
In Proceedings of EUROPAR ’95

Communication in Multicomputers with Nonconvex
Faults�

Suresh Chalasani� and Rajendra V. Boppana�

� Dept. of ECE, University of Wisconsin-Madison,
Madison, WI 53706-1691, USA

� Computer Science Division, The University of Texas at San Antonio,
San Antonio, TX 78249-0664, USA

Abstract. Enhancingcurrentmulticomputer routers for fault-tolerant rout-
ing with modest increase in routing complexity and resource requirements
is addressed. The proposed method handles solid faults in meshes, which
includes all convex faults and many practical nonconvex faults, for exam-
ple, faults in the shape of L or T. As examples of the proposed method,
adaptive andnonadaptive fault-tolerant routing algorithmsusing four vir-
tual channels per physical channel are described.

1 Introduction

Many recent experimental and commercial multicomputers and multiproces-
sors use direct-connected networks with mesh topology [1, 14, 12, 6, 15]. These
computers use the well-known dimension-order or e-cube routing algorithm in
conjunction with wormhole (WH) switching [8] to provide interprocessor com-
munication. In the WH technique, a packet is divided into a sequence of fixed-
size units of data, called flits and transmitted from source to destination in asyn-
chronous pipelined manner. The first flit of the message makes the path and the
tail flit releases the path as the message progresses toward its destination.

The e-cube routing algorithm is simple and provides high throughput for
uniform traffic. The e-cube achieves its simplicity by using, always, a fixed path
for each source-destination pair, though the underlying network may provide
many additional paths of the same length (in hops). Therefore, the e-cube cannot
handle even simple node or link faults, because even one fault disrupts many
“e-cube communication” paths.

Therefore, adaptive and fault-tolerant routing for multicomputer networks
has been the subject of extensive research in recent years [5, 9, 7, 11, 2, 10, 3].
Most of the current techniques to handle faults in torus and mesh networks re-
quire one or more of the following: (a) new routing algorithms with adaptivity
[5, 7, 11], (b) global knowledge of faults, (c) restriction on the shapes, locations,
and number of faults [5, 7, 11, 3] and (d) relaxing the constraint of guaranteed
delivery, deadlock- or livelock-free routing.

� Chalasani’s research has been supported in part by the NSF grant CCR-9308966. Bop-
pana’s research has been partially supported by NSF Grant CCR-9208784.



In this paper, we present fault-tolerant routing methods that can be used to
augment the existing fault-intolerant routing algorithms with simple changes
to routing logic and with modest increase in resources. These techniques rely
on local knowledge of faults—each fault-free node needs to know the status of
only its links and its neighbors’ links, and can be applied as soonas the faults are
detected (provided the faults are of specific shapes). Messages are still delivered
correctly without livelocks and deadlocks.

The faultmodel is a generalized convex fault model, called solid faultmodel.
In the convex fault model, each connected set of faults has a convex shape (for
example, rectangular in 2D meshes) [3, 5]. In the solid fault model, a connected
fault set is such that any cross-section of the fault region has contiguous faulty
components. Fault regions with a variety of shapes, for example, convex, +, L,
and T in a 2D mesh, are examples of solid faults.

Our approach in this paper is to demonstrate techniques to enhance known
fault intolerant routing algorithms toprovide communicationevenunder faults.
To illustrate this, we apply our techniques to the non-adaptive e-cube and a class
of fully-adaptive algorithms [9] for meshes with solid faults. Our results in this
paper expand on our earlier results for convex faults [3, 4].

The rest of the paper is organized as follows. Section 2 describes the solid
fault model and the concept of fault-rings. Section3 describes our fault-tolerance
techniques for the nonadaptive e-cube algorithm. Section 4 applies these tech-
niques for fully-adaptive algorithms. Section 5 concludes the paper.

2 Preliminaries

We consider n-dimensional mesh networks with faults. A �k� n�-mesh has n di-
mensions, denoted DIM�� � � � � DIMn��, andN � kn nodes. Each node is uniquely
indexed by an n-tuple in radix k. Each node is connected via bidirectional links
to two other nodes in each dimension. Given a node x � �xn��� � � � � x��, its
neighbors in DIMi, � � i � n, are �xn��� � � � � xi��� xi � �� xi��� � � � � x��; if the
ith digit of a neighbor’s index is�� or k, then that neighbor does not exist for x.
We denote the link between adjacent nodes x and y by x�y.

We assume that a message that reaches its destination is consumed in finite
time. If a message has not reached its destination and is blocked due to busy
channels, then it will continue to hold the channels it has already acquired and
not yet released. Therefore, deadlocks can occur because of cyclic dependencies
on channels. To avoid deadlocks, multiple logical or virtual channels are sim-
ulated on each physical channel and allocated to messages systematically [8].
When faults occur, the dependencies are even more common, and more virtual
channels may need to be used or the use of channels may have to be restricted
further. Using extra logic and buffers, multiple virtual channels can be simu-
lated on a physical channel in a demand time-multiplexed manner. We specify
the number of virtual channels on per physical channel basis and denote the ith
virtual channel on a physical channel with ci.

In the remainder of this section, we describe the fault model and the concept
of fault-rings for 2D meshes. Our results can be extended to multidimensional

2



meshes and torus networks with suitable modifications. We label the sides of a
2D mesh as North, South, East and West.

2.1 The fault model

We consider both node and link faults. For fault detection, processors test them-
selves periodically using a suitable self-test algorithm. In addition, each proces-
sor sends and receives status signals from each of its neighbors. A link fault is
detected by the processors on which it is incident by examining these status sig-
nals. A processor that fails its self-test, stops transmitting signals on all of its
links, which appears as link faults to its neighbors.

Messages are generatedby and for nonfaultyprocessors only. Wemodel mul-
tiple simultaneous faults, which could be connected or disjoint. We assume that
the mean time to repair faults is quite large, a few hours to many days, and that
the existing fault-free processors are still connected and thus should be used
for computations in the mean time. We develop fault-tolerant algorithms that
can work with only local fault information—each node knows only the status
of links incident on it and on its neighbors reachable via its fault-free links.

A node fault is equivalent to making the links incident on that node faulty.
Therefore, given a set F with one or more node faults and some link faults, we
can represent the fault information by a set Fl which contains all the links in-
cident on the nodes in F and all the links in F . Two faulty links a � x�y and
b � u�v in Fl are adjacent if one of the following conditions hold:

1. a and b have different dimensions and are incident on a common node, or
2. node x is adjacent to node u and y is adjacent to v, or
3. node x is adjacent to node v and y is adjacent to u.

A pair of links adjacent by the above definition are said to be connected. Two
nonadjacent links a�� ap � Fl are connected if there exist links a�� � � � � ap�� � Fl

such that ai and ai��, for � � i � p, are adjacent. A faulty node and a faulty
link a are connected if there is at least one link incident on the faulty node to
which link a is connected. A set with a single faulty link represents a trivially
connected fault set. A set of faulty links Fl with two or more components is con-
nected if every pair of links in Fl is connected. A set F of faulty nodes and links
is connected, if the corresponding set Fl of faulty links is connected. The fault
sets F� � f��� ������ ��� ��� ������ ��g, F� � f��� ������ ��� ��� ������ ��g, F� �
f��� ������ 	�� �	� ��� ��� ��g, and F� � f��� ��g in Figure 1 are examples of con-
nected fault sets. F� is an example of the connected fault based on the last two
adjacency rules given above.

Before defining solid faults,we need to define cross sections of networks and
faults. Each connected fault set describes a subnetwork of the original mesh.
Given a subnetwork or network, all of its nodes that match with one another in
all but one component of theirn-tuple representations and the links among them
form its 1-D cross section. For example, in a 2D mesh, each row and each column
is an 1-D cross section of the network. The column cross sections of F� in Figure
1 are f��� ��� �	� ������ ��� ��� ������ ��g and f�	� ��� ��� ����	� ��� �	� ������ ��g,

3



and its row cross sections are f��� ������ 	�g, f�	� ��� �	� ����	� ��� �	� ����	� 	�g,
and f��� ��� ��� ������ ��� ��� ������ ��g. Each faulty link not incident on a faulty
node of a connected fault set is an 1-D cross section of the connected fault.

A connected fault-set F , with all of its links given by the set Fl, indicates a
solid fault region, or f-region, if the following condition is satisfied.

If two links a� b � Fl are in the same 1-D cross section, then all the nodes
between a and b are also faulty.

A set of faults is valid if each connected fault in the set is a solid fault. All the
faults in Figure 1 are examples solid faults. The faults F� and F� are also exam-
ples of convex (rectangular block-shaped) faults. The faults F� and F� are not
convex faults.

2.2 Fault rings

For each connected fault region of the network, it is feasible to connect the fault-
free components around the fault to form a ring or chain. This is the fault ring,
f-ring, for that fault and consists of the fault-free nodes and channels that are
adjacent (row-wise, column-wise, or diagonally) to one or more components of
the fault region. For example, the f-rings for the various solid faults in Figure 1
are shown with thick lines. It is noteworthy that a fault-free node is in the f-ring
only if it is at most two hops away from a faulty node. There can be several fault
rings, one for each f-region, in a network with multiple faults. Fault rings pro-
vide alternate paths to messages blocked by faults.

A set of fault rings are said to overlap if they share one or more links. For
example, the f-rings of F� and F� in Figure 1 overlap with each other on link
�	� 	����� 	�. Forming a fault-ring around an f-region is not possible when the
f-region touches one or more boundaries of the network (e.g., F� in Figure 1).
In this case, a fault chain, f-chain, rather than an f-ring is formed around the f-
region. In this paper, we do not consider solid faults that form f-chains or over-
lapping f-rings.

2.3 Formation of fault rings

Fault-rings can be constructed for every connected fault set. To see this, consider
a single fault region in a 2D mesh. The formation of a f-ring around this f-region
is a two-stepprocess. Each node with at least one faulty link incident on it sends
a message to each of its nonfaulty neighbors. The rules using which each node
determines its neighbors on the f-ring are given in Figure 2. The first six cases
apply when at least one faulty link is incident on x, the node trying to determine
its f-ring neighbors. The other cases apply when x has no faulty links.

Even with nonoverlapping f-rings, a node may appear in up to n f-rings in
a �k� n�-mesh with solid faults. For example, nodes (2,1) and (1,2) appear in the
f-rings of F� and F�. There can be at most two faulty links incident on a fault-
free node even with multiple f-regions. If multiple faults occur simultaneously,
a node may send or receive messages about multiple f-regions. Using the faulty

4



5,
0

5,
5

0,
5

0,
0

F
1

F
4

F
3

F
2

Fig. 1. Examples of solid faults in a
mesh. Faulty nodes are shown as
filled circles, and faulty links are not
shown. Thick lines indicate the corre-
sponding fault rings.

Faulty Links Neighbors
East & South links of x Nx�Wx

East & North links of x Sx�Wx

West & South links of x Nx� Ex

West & North links of x Sx� Ex

East or West link of x Nx� Sx

North or South link of x Ex�Wx

North link of Ex or East link of Nx Nx� Ex

South link of Ex or East link of Sx Sx� Ex

North link of Wx or West link of Nx Nx�Wx

South link of Wx or West link of Sx Sx�Wx

Fig. 2. Determining the neighbors of a node on an
f-ring. Let x be the node whose neighbors are to
be determined. Nx� Ex� Sx�Wx denote the nodes
adjacent to x in the North, East, South, and West
directions, respectively.

link direction and dimension provided in each fault statusmessage, it is feasible
to separate the messages on faults for different f-regions. For multidimensional
meshes, each solid fault creates multiple fault rings, one for each 2D cross sec-
tionof the fault. In summary, f-rings are formed for any connected fault set using
only near-neighbor communication among fault-free processors.

The definition of solid faults can be used to check if a fault can be charac-
terized as a solid fault. In a 2D mesh, the boundary of a solid fault crosses each
row and each column exactly zero times or twice. A special type of message,
called shape finding worm, can be circulated around an f-ring and the number
of times the worm crosses each row and column can be counted. If any row or
column is visited more than twice, then the corresponding fault is not a solid
fault. Otherwise, the fault is a solid fault, and the routing techniques described
in the remainder of the paper can be used to route messageswithout any further
network reconfiguration. If a fault is not a solid fault, then disabling selected
nodes and links so that the result is a solid fault is still an open problem. For the
remainder of the paper, we assume that only solid faults can occur in networks.

3 Fault-Tolerant Nonadaptive Routing

We first show how to enhance the well-known e-cube routing algorithm to han-
dle solid faults in 2D meshes. The e-cube routes a message in a row until the
message reaches a node that is in the same column as its destination, and then
routes it in the column. For fault-free meshes, the e-cube provides deadlock-free
shortest-path routing without requiring multiple virtual channels to be simu-
lated. At each point during the routing of a message, the e-cube specifies the
next hop, called e-cube hop, to be taken by the message. The message is said to

5



Procedure Set-Message-Type(M )
/* Comment: The current host of M is �a�� a�� and destination is �b�� b��. When a
message is generated, it is labeled as EW if a� � b� and as WE otherwise. */
IfM is an EW or WE message and a� � b�,

change its type to NS if a� � b� or SN if a� � b� .

Procedure Set-Message-Status(M )
/* Comment: Determine if the messageM is normal or misrouted.
The current host of M is �a�� a�� and destination is �b�� b��. */

1 IfM is a row — EW or WE — message and its e-cube hop is not blocked, then set
the status of M to normal and return.

2 If M is a column — NS or SN — message and a� � b� , and its next e-cube hop is
not on a faulty link, then set the status of M to normal and return.

3 Set the status of M to misrouted,
determineusingTable1 the f-ring orientation to beusedbyM for its misrouting.

Fig. 3. Procedures to set the status and type of a message.

be blocked by a fault, if its e-cube hop is on a faulty link. The proposed modifi-
cation uses four virtual channels, c�, c�, c� and c�, on each physical channel and
tolerates multiple solid faults with nonoverlapping f-rings.

To route messages around f-rings, messages are classified into one of the fol-
lowing types using Procedure Set-Message-Type (Figure 3): EW (East-to-West),
WE (West-to-East), NS (North-to-South), or SN (South-to-North). A message is
labeled as either an EW or WE message when it is generated, depending on its
direction of travel along the row. Once a message completes its row hops, it be-
comes a NS or a SN message depending on its direction of travel along the col-
umn. Thus, EW and WE messages can become NS or SN messages; however,
NS and SN messages cannot change their types. These rules are summarized in
procedure Set-Message-Type. EW and WE messages are collectively known as
row messages and NS and SN as column messages.

In addition to its type, each messagealso provides its current status informa-
tion: normal or misrouted. A row message is termed normal, if its e-cube hop is
not blocked by a fault. A column message whose head flit is in the same col-
umn as its destination is normal if its e-cube hop is not blocked by a fault. All
other messagesare termedmisrouted. Procedure Set-Message-Status in Figure
3 gives these rules.

3.1 Modifications to the routing logic

Normal messages are routed using the e-cube algorithm. Each misrouted mes-
sage is routed around the f-ring using a specific orientation until it becomes nor-
mal again. Sometimes a message may travel on f-ring before being blocked by
the fault contained by the f-ring. In such cases, the message is forced to use the

6



Table 1. Directions to be used for misrouting messages on f-rings.

Message Traversed on Position of F-Ring
Type the f-ring Destination Orientation
WE No In a row above Clockwise

its row of travel
WE No In a row below Counter Clockwise

its row of travel
EW No In a row above Counter Clockwise

its row of travel
EW No In a row below Clockwise

its row of travel
NS or SN No (don’t care) Either one orientation

Any message Yes Don’t care Choose the orientation that
is being used by the message

Fig. 4. Routing of misrouted messages
around fault rings.

3,2

4,5

c1

c2

5,0 5,5

0,50,0

c1

3,0

Fig. 5. Example of nonadaptive fault toler-
ant routing.

f-ring orientation compatible with its travel on the f-ring up to that point. For
example, a WE message may be blocked at node y in Figure 4 after traversing
a hop on the f-ring. In that case, the message should traverse the f-ring in the
clockwise orientation to get around the fault.

In other cases, a message is blocked the first time it arrives at a node on an
f-ring (for example, node x for a WE message in Figure 4). In such cases, a mes-
sage may use clockwise or counter clockwise orientation depending on other
conditions. The orientations and conditions are given in Table 1.

If a message takes a normal hop on a link that is not on an f-ring, then the vir-

7



Procedure Fault-Tolerant-Route(Message M ) /* Specifies the next hop of M */
1. Set-Message-Type(M ).
2. Set-Message-Status(M ).
3. IfM is normal, select the hop specified by the base algorithm.
4. IfM is misrouted, select the hop along its f-ring orientation.
5. If the selected hop is on an f-ring link, route the message using virtual channel

c� if M ’s type is EW, c� if WE, c� if NS, or c� if SN.
6. If the selected hop is not on an f-ring link, route the message using the virtual

channel specified by the base algorithm.

Fig. 6. Fault-tolerant routing algorithm.

tual channel to be used is given by the base e-cube algorithm. Under the e-cube,
a message may use any virtual channel in its normal hop without deadlocks.
(In fact, with e-cube routing, there can be only one type of messages using each
physical channel that is neither faulty nor part of an f-ring.) Sometimes a mes-
sage may travel on an f-ring using the base e-cube algorithm because its normal
hop is on the f-ring. In addition, a message may travel on an f-ring because it is
blocked by the corresponding fault. In both cases, messages traveling on f-rings
can use only the following virtual channels: EW messages use c� for all hops on
f-rings, WE messages use c�, NS messages use c� and SN messages use c�.

Consider a messageM from �	� �� to ��� �� in the mesh with two solid faults
and given in Figure 5. This message begins as a WE message, and first travels to
�	� ��, where its e-cube hop is blocked by the faulty node �	� ��. Then it chooses
the counter-clockwise orientation, since it has already traveled in that orienta-
tion on the f-ring. It travels from �	� �� to ��� ��, where it is affected by the faulty
link ��� ������ ��. At (4,4), it chooses the clockwise orientation.M reserves chan-
nels c� from �	� �� to �	� �� (as a WE message), and reserves c� from �	� �� to ��� ��
(as an NS message).

3.2 Proof of deadlock and livelock freedom

Lemma 1. The algorithm Fault-Tolerant-Route routes messages in 2D meshes with
solid faults and nonoverlapping f-rings free of deadlocks and livelocks.

Proof. Each type of messages (EW, WE, SN, and NS) uses a distinct class of vir-
tual channels. This can be easily seen for the virtual channels simulatedon phys-
ical channels forming f-rings. For each physical channel not on any f-ring, there
can be only one type of message using that physical channel because of e-cube
routing. Therefore, in all cases, each message type has an exclusive set of virtual
channels for its hops. Furthermore, row messages (EW and WE) can become col-
umn messages, but not vice-versa. Thus, deadlocks among two different types
of messages cannot occur, since NS and SN messages do not depend on any
other message type. Hence, to prove deadlock-freedom, it is sufficient to show
that there are no deadlocks among messages of a specific type.

8



Deadlocks among NS messages. Deadlocks can be among NS messageswaiting for
virtual channels at nodes on a single f-ring only or at nodes on multiple f-rings.
(The NS messages waiting for virtual channels at other nodes will be routed
by the deadlock-free e-cube and cannot be part of deadlocks.) Furthermore, a
NS message may use counter clockwise or clockwise orientation to travel on an
f-ring. The set of physical channels used for each orientation are disjoint. Mis-
routed NS messages with clockwise orientation never use the channels on the
west-most column of an f-ring. (For example, the link ��� ����	� �� constitutes
the west-most column of the f-ring for F� in Figure 5.) Similarly, NS messages
misrouted counter clockwise on an f-ring never use the east-most column of the
f-ring (for example, the two links between nodes (2,3) and (4,3) for the f-ring
of F� in Figure 5). Therefore, the paths used by NS messages on an f-ring are
acyclic. So, a single f-ring does not cause deadlocks among NS messages.

The f-rings can be given a partial-order by their topmost row numbers, and
NS messages traverse them satisfying this partial order. Therefore, multiple f-
rings do not cause deadlocks among NS messages.

Livelock freedom and correct delivery. A message is misroutedonly by a finite num-
ber of hops on each f-ring, and it never visits an f-ring more than twice (at most
once as a row messageand once as a column message). So, the extent of misrout-
ing is limited. This together with the fact that each normal hop takes a message
closer to the destination proves that messages are correctly delivered and live-
locks do not occur. ut

If faults occur during networkoperation, deadlocks can be avoided by drain-
ing the messages on faulty links using kill signals [13] and by removing mes-
sages destined to faulty nodes. A message, say, M , destined to a faulty node
will eventually become a column message, say, an NS message, with our mis-
routing logic. Upon further routing, M will reach a point where it has just com-
pleted misrouting by reaching a south row of the f-ring and its destination is
directly above its current host node but its e-cube hop is on a faulty link to the
node above its current host node. Upon detecting this anomaly, the messageM
can be removed from the network.

3.3 Extension to multidimensional meshes

We now consider solid faults with nonoverlapping f-rings in a �k� n�-mesh and
show how to enhance the e-cube to provide communication. The e-cube orders
the dimensions of the network and routes a message in dimension 0, until the
current host node and destination match in dimension 0 component of their n-
tuples, and then in dimension 1, and so on, until the message reaches its desti-
nation. From the definition of solid faults in Section 2.1, it is easy to verify that
each 2D cross section (consists of all nodes that match in all but two components
of their n-tuples and the links among them) of a solid fault in a �k� n�-mesh is a
valid solid fault in a 2D mesh. Therefore, fault-tolerant routing in a �k� n�-mesh
is achieved by using our results for 2D meshes and the planar-adaptive routing
technique [5].

9



The routing algorithm to handle nonoverlapping f-rings still needs only four
virtual channels per physical channel. Let Ai, where � � i � n, to denote the set
of all 2D planes (2D cross sections of the �k� n�-mesh) formed using dimensions
i and i
 � �mod n�.

A normal message that needs to travel in DIMi, � � i � n, as per the e-cube
is a DIMi message. A DIMi message that completed its hops in dimension DIMi

becomes a DIMj message, where j � i is the next dimension of travel as per the
e-cube algorithm. A message blocked by a fault uses the f-ring of the 2D cross
section of the fault in the 2D plane formed by dimensions i, i 
 � �mod n� and
has the current host node to get around the fault. A DIMi message, � � i � n��,
uses a 2D plane of type Ai for routing and virtual channels of class c��imod�� or
c��imod���� depending on its direction of travel in DIMi. A DIMn�� message will
use an An�� plane; it will use virtual channels of classes c� or c� if n is even, or
c� or c� in DIMn�� and c� or c� in DIM�, otherwise. There is a partial-order on
the planes used and virtual channels used for each plane are disjoint from those
used in other planes. So, the proof of deadlock free routing is straight forward
and is omitted.

4 Fault-Tolerant Adaptive Routing

The adaptive fault-tolerant routing algorithm described in this section uses the
technique developed in the previous section. The fault intolerant version of the
algorithm is based on the general theory developed by Duato [9]. The partic-
ular one we use here can provide adaptive routing with as few as two virtual
channels: one for deadlock free e-cube routing and another for adaptive rout-
ing. Since we need four virtual channels for deadlock free routing under faults,
we describe the base adaptive algorithm, A, for fault-free networks using four
channels (Figure 7). At any point of routing, a message has two types of hops:
the e-cube hop and adaptive hops. The e-cube hop is the same as before: the hop
specified by the e-cube algorithm. The adaptive hops are all other hops that take
the message closer to its destination. Algorithm A first tries to route a message
M using an adaptive channel—c�, c�, or c�—along any of the dimensions that take
M closer to the destination (Step 2). If this fails,A tries to routeM using the non-
adaptive channel c� on its e-cube hop (Step 3). If this step also fails, the same
sequence of events is tried after a delay of one cycle.

To enhance this algorithm for fault-tolerant routing, we classify messages
into normal and misrouted categories, as before. While normal messages may
have adaptivity, misrouted messages do not. The top level description of our
fault-tolerant adaptive routing is the same as that for the nonadaptive case in
Figure 6,with the algorithm in Figure 7 as the base routing algorithm. An impor-
tant amendment to the routing logic is for normal messages: (a) if a message’s
e-cube hop is on an f-ring, then adaptive hops cannot be used; or (b) if message’s
e-cube hop is not on an f-ring, but one ormore of its adaptive hops are on f-rings,
then those adaptive hops cannot be used. It is noteworthy that a message with
its e-cube hop on a link that is faulty or part of an f-ring will be routed exactly the

10



Procedure Adaptive-Algorithm(M , x, d)
/* Comment: Current host is x. Destination is d,
and d �� x. Route a normalmessageM by one step
from x to its neighbor such that M moves nearer
to its destination. */
1 Determine all the neighbors of x that are along

a shortest path from x to d. Let S be the set of
such neighbors.

2 If a virtual channel in the set fc�, c�, c�g is avail-
able from x to a neighbory � S, routeM from
x to y using that virtual channel; return.

3 If virtual channel c� is available from x to a
neighbor z along the e-cube hop of M , route
M from x to z using c�; return.

4 Return and try this procedure one cycle later.

Fig. 7. Pseudocode of the adaptive algorithm en-
hanced for fault-tolerance.

1,0

3,2

4,5

c1

c1

c2

5,0 5,5

0,50,0

Fig. 8. Example of fault-tolerant
adaptive routing.

same as in the e-cube case, because e-cube routing is the basis for deadlock free-
dom in the adaptive routing. The adaptivity will be usedonly when the message
does not have to travel on f-rings.

Once again the virtual channel allocation is crucial for deadlock avoidance.
In the fault-tolerant adaptive routing, channels c� to c� are used for messages
around f-rings. Virtual channels on links that are not on f-rings are used for nor-
mal routing by Adaptive-Algorithm. The four virtual channels on physical chan-
nels not on f-rings are partitioned into nonadaptive and adaptive subsets. The
channels in the nonadaptive category are c� channels, which are used to ensure
deadlock free routing. Furthermore, only one type of messagesmay use the non-
adaptive channel on a physical channel not an f-ring. Thus, no virtual channel
can be used for normal routing by one message and for misrouting or adaptive
routing by another message. Therefore, each message type has an exclusive set
of virtual channels for deadlock free routing. Given this argument, the proof of
deadlock-freedom is similar to that of the nonadaptive case. Figure 8 gives an
example of our method. The message uses specific channels for its hops on the
f-ring links ��� ������ ��, �	� ����	� ��, and �	� ������ ��. For its other hops, the
message uses virtual channels as per the original adaptive algorithm.

5 Concluding Remarks

We have presented a technique to enhance the nonadaptive and adaptive algo-
rithms for fault-tolerant wormhole routing in mesh networks. This technique
works with local knowledge of faults, handle multiple faults, and guarantees
livelock- and deadlock-free routing of all messages.We have used the solid fault
model, which generalizes the convex fault model used in previous studies. In
the convex fault model, any 2D cross-section of the fault has the shape of a rect-

11



angle. In the solid fault model, additional fault shapes such as
, T, L, and � can
be handled. The concept of fault-rings is used to route around the fault-regions.

Our techniques extend to related networks such as tori. The number of vir-
tual channels required for tori is doubled, however, because of the wraparound
connections. Currently, we are evaluating the performance of theproposed tech-
niques and extending the results to more complex fault shapes and for more
general network topologies.

References

1. A. Agarwal et al., “TheMIT Alewife machine:A large-scale distributedmultiproces-
sor,” in Proc. of Workshop on Scalable SharedMemoryMultiprocessors, Kluwer Academic
Publishers, 1991.

2. K. Bolding and L. Snyder, “Overview of fault handling for the chaos router,” in Pro-
ceedings of the 1991 IEEE International Workshop on Defect and Fault Tolerance in VLSI
Systems, pp. 124–127, 1991.

3. R. V. Boppana and S. Chalasani, “Fault-tolerant wormhole routing algorithms for
mesh networks,” IEEE Trans. on Computers. To appear. Preliminary results presented
at Supercomputing ’94.

4. S. Chalasani and R. V. Boppana, “Adaptive fault-tolerant wormhole routing algo-
rithmswith low virtual channel requirements,” in Int’l Symp. on Parallel Architectures,
Algorithms and Networks, Dec. 1994.

5. A. A. Chien and J. H. Kim, “Planar-adaptive routing: Low-cost adaptive networks
for multiprocessors,” in Proc. 19th Ann. Int. Symp. on Comput. Arch., pp. 268–277,
1992.

6. Cray Research Inc., Cray T3D Architectural Summary, Oct. 1993.
7. W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer net-

works using virtual channels,” IEEE Trans. on Parallel and Distributed Systems, vol. 4,
pp. 466–475, April 1993.

8. W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor inter-
connection networks,” IEEE Trans. on Computers, vol. C-36, no. 5, pp. 547–553, 1987.

9. J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,”
IEEE Trans. on Parallel and Distributed Systems, vol. 4, pp. 1320–1331, Dec. 1993.

10. P. T. Gaughan and S. Yalamanchili, “A family of fault-tolerant routing protocols
for direct multiprocessor networks,” IEEE Trans. on Parallel and Distributed Systems,
vol. 6, pp. 482–497, May 1995.

11. C. J. Glass and L. M. Ni, “Fault-tolerant wormhole routing in meshes,” in Twenty-
Third Annual Int. Symp. on Fault-Tolerant Computing, pp. 240–249, 1993.

12. Intel Corporation, Paragon XP/S Product Overview, 1991.
13. J. H. Kim, Z. Liu, and A. A. Chien, “Compressionless routing: A framework for

adaptive and fault-tolerant routing,” in Proc. 21st Ann. Int. Symp. on Comput. Arch.,
pp. 289–300, 1994.

14. M. D. Noakes et al., “The J-machine multicomputer: An architectural evaluation,” in
Proc. 20th Ann. Int. Symp. on Comput. Arch., pp. 224–235, May 1993.

15. C. L. Seitz, “Concurrent architectures,” in VLSI and Parallel Computation (R. Suaya
and G. Birtwistle, eds.), ch. 1, pp. 1–84, San Mateo, California: Morgan-Kaufman
Publishers, Inc., 1990.

This article was processed using the LATEX macro package with LLNCS style

12


