Note Title

Counting with n distinct objects Repetitions Allowed Formula. Type $P(n,r) = \frac{n!}{(n-r)!}$ Y-perm. NO $C(n,r) = \frac{n!}{(n-r)!r!}$ Y- combinating NO nY Y-perm. Yes Y-Comb. yes P(n, n) = n! $C(n, n) = \frac{P(n, n)}{n!} = 1$

3/19/12

Combinations with repetition

Example:

Three schools -- A, B and C -- are competing for a grand prize in a science fair competition. There are two judges. Each judge, anonymously, recommends one of the two schools. Calculate the number of ways the judges recommend the schools. $\begin{array}{l} & & \\ & & \\ \end{array}$

ABC
** Each row is an arrangement
* 1 * 1 Of 2 stars 2 2 stripes
* * * * * * * * ** ** (+ to arrange
** **
(*) *
$\begin{pmatrix} 4\\2 \end{pmatrix}$
The same as the number of 4-bit strings with
exactly two 1s. # bit positions = # schools -1 + # of judges
 # on positions = # schools -1 + # of judges
N-SChools Y-judges (n-1+Y)
 $Y = judges \begin{pmatrix} n-1+Y \\ Y \end{pmatrix}$
 Theorem : $C(n-1+r,r)$ is the number of r-combinations of n elements with repetition.

Section 6.5, Problem 9

A bagel shop has eight different types of bagels. How many ways are there to choose

(c) Six bagels? bagels? 2 ? 4 S 6 ? 8

$$\binom{8}{5-1+6} = \binom{13}{6}$$
(b) a dozen bagels? Y=12, n=8

$$\binom{8-1+12}{12} = \binom{19}{12} = \binom{19}{7}$$
(c) $\binom{a}{6} = \binom{a}{a+6}$
(c) $\binom{8-1+12}{12} = \binom{19}{12} = \binom{19}{7}$
(c) $\binom{a}{6} = \binom{a}{a+6}$
(c) $\binom{2}{3} = \binom{19}{12} = \binom$

(e) a dozen bagels with at least three egg bagels and no more than two salty bagels? Choose 3 egg bageb, => 9 more to choose Three cases: So - 0 out of 9 are salty bageb SI - 1 out of s is a salty bagel Sz - 2 out of s " ... Total = So + S, + S2 (by Sum rule) Salty Free choice from 7 types (other than salty) Egg $q = \begin{pmatrix} 7 - 1 + 9 \\ 9 \end{pmatrix}$ 5030 $S_1 = 3 = 1 = 8 = (7 - 1 + 8)$ S_2 S_2 C_2 C_2 : $Total = \binom{15}{6} + \binom{14}{6} + \binom{13}{4} = 9724$ Alternative Solution: # choices with at least 3 egg bagels= $\begin{pmatrix} 8-1+9\\ q \end{pmatrix} = \begin{pmatrix} 16\\ q \end{pmatrix} = \begin{pmatrix} 16\\ 7 \end{pmatrix}$ # choices with at least 3 egs and 3 salty bagels = $\begin{pmatrix} 8 - 1 + 6 \\ 6 \end{pmatrix} = \begin{pmatrix} 13 \\ 6 \end{pmatrix}$:. # Choices with at least Three egg bagels and no more than two Sulty bagely = (16) - (13) = 9724

Example: # of strings obtained by permuting the letters of the word "DISCR" is 5! 5×4×3×2×1=51=P(S,S) ≯ ک > 1 Alternative calculation: - can be placed in one of five positions in (5) ways - Can be placed in one of the remaining 4 spots in (4) ways (3 spots in $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ S 11 11 - ", 2 Spots in (2) C R 1 spot in (;) 1 L By product rule, total # of ways $= \begin{pmatrix} 5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 7 \end{pmatrix} = \frac{5!}{4(11)} \frac{4!}{3(11)} \frac{3!}{2(11)} \frac{2!}{11} \frac{1!}{1!} = 5!$

Letter-count # ways to choose spots # spots left
$D-1$ (\mathcal{E}_{r}) γ
$I - I \begin{pmatrix} 7 \\ 1 \end{pmatrix} $
$S - I \begin{pmatrix} 6 \\ 1 \end{pmatrix} 5$
$(-1) (s_{1}) 4$
R - 1 (4) 3
$E - 2 \longrightarrow \begin{pmatrix} 3 \\ 2 \end{pmatrix} \longrightarrow I$
T-1 (1) O
$\therefore \# \text{ strings} = \begin{pmatrix} 8 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 81 71 61 51 41 31 11
 $= \frac{1}{3!} \frac{1}{3!} \frac{1}{5!} \frac{1}{5!}$
8 !
 $=$ $\frac{2}{2}$
Theorem 3, Section 5.5
The number of permutations of n objects, where there are n_1 indistinguishable objects of type 1, n_2
indistinguishable objects of type 2,, and n_k indistinguishable objects of type k such that $n_1+n_2++n_k = n$,
n [
 n_1, n_2, \dots, n_k

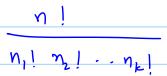
Example 2: calculate the # of strings obtained by permuting the letters of the word "DISCRETE".

Distributing objects into boxes

Many counting problems can be solved by enumerating the ways objects can be placed into boxes, where the order of placing objects within a box does not matter.

Objects Distinguishable (Do) indistinguishable (IO) boxes Distinguishable (DB) indistinguishable (IB)

There are four possibilities. we will look at placing distinguishable objects into distinguishable boxes (DODB) and indistinguishable objects into distinguishable boxes (IODB).


Distinguishable objects into distinguishable boxes (DODB)

Example: count the number of 5-card poker hands for 4 players in a game. Assume that a standard deck of cards is used.

player 1 -
$$\binom{52}{5}$$
 47 cards left
player 2 - $\binom{47}{5}$ 42 left
player 3 - $\binom{42}{5}$ 37 left
player 4 - $\binom{37}{5}$ 32 left.
i. Total # of hands = $\binom{52}{5} \cdot \binom{47}{5} \cdot \binom{42}{5} \cdot \binom{37}{5}$
 $= \frac{52!}{47! 5!} \cdot \frac{47!}{42! 5!} = \frac{42!}{37! 5!} \frac{37!}{32! 5!}$
 $= \frac{52!}{5! 5! 5! 5! 32!}$
If the unused cards, 32 of them, are considered to
be given to an imaginary player 5, then $5+5+5+5+2=52$
and Theorem 4 is applicable.

Theorem 4.

The number of ways to distribute n distinguishable objects into k distinct boxes so that n_i objects are placed in box i, i=1, ..., k, and $n_1+...+n_k = n$, is

Indistinguishable objects into distinguishable boxes (IODB)

Similar to combinations with repetitions. For example, consider the previously solved science fair problem.

Three schools -- A, B and C -- are competing for a grand prize in a science fair competition. There are two judges. Each judge, anonymously, recommends one of the two schools. Calculate the number of ways the judges recommend the schools.

Here, we can view

n -- schools as distinguishable boxes

r -- anonymous recommendations as indistinguishable objects

n boxes \Rightarrow n-1 bars separate them

r objects => when placed you have some sequence of r objects and n-1 bars

Therefore, the problem is similar to constructing (n-1+r)-bit strings with exactly r zeros (objects).

Theorem 5.

The number of ways to place r indistinguishable objects into n distinct boxes is

$$\begin{pmatrix} n-l+\gamma \\ \gamma \end{pmatrix} = \begin{pmatrix} n-l+\gamma \\ h-l \end{pmatrix}$$

How many terms are there in the expansion of $(x+y)^n$? $\uparrow \downarrow$

How many terms are there in the expansion of $(x+y+z)^n$?

$$\frac{10}{(X+Y+2)(x+Y+2)\cdots(x+Y+2)} \quad 3 \text{ DBs} - x, y \text{ and } 2$$

$$n \text{ times}$$

$$\frac{3-1+n}{n} = \binom{n+2}{n} = \binom{n+2}{2} = \binom{n+2}{(n+2)(n+1)} \quad \left[\binom{a}{b} = \binom{a}{a-b}, \text{ os bs } a$$

$$(\chi + \gamma + 3 + \omega)^{10}$$
 has $\begin{pmatrix} 4 - 1 + 10 \\ 10 \end{pmatrix} = \begin{pmatrix} 13 \\ 3 \end{pmatrix}$ terms

Each term has a multinomial coefficient. For example,

$$\frac{10!}{5! 2! 2!}$$
is the coeff. of the term $2 \cdot 9^2 \cdot 13^2$.

$$\frac{10!}{5! 2! 2!}$$
denoted $\begin{pmatrix} 10\\ 5, 2, 1, 2 \end{pmatrix}$

Problems from section 6.5

11 . How many ways are there to choose eight coins from a piggy bank containing 100 identical pennies and 80 identical nickels.	P]	N	
	0 1	5	3 7	
 N=2-buxes	$-\frac{2}{3}$		5 5	
 Y = 8	<u>4</u> 5		4 3	
	6	2	$\frac{2}{1}$	
$\begin{pmatrix} 2-1+8\\c \end{pmatrix} = \begin{pmatrix} 9\\8 \end{pmatrix} = 9$	8	()	
8 (8)				

15. Consider the equation $x_1+x_2+x_3+x_4+x_5 = 21$, where x_1 's are nonnegative integers. How may solutions are feasible if

there are no additional constrainsts on the values of x_1 's.

21 Can be considered as 24 1's.
example Abl,
$$X_1 = S \quad x_2 = S \quad x_3 = S \quad x_4 = S \quad x_5 = 1$$

$$\begin{bmatrix} S \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \begin{bmatrix} S \\ I \\ x_5 \\ I \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$
DB = $S \leftarrow x_1^{1/3} \quad I \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ I \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ I \\ x_5 \\ x_5$

(A)
$$X_1 \ge 1$$
 [1] [1] [1] [1] [1] [1] [2] [2]
 $X_1 \times X_2 \times X_3 \times X_4 \times Y_5$ [2] [2] [2] [2]
 20 free choices
(b) $X_1 \ge 2$ for $i = 1, 2, 3, 4, 5$. [2] [2] [2] [2]
 $(5 - 1 + 11) = \binom{15}{11} \times \frac{1}{12} \times$

New The
INT types of cormants - 6 = n
need to choose 24 crosssants with
plain 3 1 U
Cherry 7, 2 El
Doccoli: 5 3 J
Doccoli: 5 3 J
Societies left
$$(n-1+15) = (20) = (20)$$

At least 4 bioccoli: (4)
 $\exists 11 \ Choices (5-1+11) = (16) = (15) = (16)$
 $is choices (5-1+11) = (16) = (16) = (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is choices (5-1+11) = (16) = (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is choice (5-1+11) = (16) = (16) = (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is choice (5-1+10) = (16) = (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is choice (5-1+10) = (16) = (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is Required count = (20) - (16)$
 $is cosep$
 $is choice (16) - (16)$
 $is cosep$
 $is cosep$

Problems on Binomial Coefficients, Section 6.4

 $\frac{22(a)}{\binom{n}{\gamma}\cdot\binom{r}{k}} = \binom{n}{k}\cdot\binom{n-k}{\gamma-k}$ Scenario: from a group of n people, form a committee of r people, k of whom will be executive members. There are two methods to form such a committee. (2) Choose exec. committee (n/k) Choose committee (n) Total words (M-K) Total words (M-K) K) - K) Choose executives (x). Total ways $\binom{N}{Y} \cdot \binom{Y}{k}$ $\begin{pmatrix} n+l \\ d \end{pmatrix} = \begin{pmatrix} n+l \end{pmatrix} \begin{pmatrix} n \\ d-l \end{pmatrix} / d \cdot Hint: d \begin{pmatrix} n+l \\ d \end{pmatrix} = \begin{pmatrix} n+l \end{pmatrix} \begin{pmatrix} n \\ d-l \end{pmatrix}$ 23 (use 22 a to give comb. arguments) $\binom{2n}{2} = 2 \cdot \binom{n}{2} + n^2$ 28a. Consider the formation of a committee of 2 from a group of n men and n women. There are C(2n,2) such committees. Alternative approach: Count the committees that have only men, only women, or one man and one $\begin{array}{c} can have - both men - \binom{n}{2} \\ both women - \binom{n}{2} \\ w a man and a homan - \binom{n}{1} \cdot \binom{n}{1} = n \cdot n = n^{2} \\ \end{array}$ woman. $= \binom{n}{2} + \binom{n}{2} + n^2 = R + ts$ Total ways

3)
$$4xy grid$$

(1) $4xy grid$
(1) $4xy grid$

Section 0.4

$$\begin{array}{c}
|l_{4} \quad n \text{ is a } + \text{os} (\text{five int} - S, T, \\
\begin{pmatrix}n \\ 0 \end{pmatrix} \leq \begin{pmatrix}n \\ 1 \end{pmatrix} \leq \dots \geq \begin{pmatrix}n \\ 1 \end{pmatrix} \equiv \begin{pmatrix}n \\ \lfloor \frac{n}{2} \rfloor \end{pmatrix} \equiv \begin{pmatrix}n \\ \lfloor \frac{n}{2} \rfloor \end{pmatrix} \equiv \begin{pmatrix}n \\ \lfloor \frac{n}{2} \rfloor \end{pmatrix} = \begin{pmatrix}n \\$$

$$\binom{n}{k} < \binom{n}{1} < \cdots < \binom{n}{\lfloor \frac{n}{2} \rfloor} \qquad \binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lfloor \frac{n}{2} \rfloor} = \binom{n}{\lfloor \frac{n}{2} \rfloor}$$

$$\binom{n}{n} < \binom{n}{n} < \cdots < \binom{\binom{n}{2}}{\binom{n}{3}}$$

$$24. \quad p \text{ is a prime. Show that } p \mid \binom{p}{k}, \quad 1 \le k \le p-1$$

$$\binom{p}{k} = \frac{p!}{(p-k)! \quad k!} \qquad \text{Since } p \not (pk)! \quad \text{and } p \not + k!$$

$$p \mid \frac{p}{\binom{p}{k}} = \frac{p!}{(p-k)! \quad k!} \qquad p \mid p \mid \frac{p}{\binom{p}{k}}$$