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ON SQUARING KRYLOV SUBSPACE ITERATIVE METHODS FOR 

NONSYMMETRIC LINEAR SYSTEMS 


A. T. CHRONOPOULOS and S. MA t 

Abstract . The Biorthogonal Lanczos and the Biconjugate Gradients methods have been proposed as 

iterative methods to approximate the solution of nonsymmetric and indefinite linear systems. Sonneveld 

[19] obtained the Conjugate Gradient Squared by squaring the matrix polynomials of the Biconjugate Gra­

dients method. Here we square the Biorthogonal Lanczos, the Biconjugate Residual and the Biconjugate 

Orthodir(2) methods. We make theoretical and experimental comparisons. 

Key words . iterative methods, Biorthogonal Lanczos, Lanczos Square, nonsymmetric 

indefinite linear systems. 

1. Introduction Consider the linear system of equations 

Ax=! 

h A' .. f d 'th . M (A +AT) be' ..w ere IS a nonsymmetnc matrix 0 or er n WI symmetric part = 2 mg posItIVe 

defmite or indefinite. D. Luenberger and C. C. Paige and M. A. Saunders [15] have obtained 

Conjugate Gradient and Lanczos based methods for indefinite symmetric systems. Generaliza­

tions to the conjugate gradient method were derived by Concus and Golub [4] and Widlund [2lJ 

for nonsymmetric systems with positive real matrix. However, on each iteration an auxiliary sym­

metric system of equations had to be solved. S. Eisenstat, H. Elman and M. Schultz [7], D.Young 

and K. Jea [22] devised generalizations to the conjugate residual method, which apply when the 

matrix of the system is positive real. Y. Saad and M. Schultz obtained GMRES(m) [18], which is 

based on the Arnoldi iteration but with residual error minimization property. They proved that it 

applies to general nonsymmetric systems provided that m direction vectors are kept in storage. 
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Faber and Manteuffel [11], [12J proved that any Krylov subspace based variational method 

would require to store a number of direction vectors which may be equal to the dimension n of 

the linear system to ensure termination of the process in at most n steps. Thus all the methods 

described above seem to need storage of an a priori unspecified number of vectors ( in addition to 

the matrix ). This number depends on the nonsymmetry and indefiniteness and condition number 

of the matrix. The Biorthogonal Lanczos for solving linear systems [17J and the Biconjugate Gra­

dients methods do not have this limitation. In the absence of break down these methods converge 

in at most n steps with a modest main memory storage requirement. 

The Conjugate Gradient Squared method (CGS) [19] was derived from the Biconjugate 

Gradients (BI-CG) method by simply squaring the residual and direction matrix polynomials. 

CGS does not need multiplication by the transpose of a matrix. The residual and the directions in 

CGS are not bi-orthogonal or bi-conjugate respectively. However it can be viewed as the result of 

polynomial preconditioning with the polynomial varying from iteration to iteration. Thus it turns 

out that CGS is in practice faster than BI-CG. CGS computes exactly the same parameters as 

BI-CG and so it has exactly the same breakdown conditions as BI-CG. In fact along the iteration 

ofCGS one can superimpose a BI-CG iteration with additional cost of one matrix vector multipli­

cation but without the need for multiplication by the transpose. 

One important advantage of the GCS method over BI-GC is the absence of multiplication 

by the transpose. This is necessary when applying the linear iterative solver as an inner iteration 

of a Newton step to solve a nonlinear system of equations: F(X) =O. If the iterative method only 

. ul' l' . b h J b' . A aF th .. b threqUires m Up lCatIon y t e aco Ian matnx = ax en we can approXImate It y e 

Taylor's expansion: 

Av= F(x+ev)-F(x) 
e 

This kind of approximation can not be applied to approximate ATV and explicit evaluation of the 

jacobian is then required. 
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The main results in this paper are the derivation of the Lanczos Squared, the Conjugate 

Residual and Orthodir(2) Squared methods. The Lanczos squared forms the same tridiagonal 

matrix as the Biorthogonal Lanczos method. The need for multiplication by the matrix transpose 

has been eliminated. However we have not been able to use the "squared" directions to approxi­

mate the solution. This is beacuse unlike the Biorthogonal Lanczos the directions in the Lanczos 

Square are not part of a Biorthogonal sequence. Thus we have to compute the half of the 

Biorthogonal Lanczos directions at a cost of an additional matrix multiplication per iteration. The 

Biorthogonal Lanczos for solving linear systems is useful because its break down conditions are 

fewer than the Biconjugate Gradients method [17]. We have succeeded in squaring the Biconju­

gate Orthodir(2) method. This method has the same break down conditions as the Biorthogonal 

Lanczos method and has modest storage requirements. The Biorthogonal Lanczos needs to store 

m vectors in secondary memory in order to compute the solution iterate xm . 

In section 2 we describe Orthomin(k) and Orthodir(k) which are two generalizations of the 

Conjugate Residual method and can be used to obtain approximation to the solution of nonsym­

metric positive real linear systems. In section 3 we review the Biorthogonal methods, introduce 

the Biconjugate Orthodir(2) method and discuss conditions under which these methods converge. 

In section 4 we obtain the Lanczos and Orthodir(2) Squareds methods. In section 5 we present the 

ILU preconditioned versions of the Conjugate Gradient Squared and Conjugate Residual Squared 

and in section 6 we present numerical tests. 

2. Orthomin and Orthodir Method 

The CR (Conjugate Residual) applied to the SPD (Symmetric Positive Definite ) problem 

minimizes II ri+ll Ii along the direction Pi in order to determine the steplength aj in 

Also, Pi is made ATA-orthogonal to PH- Symmetry is used to obtain 
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n .• d fi . . 	 th (ri,APi) (ri,Arj). . . d
roslttve e mlteness IS necessary to guarantee at ai = ( ,A = (A ,A ) IS poSlttve an so 

APi Pi) Pi Pi 

there is progress towards the solution in every step. The orthogonality and the norm reducing pro­

perty of CR guarantee its convergence in at most n iterations. 

If A is nonsymmetric but definite then the norm reducing property of CR is still valid but 

the orthogonality only holds locally. That is Pi is guaranteed to be AT A -orthogonal only to PH' 

This shortcoming is ameliorated in some of the generalizations ofCR. 

Algorithm 2.1: (Nonsymmetric Generalization of CR ) 

xo,po=ro=j -Axo 

For i =0 Until Convergence Do 

Compute Pi+}' Api+l 

EndFor. 

Since (rj,Arj) ~ 0 the norms of the residuals is a decreasing sequence. The direction vectors must 

be constructed to significantly reduce the norm at each step. 

(i) Orthomin : 

i 

Pi+l =rj+1 +	"Lhbjpj 
j= 

j _ (Arj+l' Apj) . < . 
bj - (Apj. Apj) • J - 1. 

where j; = 0 for Orthomin(n) or Generalized Conjugate Resisual (CGR) and jj = max(O, i-k+1) 

for Orthomin(k), with k < It. We also need to compute the APi+1' This can be done either directly 
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or via the recursion 

i . 
APi+l = Ari+l + 'LbJApj (1) 

j=j; 

Note that the work for Orthomin(k) is (a) that of GCR, for j < k-l and (b) that of the (k-l)-th 

iteration ofGCR, for k-l Sj. 

Young and Jea [22] proposed another generalization by defining differently the direction 

vectors. Unlike GCR, Orthodir is guaranteed to converge even for nonsymmetric indefinite prob­

lems. 

(ii) Orthodir : 

i . 

Pi+l = APi + 'LbJPj 
j=j; 

(A2p. Ap.)b i _ I' J • < . 
j - (Apj' Apj) , ) - l. 

where h=0 for Orthodir and ji =max(O, i-k+l) for Orthodir(k). we need to compute the APi+l' 

This can be done either directly or via the recursion 

(2) 


The work for Orthodir(k) is (a) that of Orthodir, for j <k-l and (b) that of the (k-l)-th iteration 

ofOrthodir, for k-l '5.j. 

3. Biorthogonal Directions Methods 

Lanczos [13] introduced a Bi-orthogonal vector generation method and used it to approximate the 

eigenvalues of unsymmetric matrices. This method can also be used to solve unsymmetric and 

indefinite linear systems of equations. In this section we simply review the various formulations 

of the Biorthogonal Lanczos and Biconjugate Gradient Methods. 

Algorithm 3.1 The Hi-orthogonal Lanczos Method 
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b i =d l =0, Vo =Wo = 0 

For i =1, ... ,k Do 

1. 

2. 

3. a·I = (Av· w·) I' I 

5. 

6. 

EndFor 

The method breaks down if for some index the inner product (-0, w) is zero. If the method does 

not break down then the vectors vi. Wi are biorthononnal. A simple selection for bi• di is: 

The bi-orthogonal Lanczos method can be used to solve a linear system of equations. We select 

VI = II ~:II and WI =VI' Because of the biorthogonality we obtain: WmTAVm =Tm' where the tri­

diagonal matrix Tm = triag [di+h ai. bi+tl, with i = 1, ... ,m and Vm ~ [vI' ... , vm ], 

Wm = [WI,"" wm]. Now, the approximate solution to Ax =1 is given by: 

where Tm zm = Ilroll el' The residual norm can be obtained from the formula: 
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Next we describe the Biconjugate Gradient Method [9] which uses a recurrence for fonning 

the residuals and thus one does not need to store (in secondary memory) m direction vectors to 

compute Xm as in the Bi-orthogonal Lanczos case. 

Algorithm 3.2 The Biconjugate Gradients Method (BI-CG) 

Select ro and ro 

Take Po = roo Po ='0 
For i =1, ... ,k Do 

1. 

2. 

3. 

4. Pi+1 = ri+1 +hiPi 

5. 

6. 

EndFor 

The scalars ai and hi are selected to force respectively biorthogonality of the residuals {fit r;J and 

biconjugacy (with re~pect to the matrix A) of the directions {rio r;}. The following theorem [9] 

states the relationships of the vectors generated by the Biconjugate Gradients Method. 

Theorem 3.1: Provided that the Biconjugate Gradients Method does not break down, then for 

o5:j < i 



Proof: [9]. 

Remark 3.1: It follows from this theorem that the residual rm is zero for m =:;; N. where N is the 

dimension of A, provided that the method does not break down. 

Corollary 3.1: The scalars generated by the Biconjugate Gradients Method can be computed in 

one of the following ways provided that the method has not failed: 

b =_ (rj+l> Apj) = <'j+1' ri+1) = <Pi+t. ro)
j 

Wi. Api) (ri. ri) <Pi. ro) 

Proof: The first equalities are from theorem 3.1. The second and third equality for ai and the 

third equality for bj can be obtained from theorem 3.1 and the defining equations for Pi and rj. 

(r'+1 - r)
The second equality for bi needs aj '" 0 and Apj = I I •• 

aj 

The initial residual vector is ro =f - Axo. The choice of the conjugate residual vector ro 

varies. We can derive an algorithm similar to 3.2 which is the biconjugate version of the Conju~ 

gate Residual algorithm. This algorithm will be called the Biconjugate Residual method. 

Remark 3.2: The Biconjugate Residual (Bi-CR) method is a special case of the Biconjugate 

Gradients with initial biconjugate residual AT,O 

Proof: It can be easily checked that the biconjugate direction and residual will be 

AT-
Pi' 

where "0 and Po are as in the BI-CG method.• 

In general one can select"o =Mro where M is any square matrix. To obtain rj = Mrj. and Pi =MPi 

we need the following condition 

An interesting choice for M is A kT or A,(A T) a nonzero polynomial in A T. 
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We note that although the method does not break down for (ri' rj) =0 it becomes stationary 

because ri+l =rj and thus pj+l is a linear combination of (Pj, ... ,pol. We can modify algorithm 

3.2 so that it never becomes stationary and the break down conditions are the same as in algo­

rithm 3.1. This new algorithm is the biorthogonal version of the Orthogonal Directions (OD) 

algorithm derived by Fletcher [9J. Since the OD algorithm is essentially Orthodir(2) we name this 

algorithm the Biorthogonal Orthodir(2). 

Algorithm 3.3 The Biorthogonal Orthodir(2). (Bi-OD) 

Select, xo, ro and '0 
Take, Po =roo Po =ro. bo=O. 

For i =0 Until Convergence Do 

" (rj. A Tpi)
1. a·=-::---­

I (ATpi ,APi) 

2. 

3. 

4. 

5. 

6. 

- AT- - b­7. Pi+l = Pi - aiPi - JJi-l 

8. 

A T- ZT- AT- b T­9. 	 Pi+l =A Pi - ai Pi - jA Pi-l 

EndFor 

We note that this algorithm breaks down for any (A Tpi • Api) =O. This is also true of the Biconju­
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gate Residual method. However, this algorithm will never become stationary when some aj = O. 

The biconjugate residual vectors rj are not computed in this algorithm. The break. down condi­

tions of this algorithm are similar to the Biorthogonal Lanczos method. 

The following theorem is the analogue of Theorem 3.1 and also states that Biconjugate 

Residual is a special case of Biconjugate Orthodir(2). 

Theorem 3.2: The direction and the residual vectors in the Biconjugate Orthodir(2) satisfy the 

following relations. for j < i: 

(ri. 'j) = ('j. ATrj) = 0 

(A Tpj• Apj) =(Api' ATpj) = 0 

(ri. Apj) = ('i. A Tpj) = 0 

Also, if the Biconjugate Residual does not break. down it produces the same Xi iterates as the 

Biconjugate Orthodir(2). 

Proof: The biconjugacy relations can be easily proven by induction. For the last statement we 

must prove that in Bi-CR the directions and steplengths are the same as in Bi-Orthodir(2). If we 

use the equations Pi+l = 'i+l +biPi. 'i+l = 'i - ajApj and Pi = 'i +b j -lPi-l by eliminating the terms 

'i+l and 'j we obtain the expression: 

- 1 =Ap- - A'P- - II -P- 1 

for some parameters Ai' Iii. Similar equations can be obtained for pj+l' The parameters A;, Iii are 

determined by the biconjugacy relations of the direction vectors and so they are the same as in 

algorithm 3.2. The parameters aj are the same as the steplengths in Bi-CR from corrolary 3.1 . •. 

P1+ 1 1 1 1"'1 1­

The conditions for feasibility of the Biorthogonal Lanczos and Biconjugate Orthodir(2) 

methods can be expressed in terms of the matrices of moments of the initial residual '0- Let us 

consider the any vector u =P(A)vl' where p(A) is a polynomial of degree at most m-L Let us 

denote the space of polynomials with degree at m-l by Pm-J' The bilinear form 
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Cp, q) =(P(A)Vl. q(AT)WI) on the space Pm-l has all the properties of an inner product except the 

positive definiteness. Let us consider the question whether a sequence of orthogonal polynomials 

can be constructed with respect to this bilinear form. We need the following lemma, which can be 

found in [3]. 

Lemma 3.1: The first m orthogonal polynomials with respect to the above bilinear form can be 

constructed if and only if 

det(Mk):;tO, k=l •... ,m. 

. whereMk ={(A i+j-2v1 • WI)' i.j =1, ... ,k} is the a moments matrix .• 

This lemma has been used by Saad in [17] to obtain the conditions under which the 

Biorthogonal Lanczos and the Biconjugate Gradients methods give an approximate solution to 

the linear system of equations. 

Proposition 3.1: Let Mk and M'k be the moment matrices of dimension k with entries 

my =(A i+j-2v1 • VI) and my =(Ai+j-1Vl' VI) respectively. Then the approximate solution xm can be 

computed by the Biorthogonal Lanczos if and only if (i) holds and (ii) holds for only for k =m. 

Also. the first m steps of the Biconjugate Gradients method can be carried out if and only if (i) 

and (ii) hold for all k =1, ... ,m. 

(i) det(Mk ) :;t 0, k =1, ... ,m. 

(ii) 	 det(M'k) :;t 0. 1 ~ k ~ m. 

Proof: [17]. 

It follows from this proposition that the Biorthogonal Lanczos method is less likely to break 

down. However, it needs to store (in secondary memory) all the vectors VI ' ... , vm in order to 

compute the approximate solution Xm at termination of the iteration. This shortcoming is removed 

in the Biorthogonal Orthodir(2) method. The next proposition contains conditions under which 

this method will give the approximate solution in less than n iterations. 

Proposition 3.2: Let Mk be the moment matrices of dimension k with entries my == (Ai+jyo. Yo). 
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Then the Biorthogonal Orthodir(2) will produce the approximate solution xm if and only if 

(i) 	 det(Mk):f:. 0, k = 1, ... ,m. 

Proof: Since the method only breaks down if any of the denominators (ATih, APi) =0 using 

lemma 3.1 we obtain the result. • 

Since the "square " versions and the biorthogonal methods compute the same parameters they 

have the same break down conditions. 

4. 	The Lanczos and Orthodir(2) Squared 

In the first part of this section we will derive the Lanczos Square Method by squaring the 

Biorthogonal Lanczos method matrix polynomials and obtaining a simple recurrence equation for 

generating them. Since we have not succeeded in finding a way to approximate the solution to the 

linear system using these "squared" directions we will have to essentially compute the vectors 

Vj == {VI, ... , v"J of the Biorthogonal Lanczos in order to achieve this. This of course results in 

an additional matrix vector multiplication per iteration. However the there is no need to multiply 

by the transpose of the matrix. 

Let us use some notation for the matrix polynomials of the vectors in the Biorthognal Lanc­

zos (BI-L) method. We denote by $i(A)VI and 'l'i(AT)WI the vectors vi and wi respectively. We 

note that the parameters in BI-L can be expressed in terms of these polynomials: 

aj = (VI' A ($iW';)(A)wI) and h j = (VI' $i'l'j(A)WI), where the polynomial is scaled before comput­

ing ai. Therefore we must find a recursion to compute <I>j =$j'l'j and A<I>j. Multiplication of the 

polynomial $i and'l'j from equations 1. and 2. of algorithm 3.1 yield 

In order to be able to compute <D" recursively we need to compute recursively th ll( th ll('I'j't'i+l , 'I'i't'i+l' 
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>From 1. and 2. of algorithm 3.1 we obtain: 

9· 1=11-..\11. 1=(AII-.·\lI. - a·II-.·\II.) - d·II-.·\II· 11+ '+'1 't'1+ '+'1 't'l 1'+'1 't'l 1'+'1 't'1­

,,1 1 - 1 .
We note that we should scale <1>; by ,9;+1 by -b and 9;+1 by d' However SInce all 

b;+ld;+l ;+1 i+l 

the instances of 9 j+1 and 9 j+1 are multiplied by the reciprocals of the scale factors we can simply 

drop these scale factors. Also, since bj or di only appear in the form bid; we can assume that 

bj =dj • This could introduce complex arithmetic in the BI-CG case as bi might be imaginary but 

for LS only real arithmetic is needed. Then we also have 9(= 9;. Thus we obtain the foJlowing 

simplified expression 

A

<1>.t+1 = (A - a·)
2

<1>.I - 2(A - a·)9·I + b·
2

<1>.1- (4.1)I 1 I 1 

and 

9· 1= (A<I>· - a·<I>·) - 9· (4.2)t+ 1 I 1 I 

We next present the Lanczos Squared method at first in polynomial form then in vector form. The 

inner product [C\>, \jf] with the matrix polynomials ( in A ) C\> and \jI stands for the inner product 

Algorithm 4.1 The Lanczos Squared (LS) Method 

For i = 1, ... ,k Do 


aj=[l,A<I>d 


Y.I =AY·I 


&. 1 = y. - a·Y·-2(S· - a·9·) + A.<I>.
t+ I I I I I I PI I 
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<l»i+l 

<l>j+l =-R­


I-'i+l 


EndFor 

Let us use the notation Uj and Uj for the (un)scaled vector forms of <l>j(A). Also, Pi, qj denote 

A<I>j(A), EVA). We then have the following vector form of the LS method. 

Algorithm 4.2 The Lanczos Squared (LS) Method 

b1 =d1 =0, vo=wo=O 

For i =1, ... ,k Do 

Yj =pj - ajUi 

U'+1I =p.I - a·y·I - 2(z· - a·q·)I + R·1-'1 U· I I I I 

EndFor 



We note that this algorithm only generated the same tridiagonal matrix Tm of the Biorthog~ 

onal Lanclos method without use of the transpose of the matrix A. The vectors Uj = <I)(A)jVl are 

the in polynomial form the "squares" of the LanClos vectors Vj = <p(A)jvI' as <l)j = <p2. Since the 

vectors Uj, Ui are not biorthogonal it does not seem easy to defme the vector Zm so that 

Xm = Xo + UmZm is an approximation to the solution ofthe linear system. Therefore the only way 

to obtain the solution is by actually forming the vectors {VI •..•• vm} of the Biorthogonal Lanc~ 

lOS, for an additional matrix vector product per iteration. The vectors (WI,' ..•wmJ are only 

required for forming the tridiagonal matrix Tm. However. this method is exactly the Biorthogonal 

LanClos with the need to multiply by the matrix transpose removed. 

We next square the Biconjugate Orthodir(2) method. Let us use the notation Pi = <Pi(A),o, 

tively. Now squaring the direction matrix polynomial is the same as in Lanclos Square and gives 

the equations (4.1) and (4.2) above. Squaring the residual equation gives 

'Pi+1 == 'IIj~1 = 'V? +alA 2(1)j - 2ajAej• 

where 8 j = 'IIj<pj. To compute ej we need the following three recurrence equations: 

t).. 1=\1(. Im·=f)·-a.A<I).
H - 'I'H '1'1 1 1 1 

t)..H t=\'f.-
m·+t =A8·-b·8·-c·t).·1 1'1'1'1'1 1 1 I 

The result from multiplying the polynomial form ofpj+l' 'i+1 by equation 2. and Pi by equation 6. 

of algorithm 3.3. Now we formulate the polynomial form of the Orthodir(2) square algorittun. 

Algorithm 3.3 Orthodir(2) Square. 

Select. xo. '0 and '0 

Take, bo == 0, 8 0 =(1)0 =1, eo == I . 
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For i = 0 Until Convergence Do 


[AT e.] 

A • ta·= 

t [1 .A2et>d 

[AT, A2et>d 

ci = 2 


[1 .A et>i-l ] 

et>'+1 = (A - b·)2<1).t - 2c·(A - b·)e· +c· 1t t 
2et>.t ttl 1­

d'1+1 =e· - a-Aet>·til 

A'+l =Ae· -b·e· - c·d·lit t I I 

EndFor 

The algorithm needs four matrix vector products per iteration these are: Aet>i,A~i,Aei,Aej. 

Also, it needs one multiplication by the matrix transpose in the first step. This can be removed by 

adding an additional matrix vector product per iteration. One could reduce the matrix vector pro­

ducts to just two per iteration by introducing additional vector updates. The approximation to the 

solution is given by: 

x· 1 =x· -a·(a-AcI>· -2e.}ro1+ tit t I 

In summary Orthodir(2) squared has three attractive properties: (i) It has the fast convergence. 

That is the residual polynomial is the square of the residual polynomial of Bi-Orthodir(2). (ii) It 

has modest storage requirements. (iii) It has the same break down conditions as the Bi-Lanczos 

method. It is easy to construct the vector fonn of this algorithm. We will not do it here since we 

have included any implementation results. 
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5. Preconditioned Methods 

For the preconditioning matrix Pr, we look for matrices such that 

PrA::::I 

and the linear system Pr x = y must be easy to solve. One natural choice is the Incomplete LV 

factorization, which is the same as LV factorization, except that the resulting L and U matrices 

keep the original sparsity pattern to facilitate the solution of LUx = y. Let Nz(A) denote the set 

of pairs of [i,j] for which the entries aij of the matrix A are nonzero, the nonzero pattern of A. 

Algorithm 5.1: The Incomplete LV Factorization. 

For i= 1 step 1 Until N Do 


For j = i+ 1 step 1 Until N Do 


If ( (i,j) belongs to NZ(A») then 


min(ij)-l 
sij=Aij- L LjtUtj 

t=1 

If(i>J') then L .. =s··- !/ IJ 

Sij
If ( i < J' ) then U·· = ­

II L .. 
II 

EndIf 


Endfor 


Endfor 


We next present the Orthomin(k), CGS and CRS algorithms with right preconditioning. That 

is we are solving the transformed linear system [AQ-l JQx =J. We are using the notation 

Pr==Q-l, The Orthomin(k) method with right preconditioning minimizes the nOIm of the 

residual error over a Krylov space at each iteration, Thus it is easier to monitor the conver­

gence. 
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Algorithm 5.2: Orthomin(k) 

Po = '0 =f - Axo 

For i = °step 1 Until Convergence Do 

('i ,Api) 
a·=----­

t (A Pi ,A Pi) 

i . 

Pi+l =Pr 'i+l + 'L b/ Pj' 

j=ji 


i . 
Api+l =A Pr ';+1 + 'Lbj Apj' withji =min(O, i-k+l). 


j=jl 


Endfor 

Vector Operations (addition and multiplication) per iteration are (6k+ lO)N + 1 Mv + 1 

Wprec, where Mv stands for Matrix-vector product and Wprec is the preconditioning work. 

We present next the COS method with right preconditioning as it appears in [19]. 

Algorithm 5.3: Conjugate Gradient Squared (CGS) 

ro =f - Axo, qo = P-l = 0, P-l =1 

For i = 0 step 1 Until Convergence Do 

pj
Pi =(ro, 'j) , ~i =- ­

Pi-I 

u·tiP,=r. + R.qI. 

Vj =A PrPi' 
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Pi(X-=­
I cr­

I 

Endfor 

The vector operations per iteration are 19N + 2 Mv + 2 Wprec, where Mv stands for matrix-

vector product, Wprec preconditioning work. 

>From remark 3.2 it follows that we can obtain the CRS method from the COS method by 

simply computing differently the parameters: crj. Pj. These parameters for CRS are: 

(Jj = (AT ro, Vi) and Pi = (ATroo ri) . Thus if the matrix transpose is available CRS simply has one 

additional matrix vector operation in the first iteration. Otherwise we have to compute these 

parameters as; crj = (ro, AVj) and Pi = (ro. Ari)' Then this introduces two additional matrix vector 

products per iteration. This form of CRS appear in [16]. We can reduce the matrix vector pro­

ducts to two per iteration by using additional vector updates. This is done in the preconditioned 

fonn of CRS that we present next. 

Algorithm 5.3: Conjugate Residual Squared (CRS) 

ro=Axo - f. qo=P-t =0. P-t = 1 

For i =0 step 1 Until Convergence Do 
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Pi 
0;.=­

I a. 
I 

Endfor 


In the next section we present numerical test comparing these three methods. 


6. Numerical Tests 

We have discretized four boundary value problems in partial differential equations on a 

square or rectangular region by the method of finite differences. The first problem is a standard 

elliptic test problem which can be found in [8] and the right hand side function is constructed so 

that the analytic solution is known. The other three problems have been used by Sonneveld in 

[19] for testing CGS. 

Problem (I) 

-(b(x,y)ux)x-(c(x,y)uy)y + (d(x,y) u)x + (e(x,y) u.~/ f(x,y) u = g(x,y) t 

n = (0,1) x (0,1) 

where b(x,y) =e-XY ,c(x,y) =~(x+y), d(x,y) =~(x+y)e-XY 

1 
e(x,y)=y(x+y),f(x,y)= (l+xy) , 



·21· 


U(x,y) =xeXYsin(1ty)sin(1ty), 

with Dirichlet boundary condition and g(x,y) the corresponding right hand side function. By con­

trolling "( and p, we could change the degree of nonsymmetry. In this report, we set 

"(= 50.0, P= 1.0. We have used the five point difference operator for the Laplacian, central 

difference for the first derivative. For initial value, we have chosen xCi) = 0.5*mod(i,50)110.0 

Problem (II) (Convection-Diffusion) 

-e(uxx + Uyy ) + cos(a)ux + sin (a)uy =0 

u(x,y)=x2 +i on an 
n =(0,1) x (0,1) 

We have used the five point difference operator for the Laplacian, central difference scheme for 

the first derivative. For small e values, we might need to use upwind difference scheme forthe 

first derivative to maintain diagonal dominance In our experiment a =0.5 and e = 0.1. For initial 

guess, we have chosen x(i)=O.5*mod(i,50)1l0. 

Problem (III) (Berkeley) 

0=(-1,1) * (0,1) 


u(x,y) = 0, x =-1 


u(x,y)=O,x=1 


u(x,y) =0, Y =1 


u(x,O) =1 + tanh (lO(2x+l» , y =0, -lSx:::;O 


au an =0, y=O. OSx:::;1 

We have used five point difference operator for the Laplacian and central difference for the first 

derivative. For small E values, we might need to use upwind difference scheme for the first 

derivative to maintain diagonal dominance, but in our experiment of e = 0.1. For initial value, we 
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have chosen x U)=o.5*mod(i .50)/10. 

Problem (IV) 

n=(O,l)x (0,1) 

where 

u(x,y) =e(x+y) +x2(1-x)21n (1+y2) 

with Dirichlet boundary condition, f(x,y) the corresponding right hand side. We have used five 

point difference operator for the Laplacian. central difference for the first derivative. For initial 

value, we have chosen x(i)=O.5*mod(i ,50)110. 

The preconditioning we have chosen is the ILU(5) preconditioning with in vector form 

similar to [20]. The number of vector floating point operations per iteration for the three method 

(without/with) preconditioning. (i) Orthomin(4): 43/56 , (ii) CGS 37/62, (iii) CRS 37/62. We 

present a table for the three methods containing the number of iterations (without/with) precondi­

tioning for each of the four problems. The number of interior nodes for the discretization was 

chosen nx = 128 in the x-dimension and ny = 128 in the y-dimension except for problem (III) 

where ny = 64. The stopping criterion was the norm of the residual error less than 10-6. We also, 

present four plots with the residual error norm versus the vector floating point operations for the 

three methods with preconditioning. 

7. Conclusions 

We have introduced the Lanczos Squared. Conjugate Residual Squared and Orthodir(2) 

Squared methods. We studied theoretically the conditions under which these methods do not fail. 

We showed that CRS is a special case of the CGS method. It turns out the Orthodir(2) Squared 

has the most attractive properties of all these methods. It has the fast convergence of CGS, it has 

limited storage requirements, and it has the fewest break down conditions. Since we have not yet 

implemented the Orthodir(2) Squared we can not comment on its stability properties. The numer­



- 23­

ical experiment of Orthomin(k). CGS. CRS show that the last two methods are more efficient 

than Orthomin(k). Also. CRS seems to perform a little better than CGS. As future work we intend 

to implement the Orthodir(2) Squared and compare to the other methods in particular for prob­

lems when these methods seem to break down. 
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Problem (I) (II) (III) (IV) 
Orthomin(4) 

COS 
CRS 

392/111 
275/56 
275/56 

707/167 
212n3 
212n2 

323/99 
205/72 
207/64 

378/112 
225ns 
216/65 

Table 1. Number ofIterations for the (without/with) ILU(5), for to1.=10-6. 
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Fig. 1 Problem (I) 
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Fig. 2 Problem (II) 
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Fig. 3 Problem (III) 
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Fig. 4 Problem (IV) 


