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SUMMARY

Distributed computing systems are a viable and less expensive alternative to parallel computers.
However, a serious difficulty in concurrent programming of a distributed system is how to deal
with scheduling and load balancing of such a system which may consist of heterogeneous computers.
Some distributed scheduling schemes suitable for parallel loops with independent iterations on
heterogeneous computer clusters have been designed in the past. In this work we study self-scheduling
schemes for parallel loops with independent iterations which have been applied to multiprocessor systems
in the past. We extend one important scheme of this type to a distributed version suitable for heterogeneous
distributed systems. We implement our new scheme on a network of computers and make performance
comparisons with other existing schemes. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Loops are one of the largest sources of parallelism in scientific programs. If the iterations of a
loop have no interdependencies, each iteration can be considered as a task and can be scheduled
independently. A review of important loop-scheduling algorithms for parallel computers is presented
in [1] (and references therein) and some recent results are presented in [2,3]. Research results also exist

∗Correspondence to: Anthony T. Chronopoulos, Department of Computer Science, University of Texas at San Antonio,
6900 N. Loop 1604 West, San Antonio, TX 78249, U.S.A.
†E-mail: atc@cs.utsa.edu

Contract/grant sponsor: National Science Foundation; contract/grant number: CCR-0312323

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 30 June 2004

Revised 19 March 2005
Accepted 29 March 2005



A. T. CHRONOPOULOS ET AL.

on scheduling loops and linear algebra data parallel computations on message-passing parallel systems
and on heterogeneous systems; see [4–19].

Loops can be scheduled statically at compile-time. This type of scheduling has the advantage of
minimizing the scheduling time overhead, but it may cause load imbalancing when the loop is not
uniformly distributed. Examples of such scheduling are block, cyclic, etc. [1]. Dynamic scheduling
adapts the assigned number of iterations whenever the size of the loop tasks are not known in advance.
An important class of dynamic scheduling are the self-scheduling schemes [1]. In these schemes,
each idle processor accesses a few loop iterations to execute next. In parallel computer systems, these
schemes can be implemented using a critical section for the processors to access the loop iteration index
as a shared variable. This is why these schemes are called self-scheduling schemes. On distributed
systems we can implement these schemes (as shown later) using a master–slave model.

Heterogeneous systems are characterized by heterogeneity and large number of processors.
Some distributed schemes that take into account the characteristics of the different components of
the heterogeneous system have devised in the past, for example: (1) tree scheduling; and (2) weighted
factoring (see [12,14]).

In Section 2, we review loop distributions and simple parallel loop self-scheduling schemes.
In Section 3, we present distributed self-scheduling schemes. In Section 4, an implementation, results
and comparisons are presented. In Section 5, conclusions are drawn.

Notation

The following is a list of common notation used throughout the paper.

• PE (processor element) is a processor in the parallel or heterogeneous system.
• I is the total number of iterations of a parallel loop.
• p is the number of slave PEs in the parallel or heterogeneous system which execute the

computational tasks.
• P1, P2, . . . , Pp represent the p slave PEs in the system.
• N is the number of scheduling steps (equal to the total number of chunks).
• A few consecutive iterations are called a chunk. Ci is the ith chunk size (where i = 1, 2, . . . , N).

The ith chunk is assigned to the slave PE making the ith request.
• tj , j = 1, . . . , p, is the execution time of Pj to finish all the tasks assigned to it by the scheduling

scheme.
• Tp = maxj=1,...,p (tj ), is the parallel execution time of the loop on p slave PEs.

2. REVIEW OF LOOP SELF-SCHEDULING SCHEMES FOR HOMOGENEOUS
PARALLEL COMPUTERS

2.1. Parallel loop distributions

A loop is called a parallel loop if there are no dependencies among iterations, i.e. iterations
can be executed in any order or even simultaneously. Parallel loops may be presented in any of
the loop styles shown below. L(i) represents the execution time for iteration i (see also [20]).

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



DISTRIBUTED LOOP-SCHEDULING

A parallel loop is uniformly distributed if the execution times of all iterations are the same, i.e. the
iterations have the same L(i). The following is an example where the same instruction is executed in
each iteration:

DOALL K = 1 TO I
X[K] = X[K] + A

END DOALL

The following code fragments corresponds to linearly distributed loops (increasing and decreasing,
respectively):

/* increasing */
DOALL K = 1 TO I

Serial DO J = 1 TO K
Serial Loop Body

End Serial DO
END DOALL

/* decreasing */
DOALL K = 1 TO I

Serial DO J = 1 TO I-K+1
Serial Loop Body

End Serial DO
END DOALL

A conditional loop, which may result from IF statements is presented below:

DOALL K = 1 TO I
IF(Expression1) THEN

Block1
ELSE

Block2
ENDIF

END DOALL

Figure 1 gives an example of an irregular loop style representing the loop distribution required by
the Mandelbrot set computation (see [21]).

The loop style can be manipulated in order to make it easier to schedule for parallel execution.
For example, there are parallelizing compiler techniques [22], such as loop splitting, expression
splitting, loop interchange and loop collapsing, which are used for this purpose.

The greater the availability of information about the loop style, the easier it is to load balance
the computation in an efficient manner. The simplest loops for scheduling are those for which the
required amount of computation for each iteration is known at compile-time. Another class of loops
are the predictable loops for which we cannot determine the iteration sizes, but they can be ordered.
The most difficult class of loops are the irregular loops that cannot be ordered. This class of loops is the
most severe test for a scheduling scheme. We use, in our tests, the Mandelbrot fractal computation
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(a) (b)

Figure 1. Mandelbrot Set: (a) original (L(i) = number of computations for ith iteration); and (b) reordered
distribution (L(i1) = number of iterations for i1th iteration).

algorithm [21] on the domain [−2.0, 1.25] × [−1.25, 1.25], for different window sizes (for example,
4000 × 2000, 5000 × 2000, and so on). The algorithm uses unpredictable irregular loops.

We use a sampling technique (or cyclic distribution) to reorder loop iterations so that the loop
appears more uniform. For a loop with I iterations, a sampling frequency Sf is given. We sample
the loop Sf times, taking first the iterations whose index i satisfies i mod Sf = 0, then the iterations
with i mod Sf = 1, and so on. After sampling, the Sf samples are placed in a sequence. Since no data
dependency is assumed between iterations, computing the sampled loops will produce the same result
as the original. If one sampling is treated as a task, then for some loops we obtain an almost uniform
distribution of tasks.

Figure 1 shows the loop distribution for the Mandelbrot set computation, in its original form, and
in the reordered form with a Sf = 4. The picture corresponds to a window size of 1200 × 1200.
The X coordinate holds the iteration (column) number, and the Y coordinate shows the number of
basic computations associated with that column (ranging from 1200 to 56 000).

In our tests, the computation of one column is considered the smallest unit that can be scheduled
independently (i.e. a task). Thus, every iteration corresponds to the computation of the data associated
with one column. Because of this, the tasks are still not uniformly distributed, but they seem more
uniform than if no reordering were taking place.

2.2. Simple loop-scheduling schemes

Self-scheduling is an automatic loop-scheduling method in which idle PEs request new loop iterations
to be assigned to them. We study these methods from the perspective of heterogeneous systems.
For this, we use the master–slave architecture model (Figure 2). Idle slave PEs communicate a request
to the master for new loop iterations. The number of iterations a PE should be assigned is an important
issue. Due to PEs heterogeneity and communication overhead, assigning the wrong PE a large number
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Figure 2. Self-scheduling schemes: the master–slave model.

of iterations at the wrong time, may cause load imbalancing. Also, assigning a small number of
iterations may cause too much communication and scheduling overhead.

In a generic self-scheduling scheme, at the ith scheduling step, the master computes the chunk size
Ci and the remaining number of tasks Ri :

R0 = I, Ci = f (Ri−1, p), Ri = Ri−1 − Ci (1)

where f (·, ·) is a function possibly of more inputs than just Ri−1 and p. Then the master assigns Ci

tasks to a slave PE. Imbalance depends on the execution time difference between tj , for j = 1, . . . , p.
This difference may be large if the first chunk is too large. There is a detailed theoretical analysis of
these schemes in [15]. Amongst other results, it is shown that trapezoid self-scheduling (TSS) performs
better than guided self-scheduling (GSS) with loops of varying task sizes.

The different ways to compute Ci has given rise to different scheduling schemes. The most notable
examples are the following.

• Trapezoid self-scheduling (TSS) [20] Ci = Ci−1 − D, with (chunk) decrement D = �(F −
L)/(N −1)�, where the first and last chunk-sizes (F,L) are user/compiler-input or F = �I/2p�,
L = 1. The number of scheduling steps assigned is N = �2 ∗ I/(F + L)�. Note that
CN = F − (N − 1)D and CN ≥ 1 due to integer divisions.

• Chunk self-scheduling (CSS) Ci = k, where k ≥ 1 (known as the chunk size and is chosen by
the user). For k = 1, CSS is the so-called (pure) self-scheduling. Weaknesses include increased
chance of load imbalance due to the difficulty in predicting an optimal k and that it is non-
adaptive. Its strengths include reduced communication/scheduling overheads.

• Guided self-scheduling (GSS) [23,24] Ci = �Ri−1/p�. The weaknesses of this method is
that too many small chunks are assigned to the last steps. Its strength is that it is adaptive.
Having large chunks initially implies reduced communication/scheduling overheads in the
beginning. A modified version GSS(k) with minimum assigned chunk size k (chosen by the
user) attempts to improve on the weaknesses of GSS.

Example 1. We show the chunk sizes selected by the self-scheduling schemes discussed above. Table I
shows the different chunk sizes for a problem with I = 1000 and p = 4. S stands for the static
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Table I. Sample chunk sizes for I = 1000 and p = 4.

Scheme Chunk size

S 250 250 250 250
SS 1 1 1 1 1 . . .
CSS k k k k k . . .
GSS 250 188 141 106 79 59 45 33 25 19 14 11 8 6 4 3 3 2 1 1 1 1
TSS 125 117 109 101 93 85 77 69 61 53 45 37 29 21 13 5

scheduling scheme, which divides all of the iterations equally between the number of PEs. For CSS,
k represents the fixed chunk size.

3. LOOP-SCHEDULING SCHEMES FOR DISTRIBUTED SYSTEMS

Load balancing in distributed systems is a very important factor in achieving near-optimal execution
time. To offer load balancing, loop-scheduling schemes must take into account the processing speeds
of the computers forming the system. The PE speeds are not precise, since memory, cache structure and
even the program type will affect the performance of PEs. However, one must run simulations to obtain
estimates of the throughputs and one must show that these schemes are quite effective in practice.

One characteristic of the distributed systems is their heterogeneity. The load-balancing methods
adapted to distributed environments usually take into account the processing speeds of the computers
forming the cluster. The relative computing powers are used as weights that scale the size of the sub-
problem each process is assigned to compute. This is sometimes shown to significantly improve the
total execution time when a heterogeneous computing environment is used.

3.1. Tree scheduling (TreeS)

TreeS [10,14] is a distributed load-balancing scheme that statically arranges the processors in a logical
communication topology based on the computing powers of the processors involved.

When a processor becomes idle, it asks for work from a single, pre-defined partner (its neighbor on
the left). Half of the work of this processor will then migrate to the idling processor. Figure 3 shows
the communication topology created by TreeS for a cluster of four processors. Note that P0 is needed
for the initial task allocation and the final input/output (I/O). For example, P0 can be the same as the
fastest Pi .

An idle processor will always receive work from the neighbor located on its left side, and a busy
processor will always send work to the processor on its right. For example, in Figure 3, when P2 is
idle, it will request half of the load of P1. Similarly, when P3 is idle, it will request half of load of P2,
and so on. The main success of TreeS is the distributed communication, which leads to good scalability.

Note that in the heterogeneous system there is still the need for a central processor which initially
distributes the work and collects the results at the end, unless the problem is of such a nature that the
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Figure 3. The tree topology for load balancing.

final results are not needed for I/O. Thus, the master–slave model still has to be used initially and at
the end.

The main disadvantage of this scheme is its sensitivity to the variation in computing power.
The communication topology is statically created, and might not be valid after the algorithm starts
executing. If, for example, a PE which was known to be very powerful becomes severely overloaded
by other applications, its role of taking over the excess work of the slower processors is impaired.
This means that the excess work has to travel more until reaching an idle processors or that more work
will be done by slow processors, producing a large finish time for the problem.

3.2. Derivation of a distributed self-scheduling

We apply our model to TSS, which we then call distributed trapezoid self-scheduling (DTSS) [8].
The same model can be used with other self-scheduling schemes.

Terminology

• Ui,j : the load to be assigned to a single virtual PE j (where j = 1, . . . , Ai) of computer Pi .
• Ci : the next chunk size for PE Pi .
• Vi is the virtual power of Pi (e.g. Vi = 1 for the slowest PE).
• V = ∑p

i=1 Vi is the total virtual computing power of the cluster.
• Qi is the number of processes in the run-queue of Pi , reflecting the total load of Pi .
• Ai = �Vi/Qi� is the available computing power (ACP) of Pi (needed when the loop is executed

in non-dedicated mode).
• A = ∑p

i=1 Ai is the total ACP of the cluster.
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We apply the TSS (see [20] for details) to the set of available virtual PEs in order to obtain the chunk
sizes in DTSS. Let I , F , L, D be as defined for TSS in Section 2. The programmer may determine
the pair (F,L), according to TSS; or the following formula may be used in the conservative selection
approach (by default):

F = I/2A, L = 1 (2)

Then, the proposed number of steps needed for the scheduling process (according to the virtual
computing power) is

N = 2I/(F + L) (3)

the step decrease for each task assignment is

D = (F − L)/(N − 1) (4)

We apply TSS to each virtual processor to derive the chunk size for each PE with available computing
power Ai > 0. For i = 1

U1,1 = F (5)

and for 1 < j ≤ A1,
U1,j = F − D ∗ (j − 1) (6)

Therefore,

C1 =
A1∑

j=1

U1,j = F ∗ A1 − D ∗
A1∑

j=1

(j − 1) (7)

which gives

C1 = A1 ∗ F − D ∗ A1 ∗ (A1 − 1)/2 = A1 ∗ (F − D ∗ (A1 − 1)/2) (8)

For i > 1 and 1 ≤ j ≤ Ai

Ui,j = F − D ∗ (A1 + · · · + Ai−1 + j − 1) (9)

Let Si−1 = A1 + · · · + Ai−1, then

Ci =
Ai∑

j=1

Ui,j = F ∗Ai − D ∗Ai ∗ (Si−1 + (Ai − 1)/2) = Ai ∗ (F − D ∗ (Si−1 + (Ai − 1)/2)) (10)

Remark. When all the PEs are dedicated to a single process, then Ai = Vi . Also, when all the PEs have
the same speed, then Vi = 1 and the tasks assigned in DTSS are the same as in TSS. The important
difference between DTSS and TSS is that in DTSS we allocate the next chunk according to a PE’s ACP,
but in TSS all PEs are simply treated in the same way. Thus, in DTSS faster PEs get more iterations
than slower PEs.

3.3. DTSS

The assumption is made that a process running on a computer will take an equal share of its computing
resources. Even if this is not entirely true, other factors being neglected (memory, process priority,
program type), this simple model appears to be useful and efficient in practice. Note that at the time Ai

is computed, the parallel loop process is already running on the computer. For example, if a processor
Pi with Vi = 2 has an extra process running, then Ai = 2/2 = 1, which means that Pi behaves just
like the slowest processor in the system. The DTSS algorithm is described as follows.
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Master

1. (a) Wait for all workers with Ai > 0 to report their Ai ; sort Ai in decreasing order and store
them in a ACP status array (ACPSA). For each Ai , place a request in a queue in the sorted order.
(b) Calculate A. Use p = A to obtain F,L,N,D as in TSS.

2. (a) While there are unassigned iterations, if a request arrives, put it in the queue and store the
newly received Ai if it is different from the ACPSA entry.
(b) Pick a request from the queue, assign the next chunk with Ci = Ai ∗ (F − D ∗ (Si−1 +
(Ai − 1)/2)), where Si−1 = A1 + · · · + Ai−1 (see [8]).
(c) If more than half of the Ai have changed since the last time, update the ACPSA and go to
step 1(b), with total number of iterations I set equal to the number of remaining iterations.

Slave

1. Obtain the number of processes in the run-queue Qi and recalculate Ai . If (Ai > 0) goto step 2.
Else goto step 1.

2. Send a request (containing its Ai) to the coordinator.
3. Wait for a reply; if more tasks arrive

{compute the new tasks; go to step 1;}
Else terminate.

Remarks. (1) To determine chunk sizes, DTSS now applies the same technique as TSS [20], but using
A instead of p. Each idle processor will be assigned a number of iterations according to its power.
(2) To adjust the algorithm for the dynamic changes in the running queues of the processors, DTSS
proposes that the slave PEs report their Ai with every request for work to the master. The master recom-
putes the scheduling parameters each time more than half of the Ai have changed. This will ensure good
performance when computer loads change unexpectedly (e.g. a new user logs into the system and starts
a computational resources expensive task on some of the processors). This adjustment can be viewed
as a change in the slope of the trapezoid function according to the up-to-date state of the system.

4. IMPLEMENTATION AND TEST RESULTS

4.1. Implementation

Our implementation relies on the distributed programming framework offered by the mpich.1.2.0
implementation of the message-passing interface (MPI) [25].

The slave PEs will attach (piggy-back) to every request, except the first, the result of the computation
due to the previous request. This improves the communication efficiency. An alternative we tested
was to perform the collection of data at the end of the computation (the slave PEs stored the results
of their requests locally). This technique produced longer finishing times because when all of the
slave PEs finished, they seem to contend for master access in order to send their results. During this
process, they will have to idle instead of doing useful work. By piggy-backing the data produced by
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the previous request to the actual request we achieve some degree of overlapping of computation and
communication. There will be still some contention for the master access, but mostly the slave PEs will
work on their requests while few slave PEs communicate data to the master.

The implementation for TreeS [14] is different. The PEs do not contend for a central processor when
making requests because they have pre-defined partners. However, the data still have to be collected on
a single central processor. When we used the approach described above (sending all the results at the
end of the computation), we observed a lot of idling time for the PEs, thus degrading the performance.
We also implemented an alternative: the PEs send their results to the central coordinator (master) from
time to time, at predefined time intervals. The contention for the master cannot be totally eliminated,
but this appears to be a good solution.

The distributed system consisted of nine computers, one of them being assigned the role of master.
We wanted to test the behavior of these schemes in a heterogeneous computing environment. So, we
put an artificial load (a continuously running matrix multiplication process on 100 × 100 matrices) on
half of the PEs on a homogeneous system. Then the PEs are in two subsets (each containing half of all
the machines): (i) machines with three loads, which are assumed to have a virtual power of one; and
(ii) machines with no load, which are assumed to have a virtual power of four. This was verified by
timing any program running on a single machine of type (i) or (ii) above. The actual machines used
were Sun Blade 100 with 502 MHz CPU speed and 512 MB of physical memory. The machines are
connected by an Ethernet bus. The bus bandwidth is equal to 100 Mbits/s.

We present two cases, dedicated and non-dedicated. In the dedicated case, processors are dedicated
to running our program and their loads do not change during the execution of our program. Recall that
half of the PEs are fast and half are slow. In the non-dedicated case, we started three continuously
running processes (doing matrix multiplication on 100 × 100 matrices) on half of the fast PEs in the
middle of the application program execution. After doing this the fast PEs become overloaded and their
virtual power is equal to one. Thus, 3p/4 of the PEs have a virtual power of one and p/4 of the PEs
have a virtual power four.

We ran TSS (dedicated), DTSS ((non-)dedicated) and TreeS ((non-)dedicated). We also ran DTSS
and TreeS (dedicated) for p = 1, 2, 4, 8, 16 PEs in order to compute the speedup. Recall that, in the
dedicated case, half of the PEs have a virtual power of four and the other half have a virtual power
of one. In order to plot the speedup curve, we consider each fast PE in the system as a single virtual
processor and the slow PEs are considered to be fractions of one virtual processor. For example, if we
have 16 PEs, half with virtual power four and half with virtual power one, then the total number of
virtual processors (Vp) equals 10 (= 8 × 1 + 8 × 0.25). We computed the speedup according to the
following equation:

Sp = min{Tp1, Tp2, . . . , Tpp }
Tp

(11)

where Tpi is the execution time on one PE and Tp is the execution time on p PEs. However, in the
plotting of Sp, we use Vp instead of p on the x-axis.

4.2. Test problems

We use the Mandelbrot computation for a window size of 6000 × 4000 [21], the Jacobi method
computation for a size of 5000 × 5000, and the Gaussian elimination for a size of 2000 × 2000,
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on a system consisting of eight heterogeneous slave machines and one master. The computation of
one column of the Mandelbrot matrix is considered the smallest schedulable unit. We reordered the
loop with Sf = 4. For the master–slave schemes, the master accepts requests from the slave PEs and
services them in the order of their arrival. It replies to each request with a pair of numbers representing
the interval of iterations the slave PE should work on. For the TreeS, the master assigns a number
of tasks to the PEs (according to their virtual power) in the initial allocation stage. We next give the
pseudocodes for the Jacobi and Gaussian elimination problems.

/* Jacobi */
Serial DO K = 1, MAXITER

DOALL I = 1, N
X[K][I] = b[I]
Serial DO J = 1, I-1

X[K+1][I] = X[K][I] - A[I][J]*X[K][J]
End Serial DO
Serial DO J = I+1, N

X[K+1][I] = X[K][I] - A[I][J]*X[K][J]
End Serial DO
X[K+1][I] = X[K+1][I]/A[I][I]
IF ‘CONVERGED’ THEN

EXIT
ENDIF

END DOALL
End Serial DO

/* Gaussian Elimination */
Serial DO K = 2, N

DOALL I = K, N
Serial DO J = K-1, N+1
A[I][J] = A[I][J] - A[K-1][J]*A[I][K-1]/A[K-1][K-1]
End Serial DO

END DOALL
End Serial DO

The outermost loop in these pseudocodes is serial and it is controlled by the master, which assigns
chunks of the parallel loop to the slave PEs.

4.3. Results

Tables II–V show the results. The times (computation/communication) of the slave PEs are tabulated
for eight PEs. Tp is the total parallel time measured on the master PE. Tp includes the sum of
communication times of all PEs (because a single shared Ethernet bus is used), the concurrent PE
computation times and any PE idle times.
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Table II. Mandelbrot computation, dedicated case,
p = 8; PEi : Tcomp/Tcom (in seconds).

PE TSS DTSS TreeS

1 42.4/1.2 18.3/0.5 17.2/0.4
2 44.0/1.4 19.6/0.5 25.5/0.6
3 51.5/1.1 19.5/0.5 24.9/0.6
4 14.2/1.3 19.1/0.5 21.8/0.7
5 13.4/1.2 22.3/1.8 18.0/1.4
6 13.6/1.6 21.2/1.6 18.0/1.0
7 14.3/0.8 16.1/1.7 18.5/1.0
8 13.5/1.9 16.5/1.7 17.0/1.6
Tp 53.1 28.0 32.8

Table III. Mandelbrot computation,
non-dedicated case, p = 8; PEi :

Tcomp/Tcom (in seconds).

PE DTSS TreeS

1 26.0/0.6 17.3/0.7
2 25.8/0.9 28.2/0.8
3 25.3/1.2 53.0/0.5
4 26.0/0.8 21.9/0.7
5 25.3/1.7 20.8/1.1
6 27.3/0.8 70.8/2.0
7 28.1/1.5 20.7/1.0
8 25.6/2.0 17.8/1.0
Tp 39.0 73.6

Table IV. Jacobi computation, distributed schemes, p = 8;
PEi : Tcomp/Tcom (in seconds).

Dedicated Non-dedicated

PE DTSS TreeS DTSS TreeS

1 70.1/4.2 34.2/3.8 74.1/4.4 36.1/4.8
2 71.2/4.8 49.4/4.5 73.1/4.8 49.9/5.2
3 70.7/4.3 49.1/4.4 73.6/4.3 48.1/4.6
4 70.3/4.2 35.2/3.2 74.8/4.1 53.3/4.1
5 65.3/3.1 63.0/3.0 68.4/3.2 69.7/4.8
6 66.7/3.1 74.1/3.4 72.1/3.2 95.2/5.3
7 67.3/3.1 86.6/3.4 73.3/3.2 79.7/4.9
8 71.4/3.1 96.6/4.3 75.4/3.7 109.9/4.1
Tp 80.7 125.1 95.3 146.9
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Table V. Gaussian elimination,
dedicated case, p = 8; PEi :

Tcomp/Tcom (in seconds).

PE DTSS

1 77.6/2.6
2 83.3/2.7
3 74.2/2.6
4 74.4/2.6
5 90.5/2.4
6 74.7/2.7
7 87.7/3.1
8 80.2/2.9
Tp 110.5
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Figure 4. Speedup versus number of virtual processors.
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Table II compares the simple TSS and the distributed schemes (DTSS and TreeS) for the Mandelbrot
problem in the dedicated case. From this comparison we observe that the distributed schemes exhibit
better load balance and performance. Table III compares the DTSS and TreeS for the Mandelbrot
problem, in the non-dedicated case. The DTSS shows better load balance and performance than the
TreeS.

Table IV contains the results for the Jacobi computation for eight PEs. It can be seen again that
DTSS performs better and it is better balanced than TreeS. Since DTSS outperforms TreeS, we only
implemented DTSS for Gaussian elimination for the dedicated case. The results (Table V) show that
DTSS is also well balanced for this case. The superior performance of the DTSS in the non-dedicated
case is due to its adaptiveness to the loads of the PEs, a property missing in the TreeS.

In Figure 4, we present the speedup of DTSS and TreeS for the dedicated case. We can see that the
schemes are scalable.

5. CONCLUSIONS

In this paper we study existing self-scheduling schemes for parallel loops. We obtain distributed
extensions for an important loop self-scheduling scheme (DTSS). We compare the new scheme
against: (1) its counterpart (simple TSS) on a heterogeneous network of computers; (2) an existing
distributed scheme (TreeS). The main feature of the new scheme is that it takes into account
the computer processing speeds and their actual loads. Thus, the master adapts the assigned load
accordingly in order to maintain load balancing. Our test results demonstrate that the new scheme
is effective for distributed applications with parallel loops. The DTSS is the best balanced and efficient
scheme.
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