-l, .. .,p{} are independent.

Since the symmetric part M of A is positive definite
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(ri_p Apiy) = (riopy Ar; ) = (rioy, M) >0

Thus the system M;_,a;_, = m;_; has a nontrivial solution. Now if a;.; =0, then
r; =r;_1 — AP;_a;_, belongs to the Krylov subspace {ro, Arg, - - ,A% 7170} and

at the same time is A-orthogonal to all its vector. Thus r; = 0, which is absurd.

To prove (x) we expand the norm of the residual as follows:

i

8 8
I ol = (7o) 7o) — 2)) 2‘15 (ror AP,li) + PP “;“?(Ap;'n’ Apj')

i
=0 l=1 j=0 m=1 (=1
Since (rg, Ap}) = (r;, Apg') by (vil), we can rewrite the above expression in matrix

form:

; .
I7; c1ll = (roy 70)—2 _):;%Tﬂj + Z;gJTMjEj .
j= j=

Now, as in s-step CG we can see that minimizing ||T,~+1|| over the affine subspace

zg + {Pg ,--.., P;} is equivalent to solving the linear systems

Ma;=m;, j=0,...,1.

This is exactly what s-step GCR does. ®

This theorem shows the method is indeed an s-step GCR. That is, the iterate z;
of s—-GCR is the equal to the iterate z;, of GCR. Thus GCR converges to the true

solution in at most N steps.
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The following theorem, which we present without proof shows the relations
satisfied by the vectors generatgd by s-Orthomin(k).
Theorem 6.4: Assume that the degree of the minimal polynomial of 7 is greater
than s%i. Then the vectors z; and the planes R;, P; generated by s-Orthomin(k)
satisfy the following relations:
(i) P; is AT A-orthogonal to P;, for i =i—k, ...,i=1, i >k
(i1) r; is orthogonal to AP;, fort =i—k—1, ... ,i=l, i 2k+1
(iil)  (r;, Ap)) = (r;, Alr), forl =1,...,s
(iv) r; is orthogonal to AR;_,
(vi)  (Ap, Apf) = (Ap}, A7r;), for 1 < 5.l < s
(vii)  (rj, Ap}) = (rikr Api) for 1 <1 <s
(viii) Ifr; #0, thena’_; #0.

(ix) z; ., minimizes ||7; .|| over the space zq + {P;_,...,P;}. ®

Next we prove that s-Orthomin(k) converges but may require an infinite
number of steps. The following theorem gives a bound on the norm of the residual
error for all the s—step methods considered here.

Theorem 8.5: If {r;} are the residual vectors generated by s-Orthomin(k), s-GCR
and s-MR, then

( )2 s/2

Amin(M :

Irilly <} 1 — ——7— e
Amax(4" A)

Proof: Consider the s-step Minimal Residual Method at the i-th iterate z; of s-



Orthomin(k). The iterate and the residual given by s-MR are
Fia =% +aln + 0 +afA% I
Fran =T —afArg — - —afA’r
where P, ={r; ,..., As_lr,-} is the direction plane of s—dimensional steepest des-

cent and M;q; = m;. The matrix M; of inner products of the plane has the special

form
(AI-H'Ti, Ak+1’f'i ), 1 S l,k _<_ S

and m; =|[(r;, Ar;), ..., (r;, Asr,-)]T. The symmetric matrix M; is not a matrix of
moments because A is not symmetric. Thus it is not positive definite. Nevertheless, it
is nonsingular as long as degree of the minimal polynomial of ry is greater than s.
Since the residual r;,, generated by s-Orthomin(k) is orthogonal to AR; we obtain
the inequality [|r; 1,z < |I7;,1]l. The norm of the residual of s-MR is

. m{ M m;
17 41llz = (ris 7:) [1 - W]
Notice that the first it;erate of s-MR is the same as the s-th iterate of GCR. This is
because the two methods minimize the same error functional on the same translated
Krylov subspace o + {rq, - . . ,A° 'ry}. Using s iterations of 1-MR we obtain the
following bound:

Nmin(M) |72

T; <% <7l = ——
" z+1”2 —_ " 1+1“2 — " z“ [ )\max(ATA)

Next we compare the s-step methods their one-step counterparts.
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8.5. Comparison of s—-Step and one-Step Methods

Next we present the work for vector operations and storage requirements for the
s-step GCR and Orthomin(k) when the z; ., iterate is formed. At the same time we

make comparisons with the one-step methods.

For one step of s-GCR we need s matrix vector products,
(141)s? + s(s+1)/2 + s inner products, and 4s% N + 4sN flops for the linear com-
binations. The same number of matrix vector products and inner products are
needed by the last s steps of GCR to reach the same approximate solution. However
we need (4is + 4)sN + 2s(s+1)N flops to perform the linear combinations in GCR.
This is due to the fact that in s“GCR we do not have to orthogonalize the directions
in the s-dimensional planes P;. Thus GCR needs 2s(s+1)/V flops per s iterations
more than s-GCR, ignoring the O(is®) flops needed in s-GCR to solve the (i+1)

linear systems.

For either s-GCR or Orthomin(k) we must store z;, R;, {P;}~; and {AP; Fomii
Thus compared to GCR or Orthomin(k) we have increased the storage by at most

s-1 vectors.

The s-Orthomin(k) method minimizes the error functional over an affine space
of dimension (k+1)s. By Theorem 6.5 it reduces the norm of the error by at least as
much as s consecutive steps of MR. Therefore we should compare the computational
work to that of s consecutive steps of Orthomin(ks). While the number of matrix

vector products and inner products is the same for the two cases, the vector
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operations for the linear combinations are s(4ks+4)N for s-Orthomin(k) and

s(4ks +4)N + 2s(s+1) for Orthomin(ks ).

The data locality and the parallel properties of the two s-step methods 2 <s
are far superior to their one-step counterparts. The critical ratios (memory references
| flops ) are approximately divided by s. Moreover, since the inner products can be
performed together, they can be pipelined on a massively parallel system and gain a
speedup up to s. An implementation similar to s-CG on a system with memory

hierarchy is possible.

6.8. The s-Step Orthodir Method

The Orthodir method [YoJe80] is a variant of GCR that is guaranteed to con-
verge even if the symmetric part of A is indefinite. It only differs from GCR in the
recursion defining the direction vectors. However the truncated version Orthodir(k)
does not converge for general matrices. It is not known if it converges even when A

has positive definite symmetric part.

The algorithm for Orthodir and Orthodir(k) is similar to Algorithm 6.1 except

that the set of AT A- orthogonal direction vectors are

i
Piv1 =Ap; + 3 bip;

j=J
b = _(AZP;': Ap;) i<i
! (Ap;, Ap;) " T~

where j; =0 for Orthodir and j; =i —k+1 for Orthodir(k). The work and storage
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for a single iteration of Orthodir and Orthodir(k) is described by Table 6.1 .

The s-step Orthodir and Orthodir(k) are similar to Algorithm 6.3 except that
the s—dimensional direction planes are defined by
— 1 ,
P,.,=R; + .Z.Pf b
- J=3
where
R; = [Apf, A%}, - ,A*'p]]
i =((A%f, Ap)), -+ (ATpf AT, T =i
The convergence of s-Orthodir is shown by proving a theorem similar to
Theorem 6.4 . The work and storage requirements for s-Orthodir and s~Orthodir(k)
are same as for s-GCR and s-Orthomin(k) respectively. These methods require more

storage but less work than the corresponding one-step methods. .he "%
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CHAPTER 7.

s-STEP METHODS APPLIED TO ORDINARY DIFFERENTIAL EQUATIONS

7.1. Introduction

Systems of Ordinary Differential Equations (ODEs) arise frequently when model-
ing physical phenomena in sciences and engineering. When the problems involve a
very large number of equations solving them on multiprocessors is imperative. Exam-
ples of such problems are the solution of time dependent PDEs semi-discretized by
the method of lines and the transient analysis of VLSI or other massive circuits to
mention just a few. In this chapter we discuss how the ODE integration methods can
efficiently be implemented on systems with memory hierarchy and message passing
multiprocessors. In Section 7.2 we discuss the implementation of nonstiff methods.
Stiff methods require that a system of nonlinear equations be solved at every integra-
tion step. In Section 7.3 we ShOV;I how the s—step iterative methods can be used in stiff
methods improving the speed of the integration. We note that a large part (eighty
percent) of the work involved for solving the systems of n-onlinear equations. Thus
speeding up this part of the computation could yield almost equal speedup of the

whole process.
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7.2. Nonstiff methods
'

Consider the system of Ordinary Differential Equations (ODEs)
y=1(ty)
where f : RN*! RN gatisfies a Lipschitz condition. In this section we describe
the MDD implementation of the variable-step size variable-order Adams’ integration
formulae. We then indicate the modifications required to make efficient use of local

memory.

Assume that the solution has been approximated at the time points
tnrytn—1s+ -+ stp_k+1 and the values y,, y,;,...,y,;_kH are kept. There is a unique
k+1 degree polynomial which interpolates these values. The polynomial can be
uniquely determined by the modified divided differences ¢J(n )y for j =0,....,k—1 of
the derivatives. For constant step size these differences coincide with the backward
differences V,{y,;, for § =0,...,k—1. At the prediction for ¢, ., =t, + h the value of

the solution and its derivative are computed by

k-1
Prst =Yn t+ oy 3 9:10i(n) (7.1)
=0
, k=1 |
Pny1 = hn+1 2¢1 (n) (7.2)
j=0

where the g; ; are the Adams-Bashforth coefficients(which are functions of ratios of
the last k step sizes). The prediction is essentially the calculation of the value and the
derivative of the polynomial interpolating y,, y,:, . .,y,’,_kﬂ. Assume tha.t. the

corrector of order k+1. The correction computes the value y, ,; such that 17,'”1 is an
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approximation to f (t, y,,,) where g, ., is the derivative of the polynomial interpo-
lating  Yp 41, Yn» y,:, e ,y,:_k_l. If the corrector is iterated to convergence,

Grer = F(ts Uns) 20d Yp 4y = Gnyp - For PECE

f!'r:+1 = f(t, Pns1)
Yner = F(ts Ys)
The computations involved in advancing the step from ¢, to t,,, (for PECE)
are [ShGo75]|
Compute scalars gi1» 7=01,..., k;
P Compute ¢j(r) = B;(n+1)¢;(n), Jj =01 ,.. vy k-1,
$i(n+1) =0,
oi(n+1) = ¢544(n+1) + dj(n), j=k-1,...,0
Predict by (7.1);
E Evaluate f5.; = f(tns1) Pasi)s
C  Correct Ypyy =Pnast + hn18x1(fh41 — do(n+1));
E Evaluate f, 1 = f(tp41 Yn41)s
S +1(n+1) = fri1 — d5(n+1),
$i(n+1) = ¢in+1) + ¢y (n+1), s=k-1,...,0.
where 8;(n+1) and g, are scalar functions of the k most recent step sizes. The
differences ¢;(n +1) are extensions of ¢(n) by including Py 41 28 part of the extrapo-
lation to the point ¢,,;. On completing the correction step the norms of

éi(n+1) + (fi41 — oi(n+1), j=k—L,k,k+1 are computed. They are required for

.
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computing the local truncation error and decide the next step size and order of the
method.

Implementation with Efficient Use of Local Memory: If the above computation is
performed on a system with memoryAhierarchy then it must be blocked according to
the local memory size. The differences ¢;(n+1) mugt be updated simultaneously with
¢(n+1), Py 12, and ¢j(n+2) transferring the vectors to the local memory only once.
The vectors ¢5(n+1) do not need to be written in the global memory. Updating

these differences gives a ratio of

3k+4
5k+1

This ratio is greater than one for k=1 and it is 19/26 for k=5. This suggests that the
higher order nonstiff methods may run faster than lower order methods on such sys-
tems. Since the higher order methods involve more operations this implies that we
should not force the integrator to change to lower order because this is not going to

speedup the integration.

The computation of f£.,, y,,; and f,,, can be carried out keeping the data

local as two matrix vector products were combined in Chapter 4. We show how to

combine v = F(u), w = F(v). Assume for simplicity that J = -g—f— has the same

structure as A (of the 2-D model problem). We partition u, v, and w into subvec-
tors (as in Chapter 4). We can bring in the local memory the vector instructions for

computing the subvector vy = F(u;) and keep them local computing in the next
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block step w; = F(vy). The vector instructions for computing F(z) are basic func-
tions such as constants, exp, \/,' trigonometric functions etc. The structure of J
represents the dependence of F on u. So if for example for a nonlinear function F, J
has the structure of A in the model problem then the implementation of the
v = F(u) and F(v) is exactly the one in Chapter 4. Sometimes the function evalua-
tion requires no transfer of data. Multiplication by the discrete Laplacian is such an
example.

Implementation on Message Passing Systems: Function evaluations for most sparse
problems arising from modeling physical phenomena only local communication of a
parallel system is required. This a result of the previous paragraph and the discussion
on implementing matrix véctor multiplication (by sparse matrices) in Chapter 4. How
much local communication is needed depends on how well the topology of the system

approximates the nodes of the discretized model.

We partition every vector involved in PECE into p equal subvectors and assign
each to the p processors. The scalars ﬂj(n +1), t,41, and g, all depend on the step
size and order. Thus they are computed at each node simultaneously. The step size
h, and order k depend on the norm of the local truncation error. Thus the only part
of integration step of a nonstiff method which requires global communication of a

parallel system is the computation of three norms after the correction step.

This suggests that we could overcome the frequent global communication prob-

lem if we kept the step size and order constant for a time window. This requires the



105

choice of step size and order be made for the whole window. This seems reasonable
because the step size is small and and increases infrequently during the integration of
nonstiff problems. Thus we need a good estimate of the Lipschitz constant. The size
of the window should depend on the step size (to satisfy the accuracy and stability
conditions) and the global communication delay wlog,(p) (to satisfy a processor non-
starvation condition). This means that a sufficient number of steps must be taken in
a window in order to overlap the communication cost of computing the Lipschitz
constant, step size and order for the next window. For example after one or two steps
of constant step size the Lipschitz constant and local truncation errors (to bt;. used in
the next window) can be computed simultaneously with the integration in the
current window. This would allow the global communication to be overlapped with

the computations of several steps.

This is one fo the reasons why so—called waveform relaxation methods are fast
on parallel systems. In these methods function which approximates the solution glo-
bally (e.g. Picard Iteration) is integrated over a time window (using uniform mesh)
and this process is repeated until a good approximation is reached. The size of the
time window depends on the Lipschitz constant and the accuracy requirements. The
integration over a time window can be assigned to different processors. However this
is not practical because the window size changes and so the numt;er of processors per
integration mesh point must change. Moreover, this would require that each node of
a‘parallel system has stored the same data which is ineﬁicient use of memory. There-

fore it seems reasonable that parallelization of this process must be carried out by
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partitioning the matrix (function) into p equal sections and assigning each to the p
processors. Then each processor integrates the waveform approximation on the whole
window. Hence the communication required for function evaluations is the same as

the one in the nonstiff methods.

7.3. Stiff Methods

Predictor Corrector integration schemes are used to solve stiff problems. The
only difference is that the Corrector must have ;lnﬁnite stability region .because large
step size is required. Such methods are for example the BDF methods. At every
integration step of such a method a nonlinear system of equations must be solved to

retain stability. This system has the form

F(yn+1) =Un+1— 2n+1 +hnﬁ0f(tn+l’ yn.+l) =0

where h,, ., the step size, B, and J7, are already computed constants. This nonlinear
system cannot be solved via functional iteration (as for stiff problems), the function is
not contractive. This is because the step size is large. Inexact Newton methods cou-

pled with 2 linear solver can be used efficiently to solve this nonlinear system.

For large sparse Jacobians linear iterative solvers are superior to direct solvers in
terms of computational work and storage. Gear and Saad [GeSA82] have used suc-

cessfully CG-like methods coupled with the Newton-Rapson scheme in a BDF code.

Assume J = ?— then the outer iteration is:
T
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y:zill =Yps1 +4;
Ja; = —F(y:z)ﬂ
where y,?_H = Y, +1- The inner iteration ( e.g. CG method ) gives the solution 4;.

The multiplication by the Jacobian is done using the Taylor's expansion approxima-

tion

(F(yriuul +ev) — F(yviz+l)
€

Ju =Gv) =

in order to avoid computing the Jacobian explicitly. The s-step methods can be used
to carry out the inner iteration more efficiently. Thus we need to perform together
v =G(u)and w =G (v).

Implementation with Efficient Use of Local Memory: Implementation of the Predic-
tion is similar to the nonstiff case. The correction consists of a few Newton steps cou-
pled with an s-step method. The implementation of the s-step methods was dis-
cussed in Chapter 4. The function evaluations can be carried out by keeping the data
in the local memory (as in the previous section).

Implementation on Message Passing Systems: Unlike the nonstiff methods here the
solution of the nonlinear system requires the global communication of the parallel
system. However the inner products in the last step of the inner (s-step CG) iteration
can be computed simultaneously with the local truncation error. Pipelining (as in
Chapter 4) all these inner products could eliminate ( perhaps partially) the global
communication bottleneck. The idea of using a time window for stiff methods seems

impractical because the step changes frequently. Also, the step size is so large that
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good estimation (locally) of the Lipschitz is difficult even for a single step.
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CHAPTER 8.

CONCLUSIONS

Iterative methods for large, sparse systems of linear equations can be used
efficiently to obtain an approximation to the solution. The Conjuéate Gradient
method is an iterative method that can be applied to symmetric and positive definite
systems. It requires no a priori information (e.g. eigenvalues) about the coefficient
matrix of the system. A whole class of methods based on the Conjugate Gradient

(and its variants) have been developed for solving nonsymmetric problems.

At each iteration of the Conjugate gradient one matrix vector multiplication,
two inner products and three vector updates are computed. These operations can be
carried out efficiently on a sequential machine. On a parallel system (e.g. Hypercube,
Ring architecture etc.) the computation of a single inner product constitutes a
bottleneck. This is because global communication of the system is required for the
reduction part. Vector updates and single matrix vector multiplication have poor
data locality. This means that a lot of vector data are tranferred and few vector
operations are performed on them. Poor data locality results in poor memory utiliza-
tion (and hence performance degradation) for vector processors or multiprocessors

with memory hierarchy.

In this work we introduce a class of s-step CG-like iterative methods for sym-

metric and nonsymmetric systems of linear equations. The progress made towards the
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solution in one iteration of an s-step method is the same as the oﬁe made in s con-
secutive iteration of its one-step counterpart. In the s-step methods s matrix vector
multiplications Ar, A%r , ..., A°r, (s+1) linear combinations involving 2s vectors
and 2s inner products are performed at each iteration. This means that the data

locality is improved because the
Ratio = (Memory References)/(Floating Point Operations).

is lower than the corresponding ratio in the one-step methods. Thus these methods
can be shown to have better performance on vector and multiprocessor systems with
memory hierarchy. This also allows efficient use of slow secondary storage devices
because one sweep through the data is required per iteration. Performing 2s inner
products simultaneously not only improves data locality but also allows the pipelin- .
ing of the reduction part on ensemble architectures (e.g. Hypercube) eliminating the

global communication bottleneck of single inner product computations.

The s-step iterative methods introduced are stable. This is also demonstra_ted by
experiments of large problems carried out on a shared memory multiprocessor system
with memory hierarchy. The experiments show that the s-step methods are faster
than the corresponding one-step methods. We include data on the communication
speed of a state of the art message passing parallel system (Hypercube) indicating
that the s-step methods implemented on such a system could be up to 2s times fas-

ter than the corresponding one-step methods.



111

To solve nonlinear systems of algebraic equations via ‘the Newton-~Rapson
method requires that a sequence of systems of linear equations be solved. The
coefficient matrix for these linear systems is the Jacobian of the the nonlinear system.
A linear iterative solver can be used as the inner iteration of the Newton-Rapson
procedure when the Jacobian is large and sparse. Replacing the one-step methods by

the corresponding s-step speedups similar to the linear problems can be achieved.

This can be used for example to improve the efficiency of Stiff ODE codes.

The proposed s-step iterative methods for symmetric positive definite problems
have additional vector operations compared to their one-step counterparts. It
remains an open question to design stable s-step methods with no extra vector opera-
tions. The design of stable and efficient s-step analogs for other nonsymmetric CG-
like methods remains to be done. Efficient implementation on state of the art mes-

sage passing architectures remains to be done.
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